Table of Contents

Project Team and Acknowledgements ... v
Acronyms and Abbreviations ... i

Executive Summary ... 1
 Sector Overview .. 3
 Transportation .. 3
 Buildings .. 3
 Non-Energy .. 4
 Electricity .. 5

Meeting the Global Climate Imperative ... 5

Introduction .. 7
 Project Background and Context .. 7
 Analytical Approach ... 7
 Key Findings ... 10
 Transportation .. 11
 Buildings .. 12
 Non-Energy ... 13
 Electricity .. 15

Detailed Pathways Findings .. 17
 2025 Emissions Reductions .. 17
 Transportation .. 17
 Buildings .. 21
 Non-Energy ... 28
 Electric .. 29
 2030 Emissions Reductions .. 36
 Transportation .. 36
 Buildings .. 39
 Non-Energy ... 45
 Electric .. 47
 2050 Emissions Reductions .. 51
 Transportation .. 51
 Buildings .. 55
 Non-Energy ... 58
Figure 5. Electricity Demand (GWh) for all Sectors through 2050 .. 15
Figure 6. Transportation Emissions Climate Action Plan and Avoided versus Baseline 18
Figure 7. Forecasted Vehicle Stock by Type: Mitigation Scenario Vehicle Stock by Type 18
Figure 8. Projected Initial Costs for Passenger Cars in LEAP Modeling 19
Figure 9. Vermont Thermal Greenhouse Gas Emissions by Sector and Fuel Type 21
Figure 10. Residential Building Greenhouse Gas Emissions Reductions by Housing Type 22
Figure 11. Residential Building Measures Installed by 2025 .. 24
Figure 12. Mitigation Scenario Building Sector Cumulative Emission Reductions by Strategy Compared to Baseline ... 27
Figure 13. Emissions Reductions from Non-Energy Sector in 2020 and 2025 in Current LEAP Model 28
Figure 14. Electric Generating Capital Cost Assumptions in Mitigation Scenario 31
Figure 15. Electricity Total Annual Demand (GWh) Mitigation Scenario versus Baseline Scenario 33
Figure 16. Mitigation Scenario Electricity Demand (GWh) by Sector ... 33
Figure 17. Annual Electric Generation (GWh) by Source in Mitigation Scenario 34
Figure 18. Electric Vehicles on Vermont Roads by Year .. 36
Figure 19. Electric Vehicles Share of Total Vehicle Miles Traveled ... 37
Figure 20. Mitigation Scenario Decline in Residential Building Emissions by End Use 40
Figure 21. Residential Building Measures Installed by 2030 .. 41
Figure 22. Cumulative Weatherization Projects 2022 through 2030 ... 42
Figure 23. Annual Weatherization Projects 2022 through 2030 .. 42
Figure 24. Cumulative Residential Emission Reductions by Strategy ... 44
Figure 25. Commercial and Industrial Building Energy Emissions in the Mitigation Scenario 45
Figure 26. Emissions Reductions from Non-Energy Sector in 2020 and 2030 in Current LEAP Model 46
Figure 27. Mitigation Scenario Electricity Demand (GWh) by Sector, 2020 through 2030 48
Figure 28. Annual Electric Generation (GWh) by Source in Mitigation Scenario 49
Figure 29. Mitigation Scenario Emissions and Avoided versus Baseline 51
Figure 30. Annual Vehicle Miles Traveled by Vehicle Type, Mitigation Scenario 52
Figure 31. Upfront Vehicle Cost Assumption in LEAP for Medium-Duty Vehicle Segment 53
Figure 32. Mitigation Scenario Percentage Reductions in Vehicle Miles Traveled 53
Figure 33. Residential Building Measures Installed by 2050 .. 55
Figure 34. Mitigation Scenario Cumulative Residential Building Emission Reductions by Strategy Compared to Baseline ... 56
Figure 35. Mitigation Scenario Commercial Buildings Emissions and Avoided versus Baseline 57
Figure 36. Mitigation Scenario Industrial Buildings Emissions and Avoided versus Baseline 57
Figure 37. Mitigation Scenario Industrial Buildings Final Energy Demand by Fuel 58
Figure 38. Non-Energy Sector Emissions in 2020, 2030, and 2050 ... 59
Figure 39. Mitigation Scenario Gross and Net Emissions by Sector ... 61
Figure 40. Electricity as Share of Total Energy Demand Mitigation and Baseline Scenarios 63
Figure 41. Share of Annual Electric Generation from Renewables Baseline and Mitigation Scenarios 63
Figure 42. Mitigation Scenario Electricity Demand (GWh) by Sector .. 64
Figure 43. Peak Power Requirements (MW) in Mitigation and Baseline Scenarios 64
Figure 44. Mitigation Scenario Electricity Sector Module Balance ... 65
Figure 45. Mitigation Scenario Net Present Value Compared to Baseline .. 67
Figure 46. Mitigation Scenario Annual Costs and Savings Compared to Baseline 69
Figure 47. Mitigation Scenario Annual Costs and Savings Compared to Baseline 70
Figure 48. Mitigation and Alternative Scenarios Compared to Baseline, Net Present Values 71
Figure 49. Comparison of Cumulative Emissions from Mitigation Scenario with and without an Assumption of Higher Emission Levels from Hydro Quebec–Sourced Electricity 73
Figure A-1. Process of Translating LEAP Outputs to IMPLAN Inputs .. A-3

Boxes

Box 1. Terminology ... 9
Box 2. Electric Vehicles and the Potential to Reduce Households Transportation Costs 20
Box 4. Clean Heat Options for Vermonters Who Heat with Propane .. 25
Box 5. Ensuring Access to Clean Energy for All .. 32
Box 6. Advanced Clean Cars II and Advanced Clean Trucks Regulations .. 38
Box 7. Weatherization at Scale Trajectory .. 41
Box 8. On-Bill Repayment (or Weatherization Repayment Assistance Program) 44
Box 9. The Role of Flexible and Coordinated Load Management (known as Demand Management) 49
Project Team and Acknowledgements

This report was written by a project team of staff from the Cadmus Group and Energy Futures Group.

The Cadmus Group
- Liz Hanson
- Geoff Morrison
- Pierce Schwalb
- Cynthia Kan
- Shantan Krovvidi

Energy Futures Group
- David Hill
- Chris Neme
- Richard Fasey
- Liz Bourguet
- Gabrielle Stebbins

Many partners supported the work detailed in this report. The Project Team is grateful to all who offered modeling support, programmatic guidance, and feedback throughout our analytical process. In particular, we wish to thank:

Cross-Sector Mitigation Subcommittee
- Richard Cowart, Co-Chair
- Peter Walke, Co-Chair, Non-Energy Sector Lead
- Gina Campoli, Transportation Sector Co-Lead
- Johanna Miller, Transportation Sector Co-Lead
- Christine Donovan, Building Sector Co-Lead
- David Farnsworth, Building Sector Co-Lead
- Ed McNamara, Electricity Sector Co-Lead
- Liz Miller, Electricity Sector Co-Lead
- Jared Duval
- Adam Knudsen
- Chad Farrell
- Chris Campany
- Kelly Klein
- Lauren Oates
- Peter Bourne
- Dan Dutcher, Agency of Transportation
- Dan Edson, Buildings and General Services
- Deirdre Ritzer, Department of Environmental Conservation
- Ken Jones, Agency of Commerce and Community Development
- Diane Bothfield, Agency of Agriculture, Food and Markets

Vermont Agency Staff
- Julie Moore, Agency of Natural Resources, Secretary
- Chris Cochran, Agency of Commerce and Community Development, Director of Community Planning and Revitalization
- Bronwyn Cooke, Agency of Commerce and Community Development, Planning and Policy Manager
- Jane Lazorchak, Agency of Natural Resources, Director of Global Warming Solutions Act
- Megan O’Toole, Department of Environmental Conservation, Attorney
- Philip Picotte, Department of Public Service, Utilities Analyst
- TJ Poor, Department of Public Service, Director of Efficiency and Energy Resources
- Collin Smythe, Department of Environmental Conservation, Environmental Analyst
- Brian Woods, Department of Environmental Conservation, Environmental Analyst

Stockholm Environment Institute
- Taylor Binnington, Scientist
- Jason Veysey, Senior Scientist
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCII</td>
<td>Advanced Clean Cars II</td>
</tr>
<tr>
<td>ACT</td>
<td>Advanced Clean Trucks</td>
</tr>
<tr>
<td>CAP</td>
<td>Climate Action Plan</td>
</tr>
<tr>
<td>CEP</td>
<td>Comprehensive Energy Plan</td>
</tr>
<tr>
<td>CHS</td>
<td>Clean Heat Standard</td>
</tr>
<tr>
<td>CO2</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CSM Subcommittee</td>
<td>Cross-Sector Mitigation Subcommittee</td>
</tr>
<tr>
<td>EV</td>
<td>Electric vehicle</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gas</td>
</tr>
<tr>
<td>GWHS</td>
<td>Gigawatt hours</td>
</tr>
<tr>
<td>GWP</td>
<td>Global warming potential</td>
</tr>
<tr>
<td>GWSA</td>
<td>Global Warming Solutions Act</td>
</tr>
<tr>
<td>HFC</td>
<td>Hydrofluorocarbon</td>
</tr>
<tr>
<td>ICEV</td>
<td>Internal combustion engine vehicles</td>
</tr>
<tr>
<td>ISO-NE</td>
<td>Independent System Operator of New England</td>
</tr>
<tr>
<td>LEAP</td>
<td>Low Emissions Analysis Platform</td>
</tr>
<tr>
<td>LULUCF</td>
<td>Land use, land use change, and forestry</td>
</tr>
<tr>
<td>ODS</td>
<td>Ozone depleting substance</td>
</tr>
<tr>
<td>MMTCO2e</td>
<td>Million metric tons of carbon dioxide equivalent</td>
</tr>
<tr>
<td>Project Team</td>
<td>Cadmus, Energy Futures Group, and the University of Vermont</td>
</tr>
<tr>
<td>RES</td>
<td>Renewable Energy Standard</td>
</tr>
<tr>
<td>RPS</td>
<td>Renewable Portfolio Standard</td>
</tr>
<tr>
<td>SEI</td>
<td>Stockholm Environment Institute</td>
</tr>
<tr>
<td>TCI</td>
<td>Transportation Climate Initiative</td>
</tr>
<tr>
<td>TMTCO2e</td>
<td>Thousand metric tons of carbon dioxide equivalent</td>
</tr>
<tr>
<td>TWhs</td>
<td>Terawatt hours</td>
</tr>
<tr>
<td>VCC</td>
<td>Vermont Climate Council</td>
</tr>
<tr>
<td>VMT</td>
<td>Vehicle miles traveled</td>
</tr>
</tbody>
</table>
Executive Summary

To address the challenges, opportunities, and risks posed by global climate change, Vermont established a Climate Council charged with developing a first Climate Action Plan (CAP) by December 1, 2021. This Plan will provide guidance for meeting the requirements of the Global Warming Solutions Act (GWSA) enacted by the Vermont Legislature in 2020.¹

This Vermont Pathways Analysis Report was prepared by a team of decarbonization and energy planning professionals from The Cadmus Group and Energy Futures Group, under contract with the Agency of Natural Resources, to provide technical support to the Vermont Climate Council and its subcommittees and task groups as they prepare the CAP. This report provides analysis and detailed scenario modeling using the Low Emissions Analysis Platform (LEAP) model, presenting details on the pathways, strategies, policies, and actions that meet the requirements of the GWSA in across three time periods: 2025, 2030, and 2050. LEAP is an energy accounting framework-based tool that enables users to compare elements across user-defined scenarios that represent alternative future energy pathways. While not predictive, LEAP is beneficial for visualizing the scale and pace of transformation necessary to achieve emissions reductions. Results presented throughout this report are intended to inform the design of GWSA compliant policies.

To meet the GWSA requirements it is necessary to take deep, sustained, and flexible actions across all sectors. Policies, regulatory rules, public messaging, technical support, financing, incentive programs, training, education, and workforce development are all necessary to help drive the pace and scale of the actions needed to meet the requirements in each time period.

In passing the GWSA, the Vermont Legislature acknowledged that acting to address climate change is essential for Vermont’s future. Indeed, multiple rationales and justifications support reducing emissions and meeting GWSA requirements:

- **Economic** – In comparison to the baseline or “business as usual,” the mitigation scenario modeled in LEAP offers $3.2 billion of net benefits.² The mitigation scenario avoids $16.3 billion of fossil fuel costs and $3.8 billion of avoided economic, health, and environmental damages,³ for a combined total savings of $20.1 billion.

The present value of additional costs for the mitigation scenario are $16.9 billion above the baseline for investments in more efficient buildings and heating systems, electric vehicles (EVs) and EV charging infrastructure, practices to reduce the emissions of greenhouse gases (GHGs)

² These results are the net present value benefits in 2019 dollars, using a 2% discount rate, for the mitigation scenario compared to the baseline from 2015 through 2050.

³ Based on a social cost of greenhouse gases estimated using a damage-based approach starting at a level equivalent to $122 per metric tonne of carbon dioxide equivalent.
from agriculture and industrial processes, and investments in increased renewable electric generating stations and transmission and distribution systems.

When the savings from fossil fuels and avoided damages are combined with the additional costs and investments required to reduce emissions, the net economic benefits are $3.2 billion, which is roughly equivalent to one year of Vermont’s spending on all energy sources.

- **Social Equity** – Vermont has taken admirable steps in recognizing the importance of addressing the “energy burden,” or the total spending on energy for transportation and housing, for low- and moderate-income households. Many strategies and actions that reduce emissions can also reduce this energy burden, and can be supported by programs, education, outreach, and job opportunities that are targeted toward potentially underserved or vulnerable segments of the population. Actions that reduce a household’s energy use and emissions can also improve the longevity and affordability of the building, and can improve indoor air quality, safety, and comfort, thereby providing health and well-being benefits. Affordable and clean transportation alternatives, such as improving bike and pedestrian infrastructure, also supports improved health and well-being while reducing emissions.

- **Environment** – By meeting the GWSA requirements, Vermont will reduce emissions by 26% by 2025, 40% by 2030, and 80% by 2050, accompanied by sufficient sequestration for Vermont to be net zero in 2050. These levels of reduction are consistent with scientific and political consensus on what is required to avoid potentially catastrophic impacts from climate change. Even with reductions that meet the GWSA requirements, Vermont and the rest of the world will face increased damages and disruptions from climate change for decades to come. However, the nature and scale of the threat if the GWSA requirements are not met are much greater and threaten the health, stability, and well-being of the entire planet.

- **Technical/Institutional** – Meeting the GWSA requirements relies and builds upon technical solutions and organizations that exist in Vermont today. Advances across many industries, both directly related to energy and related to advanced computing, communications, material sciences, and control systems have enabled the development of a full palette of affordable and clean solutions for meeting every sector’s energy service needs. Vermont’s utilities, private fuel dealers, private businesses, financers, and public and non-profit organizations can grow and evolve to meet the challenges of deploying modern energy technologies.

- **Legal** – Unlike a policy target or goal, the GWSA establishes emissions reductions as requirements with potential legal recourse if the state fails to keep pace. Recognizing that emissions reductions are contingent on individual decision-making and investments that are not directly controlled by the state, there is nevertheless a legal requirement for the state to develop and enact a plan for reducing emissions in a historical manner. Success will depend on using the leverage of policies, public messaging, leading by example, regulations, and investment of public funds to catalyze and support the myriad of private decisions required to meet the requirements.
Sector Overview

To meet the GWSA requirements it is necessary to catalyze actions that will reduce emissions from each of the major sectors that currently contribute to GHGs. The mitigation scenario modeling conducted by the Project Team for this report is not predictive or prescriptive about exactly how the emissions reductions will be achieved over the coming decades, but it provides valuable information on the scale and pace of changes that need to be considered in each sector. A brief synopsis of the type and scale of action needed in each sector is outlined below.

Transportation

The mitigation scenario for meeting the GWSA requirements relies heavily on electrification of the vehicle fleet. EVs produce fewer emissions than conventional gasoline and diesel cars and trucks because they are more efficient and use a cleaner fuel. A global and national transition toward EVs is underway, but Vermont will need to be on the leading edge of adoption to meet the GWSA requirements. The prospects for rapid adoption and transformation of vehicle fleet are aided by favorable performance and economics for EVs. Over time, EVs can provide individual customers with financial savings and a lower total cost for operations (see Box 2). Nevertheless, higher first costs are a near-term barrier, and care must be taken to ensure equitable access to clean transportation options.

While investments in reduced transportation demand management, biofuels, and alternative modes of transportation also contribute to reduced emissions, most of the savings are realized through the benefits of fleet electrification. By 2025 the mitigation scenario includes 43,000 EVs on the road, with EVs accounting for 40% of vehicle sales and 8% of the statewide total vehicle miles traveled (VMT). By 2030, the mitigation scenario includes 166,000 EVs on the road, with EVs accounting for more than 80% of vehicle sales and 29% of the statewide total VMT.

The challenges to undertaking a transition at this pace and scale include increasing public and private infrastructure for vehicle charging and the availability of EVs based on manufacturing capacity and Vermont’s ability to present as an attractive market for EV sales (see Box 6). Revenues to assist with the transition in the transportation sector are expected to come from federal resources and from participation in the regional Transportation Climate Initiative (TCI).

Buildings

In the building sector, the mitigation scenario relies on a combination of policies, strategies, and actions to reduce emissions. Modernizing the energy performance of Vermont’s buildings means improving their thermal performance by insulating and air sealing to reduce the heating and cooling loads. It also involves taking advantage of the opportunity to improve the efficiency of heating systems by replacing conventional combustion-based equipment with modern and efficient cold-climate heat pumps. To further reduce emissions, buildings with more efficient thermal shells and heating equipment can also use electricity or biofuels, which create less emissions than conventional fossil fuels such as heating oil, propane, or natural gas. As building heating loads are increasingly electrified, electric system costs can be met through flexible load management and by coordinating multiple loads within and across large
numbers of buildings. Advanced flexible load management can include thermal and battery storage, which offer resilience and back-up power benefits.

The mitigation scenario includes more than 78,000 heat pump installations by 2025 and 142,000 heat pump installations by 2030. In many cases, the opportunities for enhanced building energy performance and reduced emissions will save customers’ money. An example of the savings for an individual Vermont customer using propane is to use heat pumps, weatherization, and biofuels, as presented in Box 4. Financing, incentives to overcome first-cost barriers, education, and outreach are all necessary to promote the pace of adoption necessary to meet emission reduction requirements.

In the mitigation scenario an additional 90,000 housing units are weatherized by 2030, with a focus on serving low- and moderate-income households including those in rental units and mobile homes. The challenge of increasing the pace of delivery for weatherization services is discussed in Box 7.

A Clean Heat Standard (CHS, see Box 3) is a market based, flexible, and technology neutral approach to reduce emissions across all residential, commercial, and industrial buildings. As a performance-based standard, the CHS would require providers of heating fuels to procure a specified level of clean fuel credits each year. Initiatives to improve the performance of rental properties and to set net zero standards for new construction also contribute to emissions reductions. Federal funds, both existing funds through historical programs funding weatherization and new funds related to infrastructure and climate objectives, will be essential complements to private and state-level investments in the building sector.

Non-Energy
While more than 80% of Vermont’s GHG emissions are attributed to energy use, there are significant non-energy emissions from agriculture and industrial processes. In Vermont’s 2017 Greenhouse Gas Inventory, non-energy emissions accounted for 17% of the total emissions, mostly from gases (such as methane and fluorinated gases) that have much higher impacts than carbon dioxide on warming for each physical unit of gas released.

In the mitigation scenario, non-energy emissions are reduced by 11% by 2025, 20% by 2030, and 38% by 2050. In the agriculture sector, management practices can reduce emissions, most importantly methane emissions, from enteric fermentation and manure management. The sequestration of carbon by agricultural soils can also be promoted through alternative cropping and tillage patterns. Reducing methane emissions was recently identified as an international priority at the 26th Conference of the Parties at Glasgow Scotland, and Vermont can benefit from increased attention and funding directed toward the reduction of methane emissions, demonstrating how natural and working lands can be

managed to reduce direct emissions and increase sequestration. Meeting the GWSA requirement of net zero carbon emissions by 2050 requires steps to protect and maintain the landscape’s capacity for sequestration. Even after meeting the reductions in gross emissions for the GWSA requirements, achieving a net zero requirement in 2050 will require Vermont to maintain sequestration rates of roughly 2 million metric tonnes of carbon dioxide equivalent (MMTCO2e) per year.

In Vermont, the non-energy emissions from industrial processes are primarily related to the use of substitutes for ozone depleting substances (ODS) as refrigerants and to the leakage of these gases (which have global warming impacts). In the mitigation scenario, emissions from ODS substitutes are reduced by more than 40% by 2030, based on the adoption of alternative refrigerants and enhanced refrigerant management and recycling. The direct non-energy emissions of fluorinated gases with high global warming impacts from semiconductor manufacturing are also reduced in the mitigation scenario, with an 8% decline by 2030.

Electricity

The mitigation scenario relies heavily on the use of clean renewable electricity in efficient buildings and transportation to offset the use of fossil fuels. Vermont has already made significant progress in shifting electric generation to clean resources, and the mitigation scenario includes continuing to increase renewable electricity, from 75% in 2032 to 100% by 2050. As the transportation and buildings sectors electrify, there will be significant increases in total electricity consumption. In the mitigation scenario, demand for electricity increases by 16% from 5.5 terawatt hours (TWh) in 2020 to 6.4 TWh in 2025, and by 43% to 7.9 TWh by 2030. By 2050 the total annual electricity demand in the mitigation scenario is more than 12 TWh. To meet these increased electricity demands, the mitigation scenario includes significant expansions in offshore wind, onshore wind, and solar generation, with Vermont continuing its reliance on electricity from the regional electric grid as well as generating resources in the state.

As electric demand grows and the uses of electricity are expanded, it is essential to address potential barriers that can prevent equitable access to the electric services and end uses that help to reduce emissions. Assuring equitable access to clean energy will entail consideration of the adequacy of electric service for individual housing units to support conversions to electric heat pumps and EV charging. Coordinated and flexible load management is a critical strategy to reduce the overall costs for new electric generation, transmission, and distribution infrastructure needs as electrification proceeds.

Meeting the Global Climate Imperative

This report identifies and provides analytical support for the strategies, policies, and actions for each sector that, when combined in the mitigation scenario, enable Vermont to meet the GWSA emission reduction requirements. Vermont, in isolation, cannot solve or abate the looming potential threats of climate change. No single jurisdiction or country can do that. Nevertheless, Vermont can adopt a CAP and take actions across all sectors of our economy to reduce emissions demonstrating the social, technical, and economic feasibility of transformative solutions. The mitigation scenario analyzed in this report identifies key questions, milestones, and guideposts to inform this journey. This report and our analyses are not predictive or prescriptive about exactly how Vermont will meet the requirements of the GWSA and there is still a great deal of planning and work ahead.
This report and the supporting analyses indicate that meeting the GWSA requirements will not be easy, but it is possible based on technologies, market trends, and resources that exist today. Efforts in every sector will need to be increased far beyond what has been done in the past. It will be critical to provide ongoing tracking, reporting, and evaluating of the impacts for meeting requirements so that strategies and actions can be adapted in response to changing conditions. This report and analyses can be used and useful for decades to come as Vermont strives and adapts to meet the climate challenge by reducing emissions at a scale that meets the GWSA requirements and in a manner that benefits its citizens, its economy, and its natural and built environment.
Introduction

Project Background and Context
Since 2008, Vermont’s Air Quality and Climate Division has released a series of briefs, updates, and comprehensive reports inventorying the state’s GHG emissions across seven sectors, per Intergovernmental Panel on Climate Change guidelines: (1) transportation mobile sources, (2) residential, commercial, and industrial fuel use, (3) agriculture, (4) industrial processes, (5) electricity consumption, (6) waste, and (7) fossil fuel industry. Vermont’s 2017 GHG inventory was released in May 2021 and demonstrates that Vermont GHG emissions remain close to 1990 baseline levels and that the state’s three largest sources of emissions were transportation, building energy use, and agriculture.

In 2020, the Vermont Legislature passed the GWSA, codifying an important set of emissions reduction targets and processes to ensure the state achieves at least an 80% gross emissions reduction from 1990 levels by 2050. Over the course of 2021, the Vermont Climate Council (VCC) has been working to develop the pathways, strategies, and actions necessary to set the state on a path to achieving this long-term emissions reduction target, as well as a 26% reduction from 2005 levels by 2025 and a 40% reduction from 1990 levels by 2030. Pursuant with the GWSA, the forthcoming CAP will also detail strategies for natural working lands to support long-term sequestration and storage of carbon such that the state achieves net zero emissions by 2050 across all sectors. The CAP will also include approaches to increase resilience and equity throughout the state.

To support this effort, Vermont’s Agency of Natural Resources contracted with Cadmus, Energy Futures Group, and the University of Vermont (the Project Team) to conduct a set of technical services related to the VCC. This included analyzing the pathways recommended by the VCC and its subcommittees to achieve the emissions reductions required in the GWSA. This report summarizes the Project Team’s findings on the transformations necessary to achieve emissions reductions using the approaches developed by the Cross-Sector Mitigation (CSM) Subcommittee for the transportation, buildings, non-energy, and electricity sectors.

Analytical Approach
To support the development of a CAP that aligns with the GWSA requirements, the Project Team conducted modeling using the LEAP, developed by the Stockholm Environment Institute (SEI), to analyze scenarios, pathways, strategies, and actions that combine to result in Vermont meeting the emissions reduction targets established by the GWSA statute.

LEAP is an energy accounting framework-based tool, developed over decades to aid with integrated demand and supply-side planning. The LEAP model is demand driven, in that users define energy use branches in the demand module (such as residential buildings or road transportation), then the model uses processes in the transformation module (such as electric generation or natural gas distribution) and energy supplies in the resource module (such as solar, wind, and primary and secondary petroleum products) to meet demand. The structure is well-suited for long-term planning horizons, cost
accounting, and assessing environmental impacts. LEAP enables users to compare these elements across user-defined scenarios that represent alternative future energy pathways.6

The Project Team built its LEAP modeling upon versions of the Vermont Pathways model developed during late 2020 and 2021 in support of the Comprehensive Energy Plan (CEP).7 This foundational work was conducted by SEI, under contract with Vermont’s Department of Public Service. The model SEI developed to support the CEP and CAP has hundreds of branches and thousands of inputs. For example, the demand tree in the model represents significant levels of detail for each sector on the types of buildings or vehicles, end uses within buildings, and devices and vehicles used to provide services.

The Project Team’s scope of work has been to assess and build upon the LEAP modeling conducted for the CEP and to support the sectoral subcommittees for the VCC as they use the modeling and modeling results to support the findings and recommendations of the CAP. Throughout executing this scope, we have worked closely with the CSM Subcommittee to understand their priorities for achieving emissions reductions in each sector, as well as for maintaining cost-effectiveness and enhancing equity across Vermont. It is important to highlight that the LEAP model is not predictive of Vermont’s future energy supply and demand, nor does it select the best pathways for Vermont to pursue its goals. Instead, by aligning model inputs with the prioritized strategies of the stakeholders engaged in designing the CAP, the model’s quantitative results on equipment stock, turnover, and costs can be used to inform the design of policies and programs that achieve the scale and pace of transformation required by the GWSA emissions reduction limits. While we have highlighted quantitative findings throughout, we have also revealed key insights from the modeling. We encourage the CSM Subcommittee and VCC to focus on these insights, particularly because it may seem infeasible to achieve the full scale of transformations included in the model in the near term. The results still indicate how Vermont can begin reducing emissions in the near term, while scaling the market and continuing to identify avenues for emissions reductions over time.

6 More information on LEAP and resources are available at https://leap.sei.org/Default.asp.
Box 1. Terminology

This document uses several specific terms to refer to the inter-related components of the analyses and their contributions to meeting the objectives and targets of the CAP.

Climate Action Plan – The overarching orientation and map of how the state meets GWAS targets in three discrete time periods. (Note that a completely different orientation or different set of reduction targets could rely on nuclear power and carbon capture and sequestration: that would not just be a different scenario of Vermont’s CAP, but an alternative destination that could reach the same target).

Pathways – The modeled scenarios representing bundles of strategies, policies and programs, and actions and activities that reach each time periods’ target reductions. This report is focused on the mitigation scenario and how it meets the GWAS targets by sector and time period in comparison to the baseline. The report also includes the comparative results for biofuels-focused and local renewable energy production scenarios.

Strategies – The components (represented by colored wedges in the diagram above) that are combined into pathways to meet the targets. Each strategy in the model includes information and assumptions on variables such as adoption rates, costs, fuel types, efficiencies, and emissions.

Policies/Programs – Legislative or regulatory actions or program initiatives adopted in a discrete or continuous manner, serving to support strategies.

Activities/Actions – The number of measures (activity) to reduce emissions from the baseline that are implemented and adopted throughout the planning period. Generally these will be a combination of natural adoption rates based on market conditions and preferences, along with measures that are incentivized and supported by public funding, and can be measured with benchmarks or waypoints.
Key Findings

The mitigation scenario exceeds the GWSA requirements for the reduction of gross GHG emissions in 2025, and subsequently meets the requirements for 2030 and 2050. Figure 1 illustrates the reduction of emissions by sector for each time period. The arrows indicate the not-to-exceed emissions levels required by GWSA in 2025, 2030, and 2050.

Meeting the GW\$A targets will require significant reductions across all sectors of Vermont’s economy, particularly from transportation and heating. A large share of the mitigation scenario emissions reductions for transportation and heating are the result of electrification displacing fossil fuels. The emissions reductions are the result of two factors: (1) the electric technologies (such as heat pumps and EVs) are more efficient than the equipment they replace (such as fossil fuel–powered boilers and internal combustion engines) and (2) the emissions associated with Vermont’s electric supply are much less than the emissions for the fossil fuels they displace. Vermont has the advantage of having the cleanest electricity supply in the county, meaning the high-level results in the mitigation scenario are distinct from many other states where the emissions from the electricity sector are more significant. However, given the role of electrification in meeting the GW\$A requirements, the electric sector will need to continue to increase its proportion of renewable energy to meet and manage the demand of new electric equipment.

Figure 1. Mitigation Scenario Emissions by Sector and GW\$A Targets

The following sections summarize the emissions reduction for each major sector.
Transportation

The transportation sector is the largest source of emissions in Vermont, and accordingly has the largest absolute reduction of emissions in the mitigation scenario. Compared to the estimated 2020 levels, the sector emission reductions are 15% by 2025, 36% by 2030, and 89% by 2050. Emissions decline primarily due to the expansion of EVs in the light-duty sector and the parallel decarbonization of the electricity grid. The mitigation scenario’s associated decline in transportation emissions from gasoline and diesel consumption is illustrated in Figure 2. Note that upstream emissions (those associated with the electricity grid) are counted in other sectors. The pace of the transition is significant, particularly in the near term, as necessary to achieve the requirements set forth in the GWSA and required by the science of climate change.

Figure 2. Transportation Sector Greenhouse Gas Emissions in Mitigation Scenario by Fuel Type

Increasing fuel economy, increasing use of biofuels, and lowering VMT relative to the baseline scenario further lower the sector’s emissions. This analysis is consistent with the pathways, strategies, policies, and actions recommended by the CSM Subcommittee, including participation in the TCI and associated initiatives such as Replace Your Ride, increased transit investment, Smart Growth, transportation demand management, and feebates for EVs and fuel-efficient vehicles.

Modeling the mitigation scenario in LEAP for the transportation sector involved modifying the baseline for several elements: the share of sales and vehicle stocks for all vehicle types, the efficiency of vehicles for each class, the number of VMT, and shares of biofuels.

Table 1 summarizes key indicators for the transportation sector in the mitigation scenario for 2025 and 2030.
Table 1. Transportation Key Indicators for 2025 and 2030

<table>
<thead>
<tr>
<th>Transportation</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of EVs</td>
<td>43,000</td>
<td>166,000</td>
</tr>
<tr>
<td>EV Share of Sales</td>
<td>40%</td>
<td>>80%</td>
</tr>
<tr>
<td>VMT Reduction from Baseline</td>
<td>1.9%</td>
<td>3.5%</td>
</tr>
<tr>
<td>EV share of VMTs</td>
<td>8%</td>
<td>29%</td>
</tr>
<tr>
<td>EV Managed Charging</td>
<td>27%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Buildings

The buildings sector is the second largest source of emissions in Vermont and, accordingly, is a major contributor in the mitigation scenario to meeting the GWSA targets. Figure 3 illustrates the emissions reductions from buildings by sector and year in comparison to the baseline. Residential buildings provide the largest emissions reductions, followed by commercial buildings. In both cases, space heating is the largest energy end use and the primary avenue by which emissions can be reduced, through a combination of more efficient building shells, higher-efficient heating systems (including heat pumps versus combustion-based systems), and cleaner fuels (including biofuels and electricity replacing fossil fuels).

![Building Sector Emissions and Avoided vs. Baseline](image)

Figure 3. Mitigation Scenario Building Sector Emissions and Avoided Emissions versus Baseline

This analysis is consistent with the pathways, strategies, policies, and actions recommended by the CSM Subcommittee, including the development and implementation of a CHS, a Rental Efficiency Standard,
and Weatherization at Scale,\(^8\) as well as net zero new construction standards for residential and commercial buildings and increased demand response and coordinated load management.

Modeling the mitigation scenario in LEAP for the building sector involved modifying the baseline for several elements: reduced loads for space heating and cooling, increased adoption of high-efficiency (heat pumps) for space and water heating, updated for electricity replacing combustion fuels, and increased blending of biofuels.

Table 2 summarizes key indicators for 2025 and 2030 for residential buildings.

<table>
<thead>
<tr>
<th></th>
<th>Residential Buildings Key Indicators for 2025 and 2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>2025</td>
</tr>
<tr>
<td>Homes Weatherized</td>
<td>48,000</td>
</tr>
<tr>
<td>Heat Pumps Installed</td>
<td>78,041</td>
</tr>
<tr>
<td>Heat Pump Water Heaters Installed</td>
<td>63,247</td>
</tr>
<tr>
<td>Homes with Biofuels</td>
<td>19,324</td>
</tr>
</tbody>
</table>

Non-Energy

Most of Vermont’s GHG emissions are associated with energy use. However, roughly 17% of Vermont’s emissions in 2020 came from direct GHG emissions from agriculture, industrial processes, and waste systems, or what is referred to as “non-energy” emissions. It is important that the CAP address opportunities to reduce non-energy emissions. Figure 4 illustrates how non-energy emissions from these sectors decrease in the LEAP model by 11% by 2025, 20% by 2030, and 38% by 2050.

\(^8\) The mitigation scenario is based on a linear increase of annual weatherizations with a total of 90,000 units weatherized by 2030. An alternative pace of increase is discussed in Text Box 7, which allows for a more gradual rate of increase as the weatherization industry gears up for the tremendous growth in homes needing to be weatherized in the future. This alternative profile anticipates that by 2025, about 18,000 housing units will be weatherized with a balance of 72,000 homes to be weatherized in the five years from 2025 to 2030.
Within the non-energy sector, the CSM Subcommittee recommended reducing direct agricultural emissions, increasing agricultural sequestration, reducing direct emissions from refrigerants, and addressing direct industrial process emissions as important contributions to achieving the GWSA targets. Non-energy emissions will also be reduced by ensuring that all flaring systems at waste and wastewater facilities are operational to reduce direct methane emissions and that, where possible, they also provide energy recovery from that flaring. Preliminary findings indicate that there are viable strategies to reduce enteric fermentation emissions, encourage best practices for manure management and soil sequestration, reduce ODS substitutes through refrigeration management, and increase efficiencies in semiconductor manufacturing, each of which are key drivers of emissions reductions and were incorporated into the LEAP model inputs. More research and analysis are required to further understand the cost and scale of these reductions, particularly from the agricultural sector.

Modeling the mitigation scenario in LEAP for the non-energy sector involved modifying the baseline for several elements: reduced the direct methane and nitrous oxide emissions from enteric fermentation and manure management, increased rates of soil carbon sequestration, and reduced direct emissions from refrigerants and from semiconductor manufacturing.

Table 3 summarizes key indicators for 2025 and 2030 for the non-energy sector.
Table 3. Non-Energy Key Indicators for 2025 and 2030

<table>
<thead>
<tr>
<th>Non-Energy</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enteric Fermentation</td>
<td>20%</td>
<td>39%</td>
</tr>
<tr>
<td>Manure Management</td>
<td>29%</td>
<td>57%</td>
</tr>
<tr>
<td>Agricultural Soils</td>
<td>9%</td>
<td>19%</td>
</tr>
<tr>
<td>ODS Substitutes</td>
<td>25%</td>
<td>41%</td>
</tr>
<tr>
<td>Semiconductor Manufacturing</td>
<td>4%</td>
<td>8%</td>
</tr>
</tbody>
</table>

Electricity

In contrast to the previous sectors (transportation, buildings, and non-energy), the focus on the electric sector is not primarily on further reducing emissions, but rather on cost-effectively, reliably, efficiently, and equitably meeting significant growth in future demand using renewable resources. The role of the electric sector in helping Vermont meet the GWSA targets is to provide an increasing amount of clean electricity, with total demand for electricity doubling from roughly 5.5 TWh in 2020 to more than 12 TWh by 2050. Figure 5 illustrates that transportation electrification accounts for most of this increased demand, followed by electrification of space heating in the residential and commercial sectors.

![Figure 5. Electricity Demand (GWh) for all Sectors through 2050](image)

Our analysis is consistent with the pathways, strategies, policies, and actions recommended by the CSM Subcommittee, including expanding the Renewable Energy Standard to 100% after 2032, conducting demand response, having flexible and coordinated load management (via managed EV charging and other solutions) and storage to address curtailment, ensuring that electrification is accessible to all,
creating strategic electrification of industry, and focusing on local renewables. Ultimately, ongoing planning and detailed analysis will need to occur to ensure optimization of all of the strategies, from investing in demand management activities (such as time-of-use rates, incentives, regulations, and code updates) to participating in the regional wholesale market and investing in more hardware (such as renewables and distribution and transmission upgrades) or other activities.

To model the mitigation scenario in LEAP for the electricity sector, the Project Team relied on the analysis conducted by SEI to support the CEP. In the LEAP model structure, the electricity demands are exogenous from the optimization routine for the sector. The use of coordinated and flexible load management is limited to a preliminary analysis of managed charging for EVs. Greater coordination across multiple loads and sites has significant potential to reduce the total increase in electricity peak demand and associated costs. The LEAP model uses capital, fixed, and variable operating costs for existing and potential new generating sources, both in Vermont and in the broader region served by the Independent System Operator of New England (ISO-NE), to reliably meet electricity demand in each time period throughout the day and over the course of each year. The modeling reflects both variations in electricity demand as well as the seasonal and diurnal variability of renewable energy output.

Table 4 summarizes key indicators for the electric sector in 2025 and 2030.

Table 4. Electric Sector Key Indicators for 2025 and 2030

<table>
<thead>
<tr>
<th>Electric Sector</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity as Share of Energy</td>
<td>20%</td>
<td>30%</td>
</tr>
<tr>
<td>Total Demand (GWh)</td>
<td>6,416</td>
<td>7,911</td>
</tr>
<tr>
<td>Peak Demand (MW)</td>
<td>1,441</td>
<td>1,777</td>
</tr>
<tr>
<td>Share of EV Managed Charging</td>
<td>27.3%</td>
<td>50%</td>
</tr>
</tbody>
</table>
Detailed Pathways Findings

2025 Emissions Reductions

The GWSA requires a 26% emissions reduction from a 2005 baseline by 2025. The mitigation scenario highlights the significant ramp up in activity required to meet this target, including in weatherization, clean heating and cooling technology deployment, and EV adoption, described in more detail below. In addition to implementing these strategies in the very near term, it is also essential to use this time period to gain momentum toward achieving 40% reduction by 2030, as the pace and scale of adoption must accelerate in the latter half of this decade to remain on-target. This is particularly imperative given the stock turnover cycles of many of the building and transportation technologies driving reductions in the mitigation scenario, as vehicles and heating equipment purchased or installed this decade are likely to still be in service in 2030. It will also be important to use the time period between now and 2025 to assess the feasibility of emissions reductions in the non-energy sector, including conducting research and monitoring of agricultural emissions and practices, as well as sequestration potential.

More detail on the key actions within this time period are included by sector below.

Transportation

By 2025, Vermont’s transportation GHG emissions decline in the mitigation scenario by 15% relative to today, led in large part by reductions in gasoline emissions from light-duty trucks and light-duty passenger vehicles (Figure 6). Reductions are driven by rapid EV adoption and the improving fuel economy of internal combustion engine vehicles (ICEV). By 2025, the mitigation scenario forecasts 47,500 EVs on the road, with a new vehicle sales share of approximately 40% (Figure 6). This level of EV adoption is likely aggressive, as it represents a higher penetration rate than currently assumed in California’s Advanced Clean Cars II rulemaking. That said, all major automakers have invested in EV technology and are expected to release additional EV models in the next three years, including new electric pickup trucks and sports utility vehicles, which are currently underrepresented in the EV market. As shown in Figure 7 emissions reduction from light truck ICEVs is responsible for most avoided emissions in the sector. Fuel economy in the mitigation scenario improves at 1.5% per year, which is consistent with Safer Affordable Fuel-Efficient Vehicles rule.

The costs of EVs has fallen quickly over the past decade, driven largely by battery cost reductions. Analysts expect the upfront cost of many light-duty EV segments to be comparable to the ICEV.
counterparts by the mid- to late-2020s.10 Cost parity on a total cost of ownership basis will be sooner for most drivers given the savings on fuel and maintenance from driving an EV. LEAP modeling assumes that the upfront cost of EVs declines over the next decade while the cost of ICEV increases slightly (see Figure 8 for an example of these trends for passenger cars). Upfront vehicle costs do not change between the baseline and mitigation scenarios since those costs are largely driven by forces outside of Vermont. The degree to which EV costs will continue declining over the next decade is a key uncertainty in the LEAP modeling. The higher upfront cost of EVs over the next few years suggests the need to continue providing vehicle rebates in Vermont, particularly for low- and moderate-income households.

\textbf{Figure 8. Projected Initial Costs for Passenger Cars in LEAP Modeling}

Box 2. Electric Vehicles and the Potential to Reduce Households Transportation Costs

According to the U.S. Bureau of Labor Statistics, in 2018 and 2019 U.S. households spent an average of 12% to 13% of before-tax income on transportation, including for vehicles, fuel, maintenance, and repairs. This fraction varies by income level, with the-lowest income households spending as much as 40% on transportation and the highest-income households only spending 1% to 2%.

A transition to EVs could reduce this burden through savings on fuel and vehicle maintenance, and eventual savings on the upfront cost of vehicles. For example, an EV in Vermont that charges on a residential rate of $0.17 per kilowatt-hour costs approximately $0.06 per mile, whereas a gasoline vehicle with a fuel economy of 25 miles per gallon and a fuel cost of $3 per gallon pays double that: $0.12 per mile. Consumer Reports compared EVs and gasoline vehicles of similar size and from the same segment and found that most EVs saved drivers between $6,000 and $10,000 over the typical vehicle lifetime.

Analysts suggest that EVs will offer further savings in future years as upfront vehicle prices decline. According to Consumer Reports, EVs are currently 10% to 40% more expensive upfront than gasoline vehicles. Since 2018, automakers have released more luxury EV models than mainstream models, which masks upfront price declines. Once price parity is reached in the mid- to late-2020s, battery costs are expected to continue declining, thus making EV cheaper to purchase than gasoline vehicles. The California Air Resources Board expects sustained reductions in the cost of batteries through 2035, from about $100 per kilowatt-hour in 2025 to $56 per kilowatt-hour by 2030.

Yet, several cost-related barriers remain. The reliance of EV owners on public charging is expected to increase in coming years as the fraction of garage orphans—those without the ability to charge overnight at home—increases. Public charging is generally more expensive than charging at home and makes the economics of personal EV ownership less attractive. Additionally, it remains unclear whether automakers will use savings from batteries to add all-electric range to vehicles rather than reducing the upfront price for the consumer.

Transportation Key Insights for 2025

There are several key transportation sector insights for 2025:

- Vermont should adopt Advanced Clean Cars II (ACCII) and Advanced Clean Trucks (ACT) regulations, but also invest in strategies beyond these regulations (as these regulations alone are insufficient to achieve the needed level of electrification).
Vermont should participate in the TCI to ensure a reliable source of funding, particularly for charging stations.

Continue to expand charging availability throughout the state, with a particular focus on filling spatial gaps with fast charge stations.

Study residential charging needs across Vermont to understand how best to balance at-home versus public charging solutions. The study should segment vehicle owners by those who can currently charge vehicles at their home or building, those who could feasibly install charging at their home or building, and those who do not have access to home charging and therefore need to rely on public stations.

Buildings

Emissions from buildings in Vermont account for a bit more than one-third of the total GHG emissions, making buildings the second largest source of emissions (after transportation).

As Figure 9 shows, the residential sector currently accounts for more than half the GHG emissions from Vermont buildings, mostly from burning fuel oil and propane. Another one-third of emissions are from the commercial sector, while about 15% are from the industrial sector.

Figure 9. Vermont Thermal Greenhouse Gas Emissions by Sector and Fuel Type

There are several main ways to reduce emissions from the building sector. These include improving the thermal performance of the building shell through improved insulation and reduced air leakage and drafts. This weatherization reduces the energy loads for heating and cooling the building, increases comfort, and can help to improve a building’s longevity. Vermont has a strong history and base of
experience for providing weatherization services and the mitigation scenario builds on this to improve and enhance the performance of residential buildings.

Using heat pumps (which use electricity and compression expansion cycles to transfer heat, rather than the combustion of fuels) for space heating and cooling provides the largest potential for reducing emissions from buildings. Cold-climate heat pumps have high efficiencies of more than 200%, so they are more efficient than typical combustion equipment (which has efficiencies in the range of 85% to 95%). Using renewably generated electricity heat pumps further reduces emissions in comparison to conventional heating systems.

To help reduce overall costs, it is important to manage building loads to more closely match the time-varying outputs of renewable generating systems, and to coordinate building loads to reduce their peak demands.

The use of biofuels, including renewable natural gas, biodiesel, and advanced wood heating systems, provides another means for reducing emissions. The lifecycle emissions from biofuels need to be considered, and not all sources result in reduced emissions; however, in many situations, biofuels provide significant reductions in comparison to fossil fuels.

By 2025 emissions from residential buildings in the mitigation scenario are reduced by 24% from 2018 levels. These savings come from a combination of increased weatherization, increased use of heat pumps for water and space heating, and increased use of biofuels. Reductions and the avoided emissions in comparison to the baseline by building type are illustrated in Figure 10.

Figure 10. Residential Building Greenhouse Gas Emissions Reductions by Housing Type
It is generally anticipated that it will be easier and less expensive to reduce emissions from residential and commercial buildings than from industrial buildings, where energy needs are often related to industry specific process needs. Though some industrial end uses can be relatively easily converted to clean sources—as evidenced by a variety of custom industrial projects pursued by Vermont’s electric utilities under existing Tier 3 requirements of the state’s Renewable Portfolio Standard (RPS)—others will likely be more difficult to convert. Since residential and commercial buildings account for most of the building sector emissions, these sectors will also be the most likely to result in the largest emissions reductions. However, the adoption of a CHS as a performance standard for building sector emissions will allow for flexibility, both in terms of which sectors are affected and in terms of what activities and strategies are deployed. See Box 3 for an overview of the CHS.

Box 3. The Clean Heat Standard: A Flexible, Performance-Based Approach to Reducing Emissions from Building Sector

The CHS is a performance standard, much like the RPS currently imposed on Vermont’s electric utilities, that would require Vermont Gas Systems and wholesale distributors of fuel oil, propane, and other fossil fuels sold to homes and businesses in Vermont to meet increasing annual GHG emission reduction requirements. Those requirements could be met through investments in a range of potential clean heat alternatives including heat pumps and other electrification technologies, weatherization and other efficiency investments that reduce fossil fuel consumption, renewable district heating systems, advanced wood heating systems, and sustainably produced liquid or gaseous biofuels with lower lifecycle GHG emissions than the fossil fuels they replace. The amount of GHG reduction that each measure is credited with providing would be determined through a technical advisory group process analogous to those currently in place to determine whether Efficiency Vermont is achieving its energy savings goals and to determine whether the state’s electric utilities are achieving their RPS Tier 3 requirements to reduce their customers’ consumption of fossil fuels. The Vermont Public Utilities Commission would oversee compliance with the CHS.

Because the CHS is a performance standard, Vermont Gas Systems and other fossil fuel wholesalers would have the flexibility to determine the mix of clean heat measures they want to use to meet their annual requirements. They would also have the flexibility to decide how to acquire clean heat credits, whether through their own sales of biofuels in Vermont, by running programs to promote Vermont customers’ investments in clean heat measures, or by buying clean heat credits from other parties (or some combination). Entrepreneurial fuel dealers, HVAC contractors, weatherization contractors, vendors of pellet stoves, and other businesses could generate clean heat credits by selling and installing clean heat technologies in Vermont homes and businesses. They could then earn revenue from selling those credits, either through bilateral agreements with one or more fossil fuel wholesalers or on the open market. Also, because the CHS is a performance standard, with annual GHG emission reduction requirements based on the state’s GWSA, emission reductions resulting from existing Vermont policies and programs—including Efficiency Vermont’s efforts and the electric utilities’ RPS Tier 3 programs—would all count and could be sold to obligated fossil fuel wholesalers (creating a new revenue stream to defray the costs of those existing policies).
Just as no Vermont home or business is required to install solar panels to help Vermont’s electric utilities meet their RPS requirements, or is required to install efficiency measures to help Efficiency Vermont meet its energy savings targets, no Vermont home or business would be required to do anything under the CHS. Instead, they would have the option to invest in heat pumps, pellet stoves, weatherization, biofuels, or other clean heat measures, and would have the cost of such investments defrayed through program rebates or price discounts. Fossil fuel wholesalers would need to ensure that rebate levels or price discounts are high enough to attract voluntary participation by homes and businesses at levels necessary to meet the wholesalers’ growing annual GHG emission reduction requirements. Importantly, the CHS would include minimum requirements for the installation of heat pumps, pellet stoves, weatherization, and other measures in low-income homes that would otherwise not be able to participate.

As Figure 11 shows, a combination of activities and strategies contribute to reducing residential building emissions by 2025. This includes significant electrification—of nearly 80,000 heat pumps and over 60,000 heat pump water heaters compared to the period from 2015 through 2020, when Vermonters installed about 30,000 heat pumps. Heat pump sales are growing exponentially (by over 11,000 in 2020 alone) absent new climate policies. It is generally easier to ramp up and expand existing efforts, such as the heat pump incentives currently offered through Efficiency Vermont, that already have some traction in the market than to get substantial emission reductions from new areas that currently have relatively low levels of market adoption. Another reason for the rapid increase in market share is that heat pump retrofits have the potential to lower energy bills for many homes and businesses currently heating with fuel oil or propane. It is critical to understand clean heat options and other opportunities to reduce emissions from the customer’s financial perspective to help determine the need for incentive programs and to support accelerated adoption rates. Box 4 provides an example of how heat pumps and weatherization can help to reduce energy costs for a Vermont household that currently uses propane as its primary heating fuel.

Figure 11. Residential Building Measures Installed by 2025
Propane is the primary heating fuel in about 23% of Vermont homes. Since there are currently no direct biofuel alternatives for propane, it is useful to understand the options for propane customers as we look to transition away from burning fossil fuels.

Building weatherization is an option for all customers, regardless of the fuel used for heating. Weatherization energy savings range from 13% to 45%, with an average of about 22% for Vermont program participants. In addition to energy cost savings, customers also benefit from health and safety improvements while preparing their building for a heat pump installation. Heat pumps operate more effectively in weatherized buildings.

In addition to weatherization, propane customers are also able to reduce fuel costs by displacing propane with heat pumps and/or biomass. Table 5 shows the results of an analysis of four scenarios. Three different Vermont homes were analyzed and used as a baseline for savings comparisons. The low use customer burns about 486 gallons of propane per year, while the medium use customer burns 971 gallons and the high use customer burns 1,457 gallons. Using November 2021 average rates, the annual propane costs for these customers would be $1,535, $3,070, and $4,605 respectively.

Table 5. Clean Heat Options’ Effect on Propane Costs and Savings

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Low Use</th>
<th>Medium Use</th>
<th>High Use</th>
<th>Load Served</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Annual Cost</td>
<td>Gallons</td>
<td>Annual Cost</td>
<td>Gallons</td>
</tr>
<tr>
<td>Baseline Propane Customer</td>
<td>$1,535</td>
<td>486</td>
<td>$3,070</td>
<td>971</td>
</tr>
<tr>
<td>Single-Head Heat Pump</td>
<td>$1,288</td>
<td>247</td>
<td>$2,576</td>
<td>494</td>
</tr>
<tr>
<td>Savings</td>
<td>$247</td>
<td>304</td>
<td>$494</td>
<td>609</td>
</tr>
<tr>
<td>Pellet Stove</td>
<td>$1,230</td>
<td>241</td>
<td>$2,461</td>
<td>609</td>
</tr>
<tr>
<td>Savings</td>
<td>$304</td>
<td>304</td>
<td>$609</td>
<td>913</td>
</tr>
<tr>
<td>Two-Head Heat Pump</td>
<td>$1,041</td>
<td>208</td>
<td>$2,081</td>
<td>988</td>
</tr>
<tr>
<td>Savings</td>
<td>$618</td>
<td>208</td>
<td>$1,235</td>
<td>988</td>
</tr>
</tbody>
</table>

The four scenarios examined for reducing propane use were installing (1) a single-head heat pump, (2) a pellet stove, (3) a two-head heat pump (or, preferably for better performance, two single-head heat pumps), and (4) a central heat pump system. As shown in Table 5, the heating load served for each of these options increases from 40% in option 1 to 100% in option 4. This means, for example, that the home with the two-head heat pump that provides 80% of the building’s heating load will still rely on propane for 20% of the heating load. The table includes the blended energy costs of the heat pump (or pellet stove) and the propane system, along with the savings (highlighted in peach) relative to heating the home exclusively with propane. The central heat pump assumes 100% electricity and no propane use.
The customer will experience cost savings under low, medium, and high use conditions in all the scenarios. For a single-head heat pump meeting 40% of the home’s load, savings would range from $247 to $741 per year. For the pellet stove meeting 50% of the load, savings would range from $304 to $913 per year. For the two-head heat pump meeting 80% of the load, savings would range from $494 up to $1,482 per year. For the central heat pump providing all the home’s heat, savings relative to the home heated only with propane would range from $618 to $1,853 per year.

Customer savings from all these options can be significant, but there is also a cost to installing the new equipment. Rebates can reduce clean equipment costs and financing can help spread the payments over time so the resulting energy savings can either offset the investment altogether or help defray the cost significantly. The cost per heat pump or pellet stove system after rebates is approximately $4,000 (plus or minus about $1,000 depending on the house layout and other particulars), and a central heat pump system can be two to three times that cost for a house with existing ductwork where a central heat pump can be added to the system. Of course, specific costs will vary.

The bottom line is that there are multiple options for propane-heated homes. Weatherization will reduce the heating needs of any building. Heat pumps and biomass systems are available that will displace a portion—or even all—the more expensive propane heat, providing savings that can be redirected to pay for modernizing the heating system in any home while using available rebates and taking advantage of affordable financing options for a cleaner energy future for everyone.

Vermont Department of Public Service. 2021. “Retail Prices of Heating Fuels.”
https://publicservice.vermont.gov/content/retail-prices-heating-fuels

As Figure 11 above illustrates, the mitigation scenario also includes significant ramping up of weatherization activity, roughly doubling the current total of 30,000 units treated to date. Increasing support for weatherization has received significant emphasis recently, along with committed funding from the Vermont Legislature, state agencies, and the federal government. Multiple state agencies, organizations, and businesses have stepped up to engage with the Weatherization at Scale initiative in support of weatherizing a total of 120,000 homes by 2030 (or 90,000 more than today’s level) with an emphasis on low- and moderate-income homes and buildings.

Weatherizing older Vermont homes not only helps reduce energy costs, but also improves health and safety for the occupants and prepares the house for installing heat pumps, which work much better in tighter, insulated homes. The mitigation scenario reflects the interest and momentum for Weatherization at Scale and for preparing Vermont’s homes for heat pumps with a focus on serving low- and moderate-income homes. The pace of increasing weatherization services at scale is further discussed in Box 7 (in the 2030 emissions reduction from buildings section of this report).
By 2025 the mitigation scenario also includes the use of 1.9 trillion Btu’s of biofuels. This is equivalent to the average total fossil fuel consumption of nearly 20,000 single family detached homes in the state today.\footnote{This is based on an assumption that the average single-family home consumes approximately 75 MMBtu to 80 MMBtu per year for space heating and 20 MMBtu to 25 MMBtu per year for water heating, cooking, drying, and other end uses.}

While all these strategies and activities contribute to building sector emissions reduction, Figure 12 illustrates that in comparison to the baseline, the largest reductions in emissions are associated with the conversion of heating systems to heat pumps.

Figure 12. Mitigation Scenario Building Sector Cumulative Emission Reductions by Strategy Compared to Baseline

Building Sector Key Insights for 2025

By 2025, initiatives that ensure meeting the 2030 goals will need to be well underway. These initiatives include adoption of the Clean Heat Standard along with other building sector policies and programs that will result in modernizing our building stock through weatherization, electrification, and other approaches. By 2025, we will need to have ramped up our delivery of biofuels to homes and businesses significantly, weatherized 18,000 more homes that we have done to date and installed nearly 80,000 heat pumps and over 60,000 heat pump water heaters. As well, we will need to install advanced wood heating systems for both residential and commercial buildings and make progress building out our
renewable district heating systems, in addition to some industrial electrification and other strategies beyond what Tier 3 currently provides.

Non-Energy

Emissions Reductions from Non-Energy Sector in 2025

Total emissions from the non-energy sector are 1,253 thousand metric tons of carbon dioxide equivalent (TMTCO2e) in 2020 and are reduced to 1,116 TMTCO2e in the LEAP model in 2025. This represents a reduction of 11%, or about 137 TMTCO2e, between 2020 and 2025, distributed across all aspects of the non-energy sector: industrial processes, agriculture, and waste. Most of the emissions reductions (65%) modeled in the non-energy sector during this time period come from industrial processes, while 33% of emissions reductions come from agriculture and about 3% come from waste. Figure 13 illustrates the emissions from the non-energy sector in 2020 and 2025.

![Figure 13. Emissions Reductions from Non-Energy Sector in 2020 and 2025 in Current LEAP Model](image)

Industrial processes as modeled by LEAP include several categories: limestone and dolomite use, soda ash, ammonia and urea, ODS substitutes, semiconductor manufacturing, and electricity transmission and distribution. In 2025, industrial process emissions are projected to be 463.5 TMTCO2e, which is a reduction of 88.6 TMTCO2e from emissions in 2020. Most of the emissions reductions from industrial processes come from ODS substitutes, from which emissions are reduced from 322.1 TMTCO2e to 243.0 TMTCO2e. There is also a slight reduction in emissions from semiconductor manufacturing, from 195.4 TMTCO2e in 2020 to 187.2 TMTCO2e in 2025.

Agriculture is the second largest sectoral source of non-energy emissions. In the mitigation scenario emissions from agriculture are reduced from 578.1 TMTCO2e in 2020 to 533.5 TMTCO2e in 2025, or
44.6 TMTCO2e over this time period. These reductions come from advanced management practices to reduce methane and nitrous oxide emissions from enteric fermentation and manure management, and to increase carbon sequestration rates for agricultural soils. Liming and urea fertilization, which represents the smallest emitting process within agriculture, does not have reductions during this time period. Enteric fermentation is the largest emitting process within agriculture, with emissions reduced from 318.8 TMTCO2e in 2020 to 298.7 TMTCO2e in 2025. Emissions from agricultural soils are reduced from 150.2 TMTCO2e in 2020 to 136.0 TMTCO2e in 2025. Emissions from manure management are reduced from 85.7 TMTCO2e in 2020 to 75.1 TMTCO2e in 2025.

The waste sector in LEAP includes municipal solid waste and wastewater. There is a slight decrease in emissions from waste, from 123.2 TMTCO2e in 2020 to 119.4 TMTCO2e in 2025.

Non-Energy Key Insights for 2025

The primary driver of the 11% reduction in emissions from the non-energy sector from 2020 to 2025 is industrial processes, particularly ODS substitutes. The emissions reductions from ODS substitutes reflected in in the mitigation scenario are consistent with Vermont’s refrigerant management efforts, and these provide a major way for Vermont to reduce its hydrofluorocarbon (HFC) emissions. More information about efforts to reduce emissions through refrigerant management is outlined in the *Policy Implications* section.

Emissions reductions from agriculture in the mitigation scenario from 2020 to 2025 result from advanced management practices for enteric fermentation, manure management, and agricultural soils. Emissions reductions from enteric fermentation are based on alternative feed practices, including feed additives that reduce the methane produced from ruminants. Emissions reductions from manure management are based on anticipated manurce management practices and uptake of these practices by Vermont farmers, including waste digestors. Emissions reductions from agricultural soils stem from altered agricultural soil management practices, which could include, for example, cover crops and no-till practices. Each of these strategies are discussed further in the *Policy Implications* section.

Waste is not a significant emitter relative to industrial processes and agriculture and there is only a slight reduction in emissions from wastewater management from 2020 to 2025, while emissions from municipal solid waste stay steady. This could be due to improvements in wastewater management technologies to reduce fugitive methane emissions from wastewater treatment.

Electric

Electricity Sector Modeling in LEAP

Before presenting the electric sector findings, it is important briefly discuss the key terms used in electricity sector and the approach to electricity sector modeling in LEAP.

The key terms “energy” and “capacity” are frequently used in the electricity sector. Energy reflects the number of kilowatts used over a certain time frame (kilowatt-hour, or kWh), and can be viewed similarly to the number of gallons of gasoline used to drive a certain distance. Capacity reflects how much electricity is needed at a specific point in time (kilowatt, or kW), and can be viewed similarly to the
amount of gasoline used when a driver puts their foot on the accelerator (also referred to as “peak load”). Utilities are required to meet the needs of both, and Vermont utilities assess these needs every three years through a planning process referred to as an “Integrated Resource Plan.” The ISO-NE requires there to be enough generators on standby to meet capacity (the amount of electricity needed by the entire region, similar to when a driver accelerates), even though the region does not need this much electricity most of the year. These capacity needs drive the cost and build out of future generation, transmission, and distribution. Additionally, efforts to strategically electrify while also increasing variable renewable generation (wind and solar) require the use of other strategies, such as demand management and flexible coordinated load management (as well as storage), to ensure we meet future capacity as cost-effectively as possible.

The electric sector outputs from the LEAP model are uniquely different from those in the transportation, buildings, and non-energy sectors, because they are essentially a response to the electricity demands created by the other sectors. As described earlier, the Project Team developed the outputs from the transportation, buildings, and non-energy sectors by determining, for example, how many EVs or heat pumps (or other technology) would be needed to achieve the required emission reduction targets by a specific year.

To meet increasing electricity demand, in 2025 and beyond, SEI conducted the LEAP modeling for the electricity sector mitigation scenario based on existing and planned Vermont generating plants (as well as existing contracts). Requirements exceeding the contracted and planned supplies were met using a dispatch model of ISO-NE, allowing the model to estimate future capacity needs across the regional grid required to meet Vermont’s needs. This provides an idea of the resources deployed to meet Vermont’s increased electricity demand recognizing that Vermont is part of the regional grid.

For electric sector modeling, SEI obtained underlying data assumptions and forecast sources (pertaining to existing and planned capacity, system reserve and capacity adequacy, plant generation characteristics, plant costs, current and projected system load, and GHG emissions) from recognized entities such as the U.S. Energy Information Administration, ISO-NE, National Renewable Energy Laboratory, the U.S. Environmental Protection Agency, the Vermont Department of Public Service, and VEPP Inc. The capital costs (using data from the U.S. Energy Information Administration and National Renewable Energy Laboratory) for each generation source are shown in Figure 14.
Figure 14. Electric Generating Capital Cost Assumptions in Mitigation Scenario

The least-cost capacity expansion and dispatch in the model is also subject to several constraints:

- Demand (and 8% energy loss from transmission) must be satisfied.
- The planning reserve margin must be maintained.
- There must be sufficient renewable energy production to meet Vermont’s Tier I and Tier II RPS (but there is no representation of renewable energy credits separate from the renewable kilowatt-hours).
- The existing energy purchase contracts must be enforced and are assumed to expire on the current end date.

There are several strategies, activities, and other factors considered critical for meeting the mitigation scenario for the greater amount of electricity needed to meet Vermont’s GWSA requirements:

- Ensuring that access to opportunities for the electrification of transportation and buildings to reduce emissions is equitably available to all (see Box 5).
- Enabling Vermont to continue increasing the share of electricity generated by renewable resources, expanding beyond the current renewable energy standard level of 75% by 2032, to reach 100% renewable by 2050.
- Further market and technical research and demonstration of the potential for flexible loads (including battery and thermal storage) to be connected, coordinated, and managed to reduce system peak loads, costs, and to improve reliability and resilience (see Box 9).
Box 5. Ensuring Access to Clean Energy for All

Technology changes such as strategically shifting to electrified heating and driving ultimately save the end user in the dollars spent on energy as well as the energy itself. Similarly, investing in distributed energy resources such as solar and batteries can stabilize fluctuating energy costs and ensure reliability when the power goes out. But for many Vermonters, making these investments may not be possible unless policy makers proactively address a variety of barriers, such as these:

- **An inability to pay the upfront cost.** For those who simply cannot afford the investment, increased incentives are needed. For others, the solution may be to support financing products that recognize the value of the investment, using the cost savings incurred over the lifetime of the project to pay for the loan.

- **Lack of property ownership.** For those who rent, policies must be developed to address barriers for renters. This may include identifying ways to ensure that EV charging stations are available at rental properties (recognizing that multifamily properties pose particular challenges). It may also include developing products such as on-bill financing or requiring that rental properties be improved through mechanisms such as building energy code or rental ordinances.

- **Challenges with existing infrastructure.** Infrastructure challenges are various. Vermiculate in a home may need to be addressed prior to improving the building’s envelope through air sealing and insulation. Installing heat pumps in a leaky home is inefficient and can lead to comfort issues for the occupant. Similarly, a property owner often must upgrade the electrical panel before installing technologies such as heat pumps or a Level II EV charger. These types of investments are not currently supported by entities that provide incentives for energy efficiency and strategic electrification. Policy makers must consider whether and how to modify current program designs to address these technical barriers.

Some clean energy shifts, such as the New England power grid becoming cleaner over time, will be applied to all who use electricity. Other activities, such as “going solar,” weatherizing a home, installing heat pumps, or purchasing an EV, may not be available to all unless policy makers prioritize that the clean energy future be accessible to all.

Electricity Sector Needs by 2025

As the mitigation options of increasing EVs and heat pumps are adopted, Vermont’s electricity consumption will increase. The increase in electricity demand between the baseline and mitigation scenario is illustrated in Figure 15. In the mitigation scenario electricity demand grows from 5.5 TWhs in 2020 to 6.4 TWhs. In comparison in the baseline scenario, electricity demand by 2025 increases only modestly to 5.6 TWhs.
Figure 15. Electricity Total Annual Demand (GWh) Mitigation Scenario versus Baseline Scenario

Figure 16 shows where this increased demand is coming from. As of 2025, increases can be seen as electrification occurs in the residential and transportation sectors, with a slight increase in the commercial sector.

Figure 16. Mitigation Scenario Electricity Demand (GWh) by Sector
Based on the modeling approach, inputs, and constraints described above, the electric generating mix for the mitigation scenario is presented in Figure 17.

Figure 17. Annual Electric Generation (GWh) by Source in Mitigation Scenario

Offshore wind, onshore wind both from outside of Vermont, and a combination of in state and out of state solar are the largest contributors to meeting increased electricity demand in the mitigation scenario. As mentioned above, the Project Team input contract terms and current policies such as Vermont’s Renewable Energy Standard (RES) into LEAP, and the LEAP model then selected the most cost-effective resource available at the time it is needed. Therefore, the 2020 through 2025 timeframe shows decreases in biomass (Ryegate contract expiration), nuclear, and hydro, with increases in behind-the-meter solar (Vermont RES) and significant increases in regional solar and regional onshore and offshore wind.

With regards to peak, by 2025 peak demand is expected to grow by nearly 250 MWs in the mitigation scenario (as compared to 25 MWs under the baseline scenario).

As described above, the current structure of the model selects more generation to meet peak, rather than selecting other options. The opportunity for utilities to save on generation, distribution, and transmission costs through ongoing exploration and implementing flexible load management and non-wires alternatives cannot be emphasized enough.
Electricity Sector Key Insights for 2025

Key insights for the electricity sector include several critical needs and opportunities:

- Ensure that strategic electrification is accessible to all through education, incentives, rental policies, and the development of financing products that allow for longer-loan terms that fully capture the value in shifting to more efficient, electrified technologies.

- Examine the potential for rate designs that incentivize and optimize electricity consumption for transportation, space, and water heating.

- Carefully investigate how best to prepare for future significant load growth as the electrification of other sectors occurs, such as by researching and piloting favorable electric rates to incentivize activities aligned with chosen policy (and ensuring that all Vermonters, regardless of income, can participate and are not indirectly penalized, per the bullet above), as well as flexible demand management, assessing a 100% RES, and evaluating the costs and benefits of the location (local versus regional), type (wind, solar, batteries, hydro, biomass, or biofuels), and size.

- Continue deploying and analyzing the results of demand management tools and techniques.

- Continue reviewing current and future generation contracts and projects.

- Continue identifying future grid upgrades and non-transmission alternatives so that, when significantly more renewables, flexible load, and demand management are actively and regularly deployed, the grid can integrate these resources.
2030 Emissions Reductions

Meeting Vermont’s GWSA requirements for 2030 is likely to be more difficult than meeting the 2025 requirement. Reflecting this, the mitigation scenario overachieves emissions reductions by 2025, in the interest of being able to meet the 2030 requirements. The critical strategies, activities, and interventions for each sector remain generally the same, but the scale of activities and the impacts are required to have expanded greatly (such as needing more than 160,000 EVs, 120,000 total weatherized homes, and over 140,000 heat pumps).

Some of these changes are likely to be supported by non-Vermont technology and market evolutions; for example, the EV market will be significantly advanced by 2030 by the California and federal standards under development today, and both battery storage and coordinated controlled loads and management are expected to improve. This will be to Vermont’s benefit, but also removes some level of control from the state. If the standards are weaker than anticipated or removed in the future, Vermont will have to determine ways to make up for those lost emissions reductions. This section provides details on how the mitigation scenario meets the GWSA 2030 requirements for each sector.

Transportation

By 2030, transportation sector GHG emissions decline by 36% in the mitigation scenario relative to today. This reduction is driven by greater EV adoption and modest reductions in VMT. The electrification of light-duty vehicles in particular greatly accelerates between 2025 and 2030. As shown in [Error! Reference source not found.], by 2030 the mitigation scenario anticipates 159,200 light-duty EVs on the road and 12,800 medium- and heavy-duty EVs.

![Electric Vehicles on Vermont Roads by Year](image)

Figure 18. Electric Vehicles on Vermont Roads by Year
With these adoption rates, by 2030 EVs will account for 29% of all on-road VMT, as illustrated in Figure 19.

Figure 19. Electric Vehicles Share of Total Vehicle Miles Traveled

The cost projections in the mitigation scenario assume that by 2030 the upfront and operating costs of EVs are lower than for ICEVs in all light-duty segments. This means households and fleets save money on transportation expenses relative to today and can spend money on other goods and services. Medium-duty vehicles are not far behind light-duty vehicles in terms of cost. In the mitigation scenario, by 2030 most medium- and heavy-duty EVs reach cost parity with comparable ICEVs on a total cost of ownership basis, although some vehicle segments reach that point earlier. The exact year of cost parity will depend on vehicle-specific factors, such as daily mileage, duty cycle, battery size, and charging speed. The electrification of medium- and heavy-duty vehicles represents a monumental shift in how fleets will manage, operate, maintain, and dispose of their vehicles. To ensure success in this transition, the state of Vermont will need strategies for sustainable funding mechanisms, tariff structures, make-ready infrastructure programs, and advisory services aimed at medium- and heavy-duty vehicle fleets.

Another key consideration in 2030 is the growing market for used, light-duty EVs. Approximately two-thirds of all vehicle sales in the U.S. in a given year are used vehicles.12 Many EVs today are initially leased, which means they are sold after the lease expires, when they are two or three years old.

Although not explicitly modeled in LEAP, used EVs will help low- and moderate-income households save money on transportation expenses and benefit from reduced vehicular emissions. State governments in the Northeast U.S. may compete for used EVs by providing incentives.

By 2030, the mitigation scenario also reflects increased investments in Smart Growth, Complete Streets, and transit expansion, with a 3.5% reduction in VMT compared to the baseline scenario but about a 0.5% increase relative to today. Note that LEAP is not an advanced transportation planning model and is therefore relatively unsophisticated in its modeling of VMT reductions. Changes in VMT are based on literature that isolates the link between VMT and urban denitrification, transit expansion, and other similar programs on VMT.\(^{13}\)

Box 6. Advanced Clean Cars II and Advanced Clean Trucks Regulations

The two most important regulatory drivers of the electrification of Vermont’s on-road vehicles in the next decade are expected to be ACCII and ACT. Both regulations are on track for adoption in Vermont following adoption within California. ACCII requires that an increasing fraction of new vehicles deliveries in Vermont are electric—starting at 20% to 30% in 2026, hitting 49% to 70% in 2030, and ending at 100% by 2035 (based on Northeast States for Coordinated Air Use Management calculations for the maximum and minimum required sales for automakers). The exact number of EV deliveries will depend on the automakers’ use of pooling and historical and environmental justice credits under the program. In the mitigation scenario, light-duty EV sales are slightly higher than this range in both 2025 and 2030. Similarly, new medium- and heavy-duty vehicle sales in the mitigation scenario are higher than the expected ACT regulation curves.

Yet, exceeding the ACCII and ACT standards could be challenging. Automakers typically have a three to five year planning horizon for new vehicle models to enable setting up new supply chains and retooling of factories. This suggests that the available EV models for 2025 are being determined at the time of this writing (and it remains unclear whether automakers will have sufficient vehicles to over-comply with ACCII and ACT). Regardless of what automakers do, the state of Vermont can maximize its EV population by creating a strong ecosystem of policies and incentives that simultaneously attract automakers and infrastructure providers to Vermont.

Transportation Sector Key Insights for 2030:

There are several critical needs and opportunities for the electricity sector:

- Identify strategies that exceed the pace of electrification in ACCII and ACT regulations, as suggested in Box 6.
- Continue expanding charging infrastructure across Vermont in an equitable fashion, with a particular focus on multi-unit dwellings, on-street charging, and fast charge stations.
- Ensure that low- and moderate-income families have access to affordable EVs through targeted incentive programs of new and used EVs.
- Support the electrification of fleets by supporting distribution make-ready system upgrades, incentivizing the upfront cost of medium- and heavy-duty vehicles, providing free advisory services for fleet electrification, and/or providing all-inclusive charging-as-a-service to fleets.
- Develop a thriving used EV market by working with auto dealerships and ensuring that the proper set of incentives exist to maximize EV sales.
- Create rates and incentives to promote equitable access to vehicle electrification or clean transportation services.

Buildings

Total emissions from the building sector in the mitigation scenario have declined by 38% from 3.2 MMTCO2e in 2020 to 1.99 MMTCO2e in 2030. Roughly half the reductions by 2030 come from residential buildings, with a bit more than one-third from commercial buildings, while industrial buildings contribute to about 15% of the reductions. The reductions primarily come from space heating and, as mentioned in the 2025 section on buildings, come from a combination of improved shell efficiency, more efficient equipment, and a cleaner fuel (electricity as compared to fossil combustion).

Figure 20 illustrates that residential building emissions in the mitigation scenario decline by 42% from 2020 levels, mostly from space and water heating measures.

To meet the 2030 GWSA requirements, the mitigation scenario requires roughly a doubling of the number of heat pumps, heat pump water heaters, and home weatherization retrofits, as well as a near doubling of biofuel fuel sales relative to 2025, as illustrated in Figure 21.

Though not shown in the graph, various other strategies would also provide savings by 2030, including advanced wood heating systems, additional renewable district heat serving primarily commercial customers, some industrial electrification, and a few additional strategies.
Figure 21. Residential Building Measures Installed by 2030

The total number of weatherization units completed by 2030 is 120,000 or 90,000 more than Vermont has accomplished to date. This is consistent with the objectives of both the Weatherization at Scale initiative and the statewide multifamily rental property efficiency standard compliance deadline of 2030. See Box 7 for more details about the trajectory and number of weatherization projects in the Weatherization at Scale initiative.

Box 7. Weatherization at Scale Trajectory

The Weatherization at Scale Working Group has been pursuing funding, financing, and programmatic efforts toward a target of 120,000 total homes weatherized by 2030. This initiative would be comprised of 90,000 new weatherization projects on top of the 30,000 homes weatherized to date in Vermont. The primary focus of this effort will be directed toward low- and moderate-income homeowners and renters, who can benefit most from the energy cost savings and additional health and safety benefits that weatherization provides.

Figure 22 shows the trajectory of the cumulative total weatherization jobs required to achieve 120,000 homes weatherized by 2030, starting with the 30,000 completed to date.
Figure 22. Cumulative Weatherization Projects 2022 through 2030

As shown in Figure 23, achieving 120,000 cumulative weatherization projects by 2030 will require a significant annual increase over today’s approximately 2,000 annual weatherization jobs, reaching 25% to 43% through 2027 as the industry ramps up, followed by year-over-year project completion growth rates of 21% and down to 12% by 2030. However, the project completion trajectory will still need to continue to grow beyond 2030 until 2050, when 243,500 homes will need to have been weatherized, almost three-quarters of Vermont’s housing units, to meet the GWSA targets. The Weatherization at Scale Working Group acknowledges that achieving the goal of 90,000 additional homes weatherized is ambitious, but it can and must be accomplished as an important component of meeting the GWSA goals for both reducing thermal energy use and for enabling clean heat pumps to operate more effectively in tight buildings.
Workforce and supply chain issues are real and will need focused attention to enlist new workers and businesses into the weatherization industry and to ensure that insulation and air sealing equipment and supplies remain available. With a focus on the low- and moderate-income community, the Vermont Office of Economic Opportunity and their Weatherization Assistance program providers will likely carry a significant share of this initiative. They currently deliver about half the state’s annual weatherization jobs and would likely be asked to carry at least this share of new projects going forward. The Weatherization Assistance program providers are trusted entities within the low- and moderate-income community and have a proven record of quality and effective weatherization project delivery. However, like much of the construction industry, they are currently struggling to find workers.

Securing workers and businesses to meet this volume of activity is going to require innovation, fresh thinking, increased funding, and hard work. To lure more workers and entice construction businesses to get into the weatherization business, there need to be dedicated funding streams for grants and incentives and a clear long-term commitment to the weatherization goals. Construction or other businesses are not going to enter this line of services without some assurances that funding, financing, and marketing will be provided to drive consumer demand and interest for years to come. With this significant commitment in place, we will likely see many of the larger construction and contracting firms diversify into the weatherization space. Providing them with the ability to offer higher wages to their workers, along with the recognition that weatherization can provide a climate-friendly career path for their employees, may create more businesses.

Other creative means of enlisting workers and businesses should also be considered including, but certainly not limited to, recruiting immigrants, developing automation and IT solutions (including robots, drones, and remote imaging), and other approaches.

As Figure 24 shows, heat pumps are still the most important strategy for the residential sector, contributing 50% of total emissions reductions. However, other strategies are also beginning to contribute significant reductions, most notably biofuels (primarily biodiesel, but some biogas as well), account for approximately 30% of total residential emission reductions. Although weatherization is providing only modest emission reductions, it is serving a couple of other important purposes. First, it is reducing the costs of heat pumps by reducing the amount of heat needed and related electricity costs. Second, because the Weatherization at Scale initiative is targeted to low- and moderate-income households, it is addressing an important equity concern by lowering heating bills—regardless of whether the heat is supplied by electric heat pumps or by a combination of biofuels and fossil fuels.
Figure 24. Cumulative Residential Emission Reductions by Strategy

There will be numerous challenges to meeting the level of building performance upgrades in the mitigation scenario by 2030, including the pace and scale for heat pumps and the pace for delivery of weatherization. Another important element for consumers to make modifications to their homes and businesses will be financing to help make the initial costs of upgrades affordable, and to permit payment over time as the savings from reduced energy consumption are realized. Box 8 describes the Weatherization Repayment Assistance program, an example financing strategy for residential customers.

Box 8. On-Bill Repayment (or Weatherization Repayment Assistance Program)

Through the collaboration led by Vermont Housing Finance Agency, several Vermont utilities expect to file a pilot on-bill payback tariff in early 2022. The pilot would allow customers to “finance” weatherization and clean heating systems directly on their monthly energy bill, which greatly simplifies payback for the improvements and increases customer uptake. Through this to-the-meter pilot, the obligation to pay back the home modernization retrofits would stay with the electric or natural gas meter and would not follow the owner or renter if they move. Customer heating costs would decrease from pre-weatherization levels due to the energy savings. All fuels (including oil and propane) could be financed as part of the electric bill. At the completion of the pilot, policymakers will be asked to consider increased funding to make the program a self-supporting revolving fund.

By 2030 the combined emissions from commercial and industrial buildings have declined by 35%, from 1.56 MMTCO2e in 2020 to 1.02 MMTCO2e. As illustrated in Figure 25, most of these reductions are
related to commercial space heating. As discussed earlier, a Clean Heat Performance Standard will allow for a variety of actions to contribute to meeting these levels of reductions.

Figure 25. Commercial and Industrial Building Energy Emissions in the Mitigation Scenario

Building Sector Key Insights for 2030

Meeting the 2030 reduction goals will require sustained policy signals and funding support. By 2030, the energy codes will require net zero ready new construction, but the more significant challenge will be modernizing the fleet of existing buildings. Heat pumps will provide the greatest contribution, with the delivery of biofuels resulting from the Clean Heat Standard having a significant role. The state will need to have weatherized 120,000 low- and moderate-income Vermont housing units, which will provide energy reductions, health, and safety benefits, and pave the way for more effective heat pump installations. Heat pump water heaters and electric induction cooking will contribute as well. To aide in paying for this modernization, widely available and easily accessible financing solutions will need to be available. Adding all of the electric demand to the grid will require smart controls and flexible load management.

Non-Energy

Emissions Reductions from Non-Energy Sector in 2030

In the mitigation scenario, emissions from the non-energy sector are reduced significantly, by 20% between 2020 and 2030, or 248.5 TMTCO2e. Between 2025 and 2030, emissions are reduced by 10%, or 111.4 TMTCO2e. These levels of reduction require a significant ramp-up in emissions reductions activities from this sector. Total emissions from the non-energy sector are 1,004.9 TMTCO2e in 2030. In the 2025 to 2030 period, most non-energy emissions reductions (61%) come from the industrial
processes, while 36% come from agriculture and 3% come from waste. Figure 26 illustrates the emissions from the non-energy sector in 2020 and 2030.

![Graph showing emissions reductions from non-energy sector in 2020 and 2030]

Figure 26. Emissions Reductions from Non-Energy Sector in 2020 and 2030 in Current LEAP Model

Industrial process non-energy emissions are reduced from 463.5 TMTCO2e in 2025 to 400.0 TMTCO2e in 2030, or 14%. Most of these come from ODS substitutes, which reduce emissions from 243.0 TMTCO2e in 2025 to 188.8 TMTCO2e in 2030.

Emissions from agriculture are reduced from 533.5 TMTCO2e in 2025 to 489.3 TMTCO2e in 2030, or 8%. These emissions reductions come from proportional reductions in three agriculture categories: enteric fermentation (reduction of 20.1 TMTCO2e), manure management (reduction of 10.6 TMTCO2e), and agricultural soils (reduction of 13.6 TMTCO2e). As with the 2025 emissions, there is a slight decrease in emissions from waste, all of which comes from reductions in emissions from wastewater.

Non-Energy Key Insights for 2030

Reductions in 2030 rely on a continuation of policies and actions that achieved emissions reductions in 2025, with increased emissions reductions from increased adoption of measures and increased implementation of policies and programs.

The reduction in emissions from ODS substitutes aligns with Vermont’s Hydrofluorocarbons Rule, which mandates a phase down of the use of HFCs to meet the goal of a 40% reduction from the 2013 level of
use by 2030.17 This level of reduction also aligns with the Short-Lived Climate Pollutant reduction strategy from California, which requires a reduction of HFCs of 40% by 2030.18 Additionally, the recently announced federal HFC Allocation Rule directs the U.S. Environmental Protection Agency to phase down HFC production and consumption by 85% over the next 15 years.19 These two policies can drive ODS substitute emissions reductions by 2030. Efficiency Vermont’s refrigerant management initiative, as discussed in the 2025 non-energy section, can also help to achieve these emissions reductions (including reducing leaks, replacing high GWP refrigerants with low GWP refrigerants, and other benefits). Long-term refrigerant management strategies are discussed in the 2050 Emissions Reductions section.

Emissions reductions from agriculture includes a 30% reduction in emissions from manure management by 2030. This could come from increased adoption and availability of manure management technology like waste digestors or from programs that help farmers to adopt these measures. Longer-term strategies for emissions reductions from agriculture are discussed in the 2050 Emissions Reductions section.

Electric

Electricity Growth by 2030

During the five years from 2025 to 2030, electricity consumption grows more rapidly than during the five years from 2020 to 2025, increasing from 6.4 TWhs in 2025 to 7.9 TWhs in 2030. As Figure 27 shows, while there is ongoing strategic electrification occurring in the residential sector, and a slight pickup in the commercial sector, the area of greatest increase is within the transportation sector, as EVs come down in price, technology improves, and charging stations become more ubiquitous—all of which result in increased customer demand and market penetration.

Figure 27. Mitigation Scenario Electricity Demand (GWh) by Sector, 2020 through 2030

Peak demand continues to increase, as shown in Table 6, with the mitigation scenario resulting in 1.76 GWs compared to baseline of 1.25 GWs. This is expected as electric demand increases, but it is important to note that a limited amount of flexible demand management is incorporated into the mitigation scenario. The flatline of peak in the baseline scenario (from 1.22 GWs in 2025 to 1.25 GWs in 2030) illustrates that, absent strategic electrification, little growth would be occurring. This sheds light on the degree to which Vermont’s efforts in efficiency and demand management are important complements to strategic electrification and increasing investment in renewable generation.

Table 6. Peak Electric Demand Mitigation Scenario and Baseline

<table>
<thead>
<tr>
<th>Scenario</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Scenario</td>
<td>1,197.0</td>
<td>1,215.2</td>
<td>1,254.0</td>
</tr>
<tr>
<td>Mitigation Scenario</td>
<td>1,243.8</td>
<td>1,434.1</td>
<td>1,757.2</td>
</tr>
</tbody>
</table>

In the mitigation scenario, by 2030 total generation of 9,100 GWh is higher than demand. This reflects the requirement to meet electricity demand in all time periods, and the increasing share of solar and wind. The mitigation scenario reflects adherence to the RES and other Vermont policies, with current contracts expiring according to current agreements and using current technology costs. The generating mix in each time period reflects lowest price electricity to meet demand. As shown in Figure 28, the greatest shifts from 2025 to 2030 are increases in regional onshore and offshore wind (1,000 GWhs) and an increase of 300 GWhs in regional combined cycle gas, which is used to meet system needs in times of low renewable outputs.
Figure 28. Annual Electric Generation (GWh) by Source in Mitigation Scenario

Figure 27 and Figure 28 illustrate how the mitigation scenario includes excess generation to meet peak, highlighting the opportunity for more sophisticated load management and coordination. The opportunity for utilities to save on generation, distribution, and transmission costs through ongoing exploration and implementation of flexible load management and non-wires alternatives increases as the pace of electrification and renewable generation accelerates. 9 outlines the role of flexible and coordination demand management in reducing overall electric system needs.

Box 9. The Role of Flexible and Coordinated Load Management (known as Demand Management)

The concept and practice of demand management in the electricity sector has been in use for several decades. Historically, it has typically involved electric utilities calling upon large industrial electricity users (such as semiconductor manufacturers) to reduce electricity consumption when electricity prices reach a certain price or when reliability is of concern. Some Vermont homeowners may be familiar with utility programs offering a financial incentive to allow the utility to lower the temperature setting on an electric hot water heater during certain peak demand times. Generally, however, the concept of demand management is unfamiliar for people who have only paid residential electricity bills.

The original concept of demand response, or changing the “electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time” or providing “incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized,” is now expanding into a far broader concept of flexible and coordinated load management involving more technologies (EVs, combined heat and
power units, electric water heaters, heat pumps, battery storage) and additional end users (industry, small and large commercial and residential customers).

The concept of flexible and coordinated load management is also far more dynamic than historical demand response programs, which focused solely on reducing electricity at a certain time. Imagine an orchestra conductor calling upon different instruments at different times, for different lengths of time and different reasons. Some Vermont utilities, often working with third-party aggregators, now have this role; they identify when solar and wind is producing and therefore when surplus electricity may be available for storage, then pull from that reserve when demand increases. Programs such as pilot rate design offerings that direct end users as to the best time to charge EVs are already showing the potential that flexible and coordinated load management can provide in aligning supply with demand.

Vermont Electric Power Company’s most recent Long Range Transmission Plan also highlights how flexible and coordinated load management can contain future needs and costs for transmission upgrades.

Electricity Sector Key Insights for 2030

The same key principles discussed in the 2025 Electric section above hold for the 2030 period, with the caveat that by 2030, the work of investigating and reviewing various options must shift to implementing and deploying those options while continuing to investigate and provide pilot initiatives. By 2030, as compared to 2025, the approach to ensuring that the power sector can handle the increased demand must be iterative, reflecting a “plan-do-check-act” methodology. Ongoing research must continue as technology advances and markets shift (such as when the costs for various technologies decrease), but actions must also be implemented (such as increased demand management activities), then revised as the results from these activities are observed. There are several overarching key activities that must take place:

- Ensure that strategic electrification is accessible to all through education, incentives, rental policies, and the development of financing products that allow for longer loan terms that fully capture the value in shifting to more efficient, electrified technologies.
- Carefully investigate how best to prepare for future significant load growth as the electrification of other sectors occurs (such as by researching and piloting favorable electric rates to incentivize activities aligned with the chosen policy).
- Assess a 100% RES, evaluating the costs and benefits of the location (in state versus regional), type (wind, solar, batteries, hydro, biomass, biofuels), and size.
- Continue to deploy and analyze the results of demand management tools and techniques.
- Continue to review current and future generation contracts and projects.
- Continue to proactively identify potential future grid upgrades and non-transmission alternatives.
2050 Emissions Reductions

By 2050 emissions in the mitigation scenario are more than 79% lower than they were 2018, decreasing from 8.2 MMTCO2e to 1.74 MMTCO2e (see Figure 29). Meeting the GWSA requirement for reductions of gross emissions requires reductions from every sector and a steep pace of change, particularly in the early years up to 2030.

Figure 29. Mitigation Scenario Emissions and Avoided versus Baseline

The GWSA requirements for 2050 include Vermont not only reducing gross emissions by the amount shown in Figure 29, but also that the state has net-zero total emissions, indicating that a minimum of 1.7 MMTCO2e of sequestration be maintained. Sequestration and achievement of the net-zero requirement is discussed further in the 2050 Non-Energy section below.

Transportation

By 2050, transportation sector GHG emissions decline by 89% in the mitigation scenario relative to today. This reduction is primarily achieved through the proliferation of EVs, increases in vehicle efficiency, and the use of cleaner fuels. The application of biofuels and reductions in VMT also contribute to the reduction, but to a lesser extent. By 2050, there are 658,000 light-, medium-, and heavy-duty EVs on the road in Vermont, up from 171,900 in 2030. EVs will make up approximately 89% of the total vehicle stock and be responsible for more than 90% of VMT, as shown in Figure 30. In the mitigation scenario, light-duty ICEV sales phase out by 2033, when 100% of new vehicle sales are electric.
By 2050, there will be 65,000 medium- and heavy-duty EVs on the road, making up 86% of the entire medium- and heavy-duty vehicle stock. This increase from 2030 is largely due to falling costs in this vehicle class. For example, in 2050, the upfront cost of a medium-duty battery EV is 6% less expensive than its diesel counterpart. This is compared to a 164% premium in 2021. As shown in Figure 31, the upfront cost premium of a medium-duty battery EVs decreases sharply from 2021 to 2030, then gradually decreases through 2050.
Reducing VMT in Vermont is another essential component of the transportation sector’s GHG emissions reduction strategy. As shown in Figure 32, the mitigation scenario includes initiatives and investments that steadily decrease VMTs in comparison to the baseline, resulting in a 10% reduction in VMT by 2050.
VMT reduction policies in Vermont must shift to more VMT-efficient modes of travel, reduce trip lengths, and/or reduce the need to travel. Better transit services and higher parking costs are examples of strategies designed to shift the mode of travel to more VMT-efficient modes. Mixed-use development and other land development policies typical of Smart Growth are examples of strategies designed to shorten trip lengths. Teleworking and other policies that use technology to replace physical travel are examples of strategies that reduce the need to travel. The most effective VMT management policies address all three aspects of VMT: mode of travel, trip length, and forgone trips.

Equity considerations must be embedded in all VMT reduction policies. The income raised from strategies such as higher parking costs or VMT-based fees can be used to address equity impacts and other agency goals. A wisely implemented and balanced Smart Growth strategy can avoid gentrification and should be able to promote social equity and public health at the same times as it reduces VMT per capita. Monitoring of the design, implementation, and operation of the Complete Streets should ensure a balanced and equitable result that avoids or otherwise compensates for potential gentrification effects.

Transportation Sector Key Insights for 2050

The CAP mitigation scenario implies dramatic changes in the transportation sector compared to today. On-road vehicles will be fueled with nearly 100% electricity or hydrogen. Public and workplace charging stations will be widely available. Non-road vehicles like lawn mowers, leaf blowers, forklifts, and boats will be electric. The availability of transit, including urban and intercity buses, passenger rail, and micro transit, will be roughly double today. Active transportation will flourish as urban densities increase and travel demand management programs take hold.

With these changes, the cost of transportation for households and business is expected to decline. These savings can be reinvested into other priorities such as leisure, consumer goods, and personal savings, potentially bolstering other parts of the economy. Some businesses could be negatively impacted, such as gas station owners and vehicle maintenance workers.

Yet, several key uncertainties remain that could impact this description of 2050, such as the penetration of shared and autonomous vehicles and the level of managed charging. Recent research finds that a scenario in which all light-duty vehicles in the U.S. were shared, autonomous, electric, and had a centrally managed charging provider would require only 9% of today’s vehicle population and only 0.2 chargers per vehicle (compared to close to 1.0 today). Further, researchers estimate that vehicles would reduce lifecycle GHG emissions by 70% and lifecycle costs by 41% relative to an entirely EV population that uses uncontrolled charging.20

Buildings
By 2050, the buildings sector has thoroughly transformed and modernized, as buildings have more efficient thermal shells (through a combination of new construction techniques and weatherization upgrades) and heating loads are largely met through highly efficient heat pumps. Flexible load management and coordinated and connected loads are also prevalent, and biofuels displace conventional fossil fuels. The pace of change has slowed some in comparison to early years of the plan but, as shown in Figure 33, there is roughly a doubling of the number of heat pumps, heat pump water heaters, and home weatherization retrofits, as well as more than a doubling of biofuel fuel sales in 2050 relative to 2030.

Figure 33. Residential Building Measures Installed by 2050

As Figure 34 shows, heat pumps are still the most important strategy for the residential sector, contributing 40% of total emission reductions. Biodiesel is by far the second most important strategy, contributing about 30% of the reductions, with a mix of other strategies also making non-trivial contributions.
The mix of strategies deployed to meet the 2050 GWSA requirements is more speculative than estimates for 2025 and 2030 because it is difficult to predict how technology will evolve and how the costs of different strategies will change over time—for example, there have been significant advances in cold-climate heat pump technology over the past five to 10 years. If those advances continue, and if costs decline as economies of scale are realized, new lower cost manufacturers enter the market, contractors become more familiar with the technology, and other advances take place, heat pumps could provide even more emissions reductions.

The mitigation scenario also includes significant emissions reductions for commercial buildings, and these are also primarily related to the adoption of heat pumps for space heating. Reduced emissions for cooking, through biofuels or electrification, are also illustrated in Figure 35.
Emissions from industrial buildings are also significantly reduced by 2050 in the mitigation scenario as illustrated in Figure 36.

In contrast to the residential and commercial sectors, where there is a sharp decline in final energy demand due to highly efficient heat pumps replacing combustion equipment, the reduced emissions
from industrial buildings are driven more by an increasing share of renewable biodiesel and biogas in industrial applications, reflected by the expanding orange and red hatched elements of Figure 37.

Figure 37. Mitigation Scenario Industrial Buildings Final Energy Demand by Fuel

Building Sector Key Insights for 2050
While less certain than the 2025 and 2030 scenarios, in 2050 the building sector will at least need to be thoroughly transformed and modernized. Most Vermont buildings will be insulated, air sealed, and reliant primarily on either electricity or biofuels to heat, cool, and provide hot water and cooking at a rate of about twice the activity in 2030. Industry will still use some fossil fuel but will be well on its way to being electrified or using biofuels. Electric loads will be flexible yet well controlled and managed to balance the electric grid system and the buildings it serves. Significant technological advances relative to today’s technology should help provide greater savings at lower costs and with more options. Yet, macro societal changes such as population and demographics will likely impact planning and approaches to meeting the goals, requiring flexibility, and ensuring a focus on what lies ahead.

Non-Energy
Emissions Reductions from Non-Energy Sector in 2050
By 2050, emissions from the non-energy sector in the mitigation scenario are reduced to 776.0 TMTCO2e, or 38% of 2020 emission levels and 23% of 2030 emission levels. This is a reduction of 477.4 TMTCO2e between 2020 and 2050 and of 229.0 TMTCO2e between 2030 and 2050.
Figure 38 illustrates overall emissions from 2020, 2030, and 2050 by branch of the non-energy sector. While waste remains steady, there are substantial reductions from industrial processes and agriculture. The categories with the most significant emissions reductions between 2020 and 2050 are ODS substitutes, enteric fermentation, manure management, and agricultural soils.

Figure 38. Non-Energy Sector Emissions in 2020, 2030, and 2050

In the mitigation scenario, the largest non-energy emissions reductions are from ODS substitutes, which decline by 78% of 2020 levels by 2050. There are several strategies listed by CSM Subcommittee that could reduce emissions from ODS substitutes, each involving the expansion of a statewide refrigerant management program. Long-term strategies within a refrigerant management program include reducing the leakage of HFCs from refrigeration systems, reducing the end-of-life emissions of HFCs from refrigeration, and reducing the use of HFCs in refrigerant systems.

By 2050, semiconductor manufacturing emissions have been reduced by 8% from their 2020 levels. However, these reductions are all obtained by 2030, and the mitigation scenario does not include any further reductions in the 2030 to 2050 time period. There is therefore an opportunity to further explore future opportunities to reduce these emissions through efficiencies and the use of alternatives to high GWP fluorinated gases in the manufacturing process.

By 2050 agriculture non-energy emissions are reduced by 32% of 2020 levels, to 394.6 TMTCO2e. These reductions continue to come from enhanced practices in feed management to reduce enteric fermentation emissions, manure management, and cropping and tillage to increase sequestration from agricultural soils. These actions should coincide with increased education, outreach, research, and technical and financial assistance programs for Vermont farmers.
Emissions from enteric fermentation, which represent the biggest source of agricultural emissions, can be reduced through a climate feed management program. This could include feed amendments, for example seaweed or biochar, or improvements to feed quality.21 Methane reduction from introducing seaweed into diets is an example of feed management that is cited in scientific literature,22 though more research is needed into the scalability and costs for Vermont farmers, as well as the impacts of producing seaweed.23

Emissions reductions from agricultural soils, which is the source of second-largest emissions reductions, come from an increase in soil organic matter sequestration from altered soil management practices. A 0.1\% increase in soil organic matter per year on corn and hay fields can help Vermont meet its climate change goals (Patch 2021). Examples of practices that could increase soil sequestration include reducing tillage and increasing vegetative cover, like no-till and cover crop practices. Grazing practices that increase vegetative cover and forage quality, such as rotational grazing, would also increase agricultural soil carbon sequestration.

Emissions reductions from manure management, which represent a smaller segment of agricultural emissions than enteric fermentation and soils, can come from methane reduction using waste digesters (Patch 2021). There could also be farmer-to-farmer education about improved soil and manure management.

These strategies for agricultural emissions reductions are emerging areas of opportunity. More research is needed to understand emissions from agriculture, including the level of current emissions, the scope and pace of emissions reductions that are possible, and the costs for these practices to reduce agriculture non-energy emissions.

The focus of reductions within the non-energy sector is not on waste, which emits less GHG emissions than industrial processes and agriculture. Waste is reduced from 123.2 TMTCO2e in 2020 to 101.2 TMTCO2e in 2050. While there could be advances in capturing emissions from wastewater, for example, it would represent a small portion of overall emissions from the non-energy sector.

\begin{itemize}
\end{itemize}
Land Use, Land Use Change, and Forestry

Land use, land use change, and forestry (LULUCF) is an important contributing factor to meeting the GWSA’s 2050 net zero requirement. Carbon sequestration, or the uptake of carbon from the atmosphere, and storage from this sector act as emissions sinks. The mitigation scenario includes LULUCF sequestration from lands, ecosystems, and forests at a declining rate, represented by the yellow segment below the x-axis in Figure 39.

Figure 39. Mitigation Scenario Gross and Net Emissions by Sector
Yellow indicates the emissions sink from LULUCF

The sequestration estimate from LULUCF in the mitigation scenario is based on the Carbon Budget Report completed by the University of Vermont members of the Cadmus Team under Task 2 of its Technical Support Assignment for the Vermont Climate Council, including the initial level of sequestration of -3.2 MMTCO2e in 2018.24 The linear decline in future sequestration is based on historical trends and research indicating that the overall rate of sequestration from LULUCF is likely declining.

Page 58 of that same Carbon Budget Report states that within the forests sector of LULUCF, “...forests that have remained forests are sequestering carbon at a slower rate than they did in the past. At the same time, there has been both an increase in emissions from the conversion of forests to other uses

and a decrease in additional sequestration from land in other uses being converted back to forest. These trends cause a net increase in land use emissions over time.”

As indicated by the “Total” line in Figure 39, if the rate of carbon sequestration declines at a steady rate, Vermont will not meet the requirement of net zero emissions by 2050. The mitigation scenario results indicate that maintaining sequestration at or -1.8 MMTCO2e, which is approximately the level of sequestration in 2035 in the figure, is necessary to meet the net zero 2050 requirement.

More research is needed to inform estimates of the current level of carbon sequestration from LULUCF, as well as the rate of decline of carbon sequestration between now and 2050.

Due to a lack of available data on carbon sequestration from LULUCF, the levels are the same in the baseline and mitigation scenarios of the LEAP model. This represents an opportunity to incorporate improved LULUCF practices into the climate mitigation scenario to continue to sequester and store carbon, which may allow Vermont to reach the state’s emissions reductions targets.

Non-Energy Key Insights for 2050

There are four key insights for the non-energy sector by 2050:

- The largest non-energy emissions reductions by 2050 are from ODS substitutes. A statewide refrigerant management program could reduce emissions from ODS substitutes.
- Industrial process emissions from semiconductor manufacturing are not decreased after 2030, requiring further attention to determine future opportunities to reduce these emissions.
- Emissions from agriculture are significantly reduced by 2050. Reductions can come from enhanced practices in feed management to reduce enteric fermentation emissions, manure management practices like waste digestors, and cropping and tillage to increase sequestration from agricultural soils.
- The mitigation and baseline scenarios both include a steady decline in sequestration, resulting in net emissions being above zero by 2050. Research, funding, and initiatives to address the potential for natural and working lands to maintain or increase levels sequestration will be central to meeting the 2050 net zero target.

Electric

Electricity Requirements by 2050

In the 2050 mitigation scenario, more than half of Vermont’s total final energy demand is met by electricity. As illustrated in Figure 40, this compares to electricity’s roughly 15% share of total energy demand today and the 20% share projected in the baseline.
In addition, by 2050, not only has the share of total energy demand met by electricity increased, but the share of renewable generation in the mitigation scenario is increased to reflect an expansion of the renewable energy standard to 100% by 2050, as illustrated in Figure 41.
Between 2030 and 2050, the mitigation scenario electricity demand increases from 7.9 TWhs to 12.1 TWhs (the baseline scenario increases from 5.8 TWhs in 2030 to 6.9 TWhs in 2050). The transportation sector requires the largest increase of 4.4 TWhs, followed by the residential sector at 3.6 TWhs. The commercial sector also increases from 2.4 TWhs in 2030 to 2.7 TWhs in 2050, but this growth is not as significant as growth in the transportation and residential sectors. The industrial sector increases slightly from 1.34 TWhs in 2030 to 1.37 TWhs in 2050 (shown in Figure 42).

![Figure 42. Mitigation Scenario Electricity Demand (GWh) by Sector](image)

Peak demand in the mitigation scenario rises from 1.8 GWs in 2030 to 2.7 GWs in 2050, while the baseline scenario shows an increase from 1.3 GWs in 2030 to 1.5 GWs in 2050 (Figure 43).

![Figure 43. Peak Power Requirements (MW) in Mitigation and Baseline Scenarios](image)
As discussed in the 2025 and 2030 sections on electric sector requirements, the mitigation scenario results in a significantly higher level of total generation than what is required to meet end use demand. This reflects renewable generating capacity required to meet demands in all time periods and the zero operating fuel costs for renewable generating capacity to run once installed. Figure 44 illustrates the electricity sector module balance for the mitigation scenario, with Vermont’s electricity demand represented by the orange bars below the x-axis and the total from generating resources illustrated by the yellow bars above the axis. The red bars, which increase, particularly in the latter years, illustrate surplus power that may be exported, curtailed, or used for further strategic electrification.

![Electricity Sector Energy Balance](image)

Figure 44. Mitigation Scenario Electricity Sector Module Balance

It is highly likely that some portion of the surplus generation can be reduced by coordinated load management or storage. Alternatively, it could be productively used to support hydrogen-to-gas projects for industrial sector needs. The LEAP modeling conducted for the CAP is not meant to substitute for more detailed electricity sector planning and modeling, which are necessary to better understand options for future electricity sector planning and investment. These include, at a minimum, the degree to which demand management is deployed, as well as the location, size, type, and cost of different resources.

Nevertheless, the power sector results from the mitigation scenario clearly indicate the magnitude of the electricity sector’s contributions to meeting the GWSA requirements, and provide Vermont policy makers, regulators, and utilities with important directional guidance.
Electricity Sector Key Insights for 2050

There are several key insights from the electricity sector mitigation scenario by 2050:

- Vermont’s energy economy is expected to be highly dependent on electricity. Further, by 2050, Vermont’s grid will be 100% renewably powered. A reliable and robust infrastructure to meet power needs is critical and will be a significant asset to the state.

- Ongoing assessment regarding accessibility to adequate infrastructure and equitable electrification activities are needed to ensure that the shift to clean energy is equitable and that no Vermonter is left behind. It is likely that achieving full access at all times may be challenging. Therefore, ongoing program design will likely be needed with regular evaluation and program modifications.

- The grid must be dynamic, robust, and flexible, harnessing varying opportunities for coordinated load management across multiple sites and multiple end uses to reduce overall system costs. In keeping with the past 30 years, research and innovation, as well as testing pilot programs, will be critical to ensure that new technological advances are selected and applied appropriately.

- Storage (battery and other) will be helping to reduce system costs and improve resilience and reliability.

- As technology advances, new opportunities for strategic electrification of industrial loads may be developed and implemented, including the use of renewable electricity to create hydrogen or renewable gas and other potential opportunities such as direct air capture sequestration that are not yet well developed.
Comparison of Pathways and Scenarios

This section presents economic results comparing the mitigation scenario to the baseline and to other scenarios for reaching the GWSA requirements. The economic results based on the LEAP modeling include the net present value of direct additional costs and savings for meeting the requirements, and the profile of the annual costs and savings over time. Additional structural economic impacts (including the direct, indirect, and induced spending effects and the related changes in overall economic activity and jobs) have also been estimated using the IMPLAN economic modeling tool.

Economic Comparison of Mitigation Scenario to Baseline

The mitigation scenario results in cumulative emissions reductions of 81 MMTCO2e by 2050 in comparison to the baseline (shown in Figure 45). The discounted net present value of attaining these reductions is $3.2 billion (in 2019 dollars. at a 2% discount rate). These results include valuation of the avoided economic damages from GHG emissions, based on the Social Cost of Carbon report25 and recommendations from the Project Team, and as adopted by the Science and Data Subcommittee. In the figure, additional costs and investments appear as positive values above the horizontal axis, while savings from avoided fuel or avoided economic damages from emissions appear below the horizontal axis.

Figure 45. Mitigation Scenario Net Present Value Compared to Baseline
$3.2 Billion of Net Benefits through 2050.

The results indicate the present value of additional investments through 2050 to be $16.9 billion. This includes $7.6 billion of investments in electric generation and an additional $0.2 billion for transmission and distribution upgrades—investments that are required to meet the growing electric demands created by the transition to EVs and to heat pumps for building space and water heating. Offshore wind, onshore wind, and solar make up the largest areas of new electric investments. While the LEAP model includes optimization calculations that consider estimated capital, fixed and variable operating costs, and diurnal and seasonal variations in output, these results are directional and do not eliminate the need and value for more detailed planning for further optimization of investments in the electric sector.

Increased investments in transportation include additional costs for EVs (though over time in the model, the initial costs of battery EVs reach parity with internal combustion engines), charging infrastructure and initiatives to reduce VMT. The present value of the increased investments and spending for the transportation sector is $5.9 billion, indicative of major changes in this sector which is Vermont’s largest historic and current source of GHG emissions.

The present value of additional investments in the building sector are $2.3 billion, mostly in the residential sector, reflecting the combined investment in switching to heat pumps to offset or completely replace the use of fossil fuels for space and water heating, and in weatherizing buildings to make them more comfortable and affordable while reducing the amount of increased electric generating capacity required.

The present value costs for avoided non-energy emissions from the agricultural and industrial sectors are $0.8 billion. The estimated costs include initiatives to reduce direct emissions of methane and nitrous oxide from agricultural practices, and to reduce the emissions of high GWP fluorinated gases used as refrigerants and in semiconductor manufacturing.

The present value of the combined additional costs and investments across all sectors is $16.9 billion, represented by the orange flag marker in Figure 45 above. The total savings from avoided fossil fuel costs (present value of $16.2 billion) and avoided economic damages from reduced emissions (present value of $3.8 billion) total $20.1 billion, illustrated by the blue “Total Savings” flag in the figure. The total savings more than offset the present value of the total investments, and thus the net present value of the mitigation compared to the baseline is $3.2 billion of savings, illustrated by the dark blue flag to the right of the column.

Economic results and impacts in the billions of dollars are substantial, but for context these are the present value of the additional costs and expenditures for the mitigation scenario compared to the baseline over three decades. Subject to weather and price volatility for fossil fuels, Vermont historically spends over $3 billion each year on energy, meaning the net impacts are a relatively small percentage of the total energy expenditures.

The economic comparison of the mitigation scenario to the baseline presented above considers the net present value of increased investments and savings over three decades, discounted back to 2019. For another perspective on economic results, the annual additional costs and savings (in 2019 dollars) are presented in Figure 46. This figure further illustrates how meeting Vermont’s GWSA requirements is
expected to create positive net economic impacts. These results also indicate that while the pace of change to meet the requirements is daunting, the overall scale of changes in spending are not significantly out of sync with historical spending patterns.

Figure 46. Mitigation Scenario Annual Costs and Savings Compared to Baseline
Increased Investments and Costs through 2030 Lead to Significant Savings thereafter.

Figure 46 illustrates that during the first decade, increased costs and investments in the transportation, residential and commercial buildings, and electric generation are partially, but not completely, offset by fossil fuel savings. Thus, the “Net Value” line indicates that annual net investments range from $35 million to $235 million higher than baseline through 2030. After that, the annual savings (including fossil fuels and avoided economic damages from avoided emissions) outweigh annual additional costs and investments. This is represented by the net value line crossing below the horizontal axis value of zero after 2030. In the latter years, additional investments in electricity generation become a larger share of the additional costs as renewable capacity is increased to meet the needs of an increasingly electrified energy system.

The two sets of economic results presented in Figure 45 and Figure 46 above are complementary, with the first indicating the cumulative net present value of the changes in spending and investments, while the second provides greater detail on the profile of the additional costs and savings over time. In both cases, the mitigation scenario compares favorably and provides net economic benefits in comparison to the baseline.

Another way to view the economic impacts is presented in Figure 47, which illustrates the annual differences in costs and savings by cost category. This shows the relative scale of savings from avoided
fossil fuel consumption (dark green bar, labeled “Fuel Secondary Production”) in comparison to the avoided economic damages from avoided emissions (dark blue bar, labeled “Environmental Externalities”).

Figure 47. Mitigation Scenario Annual Costs and Savings Compared to Baseline
Early Investments in Transportation and Buildings (Demand) Followed by Later Investments in Electricity (Transformation) are Offset by Fossil Fuel and Avoided Economic Damages from GHG Emissions.

Structural Economic Impacts and IMPLAN Modeling Results
The results comparing the mitigation scenario to the baseline, presented in the preceding section, are based on the changes in direct spending, both in state and out of state. To gain additional insight to the impacts of meeting the GWSA requirements, our team also considered how the changes in investment patterns and savings also have indirect and induced impacts. For example, there are upfront costs to weatherization a home or owning an EV, and some of those costs occur out of state (such as EV manufacturing) while other costs (such as weatherizing a building) create economic activity in Vermont. Reduced fossil fuel consumption generally means that fewer dollars are flowing out of state (since Vermont imports all its fossil fuels). Over time, the net savings to Vermonters from avoided expenditures on fossil fuels due to more efficient equipment and buildings can be re-spent by households and businesses. A portion of that re-spending of the dollars saved on fossil fuel expenditures will remain in the state, creating further economic activity and demand.

The IMPLAN modeling results based on the mitigation scenario are presented in Appendix A. These indicate that reducing expenditures on fossil fuel imports while increasing investment in activities such as heating system upgrades, weatherization, transportation infrastructure and local renewable energy...
production generates an increase in total in state economic activity and spending relative to the baseline. It also creates the need for more local jobs. The IMPLAN analysis is based on a static structure for relationships between sectors of the economy, and it does not assess the opportunity costs of money invested to meet the GWSA requirements. With these caveats in mind, the IMPLAN results provide further evidence that undertaking the broad range of actions and investments in the mitigation scenario will help to strengthen Vermont’s economy.

Economic Comparison with Alternative Scenarios

The Project Team modeled two additional scenarios, also designed with the intent of meeting the GWSA requirements, but with somewhat different emphases, to compare to alternative pathways for emissions reductions. The first of these is a biofuels focused pathway, which increases the share of liquid, gaseous, and solid biofuels and, as a result, has a somewhat smaller level of increased demand for electricity and new electric generating capacity. The second alternative is a local electricity resources pathway, which places greater reliance on local renewable electric resources. This increases the required investment in the electric generation sector. Figure 48 presents the summary results of the discounted net present values for these three scenarios, each one in comparison to the baseline.

Figure 48. Mitigation and Alternative Scenarios Compared to Baseline, Net Present Values

Mitigation Scenario has Highest Emissions Reduction and Lowest Cost per Tonne. If Avoided Economic Damages from Reduced Emissions are Included, All Three Scenarios Have Net Negative Costs Compared to Baseline.
The three columns in Figure 46 represent the three scenarios, with the top call out box indicating the total present value of additional investments, the labeled black line indicating the discounted net present value of the costs and savings, the blue bar below the $0 horizontal axis indicating the discounted present value of the fossil fuel savings, and the call out box at the bottom of each column indicating the cumulative avoided emissions and the associated net present value cost per tonne of avoided carbon dioxide equivalent emissions.

The comparative scenario results in Figure 48 do not include the valuation of the avoided economic damages from avoided emissions. Including these based on the social cost of avoided GHGs and the values presented in Figure 46 and Figure 47 above increases the economic savings by $3.5 billion to $3.8 billion, resulting in all three scenarios comparing favorably to the baseline, with greater economic savings than costs.

Sensitivity Analyses

Sensitivity analyses help to further the understanding of how the economic results presented above change when subject to varying assumptions. Based on feedback and recommendations from the subcommittees, three sets of varying assumptions are used to compare the baseline and mitigation scenarios under alternative assumptions.

Public stakeholders and members of the Science and Data Subcommittee encouraged an analysis assuming a higher level of emissions from electricity imports from Hydro Quebec to reflect emissions from flooding for hydro reservoirs, the direct release of methane, and a loss of sequestration from forest that is inundated. Quebec imports (which is mostly hydro, but also includes wind) account for roughly 20% of the generation mix in 2020, declining to 16% in 2025, 13% in 2030, and 6% in 2050. The impact of including higher estimated GHG emissions for Hydro Quebec generation is relatively modest, resulting in a total increase of 275 TMTCO2e from 80 million tonnes of CO2e by 2050 in the mitigation scenario, to 80.3 million tonnes under the sensitivity scenario. Figure 49 illustrates the minor difference in comparative cumulative emissions from the mitigation scenario (light red line) and the sensitivity case with higher Hydro Quebec emissions (light blue line).
Figure 49. Comparison of Cumulative Emissions from Mitigation Scenario with and without an Assumption of Higher Emission Levels from Hydro Quebec–Sourced Electricity

Another sensitivity requested by public stakeholders and members of the Science and Data Subcommittee was to include emissions of biogenic carbon dioxide (CO2) emissions in the pathway results. The Project Team’s Task 1 Report on the Greenhouse Gas Inventory and methodologies discusses how Vermont’s current inventory reports on biogenic CO2 emissions separately and, consistent with guidelines from the U.S. Environmental Protection Agency and the Intergovernmental Panel on Climate Change, Vermont’s inventory and the GWSA targets are based on gross emissions levels that do not include biogenic emissions.

The emissions and energy accounting framework in LEAP enables reporting on both biogenic and non-biogenic CO2 emissions, with the latter being used throughout this report. Biogenic emissions are 14% higher in the mitigation scenario than the baseline scenario in 2030. This increases total emissions in 2030 by between 1.8 MMTCO2e and 2.0 MMTCO2e. By 2050, biogenic emissions in the mitigation scenario are less than the baseline by 4% and would add 1.6 MMTCO2e to the 2050 level of emissions.

The final sensitivity recommended by the Project Team is to examine results based on a higher level of population growth. The LEAP model includes a high population scenario, which has a greater population growth rate than the mitigation scenario. Both scenarios start at the same population level in 2018, but

due to the higher population growth rate, the high population scenario has about 62,530 more people living in Vermont in 2050.

The high population scenario results in higher emissions than the mitigation scenario. Unsurprisingly, much of the increase in emissions comes from the demand sector, particularly from transportation and residential. In 2030, the high population scenario results in additional emissions of 65.9 TMTCO2e, an increase of about 1.3% above mitigation scenario emissions in 2030. In 2050, the high population scenario results in an additional 56.5 TMTCO2e, an increase of about 3.3% over emissions in the mitigation scenario.
Policy Implications

The CSM Subcommittee has been thoughtful and deliberate in their development of a set of policies they anticipate will be necessary to comply with the requirements of the GWSA, including achieving the necessary GHG reduction targets cost-effectively and equitably. The mitigation scenario is intended to align the initial LEAP modeling conducted by SEI with the recommendations of the CSM Subcommittee. Policies consistent with recommendations from the CSM Subcommittee and that support attaining the GWSA targets are presented in Table 7.

Table 7. Policies Supporting Vermont Meeting GWSA Emission Requirements

<table>
<thead>
<tr>
<th>Policy</th>
<th>Sector</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation Climate Initiative</td>
<td>Transportation</td>
<td>A regional collaboration of Northeast and Mid-Atlantic states aimed at lowering CO2 emissions from gasoline and on-road diesel fuel. TCI is capped and reduces total CO2 through an auctioning process that generates proceeds for investment in CO2 reduction strategies.</td>
</tr>
<tr>
<td>EV incentives</td>
<td>Transportation</td>
<td>Vermont currently offers incentives up to $4,000 per vehicle for purchasing or leasing a new EV on a first-come, first-served basis. Income-qualifying residents are also eligible for funds covering 25% of the costs to purchase a fuel-efficient vehicle up to $5,000.</td>
</tr>
<tr>
<td>Deployment of EV charging infrastructure to support additional EVs</td>
<td>Transportation</td>
<td>EV supply equipment projects are eligible for low-interest financing through the State Infrastructure Bank. Loans of $100,000 with an interest rate of 1% are available for publicly accessible charging station projects.</td>
</tr>
<tr>
<td>California Advanced Clean Cars II</td>
<td>Transportation</td>
<td>Requirement on light-duty automakers to deliver an increasing share of EVs to Vermont starting in 2026 and reaching 100% in 2035.</td>
</tr>
<tr>
<td>California Advanced Clean Trucks</td>
<td>Transportation</td>
<td>Requirement on truck manufacturers to deliver an increasing share of medium- and heavy-duty EVs to Vermont, reaching as high as 75% by 2035 for certain vehicle types.</td>
</tr>
<tr>
<td>Workplace transportation demand management</td>
<td>Transportation</td>
<td>Employer telework and travel demand management measures encourage commuters to use more VMT-efficient means of commuting. Travel demand management measures include ride-sharing programs, subsidized transit passes, bike lockers, showers, marketing of travel demand management measures to employees, and subsidized vanpools.</td>
</tr>
<tr>
<td>Transit expansion</td>
<td>Transportation</td>
<td>Expanding transit service encourages mode shifting from personal vehicles.</td>
</tr>
<tr>
<td>Bike, walk, and micromobility expansion</td>
<td>Transportation</td>
<td>Complete Streets policies aim to design and operate city streets to better serve all road users, including pedestrians, bicyclists, and transit passengers, who are often underserved by traditional street designs.</td>
</tr>
<tr>
<td>Smart Growth</td>
<td>Transportation</td>
<td>Smart Growth policies encourage reduced trip lengths and shifts to VMT-efficient modes of travel. Such policies include funding, prioritization, streamlined permitting, and tax breaks, among other mechanisms, to incentivize transit-oriented development, higher-density and mixed-use development, infill or brownfield development, improved transit and active transportation (bike and pedestrian) infrastructure, and neighborhoods with a range of housing and transportation options.</td>
</tr>
<tr>
<td>Policy</td>
<td>Sector</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Clean Heat Standard</td>
<td>Buildings</td>
<td>The CHS is an increasingly stringent annual performance standard that would require Vermont Gas and wholesale suppliers of fuel oil, propane, and other fossil fuels to continuously increase the amount of “clean heat” being used by homes and businesses, thereby reducing the amount of fossil fuels burned (“dirty heat”) and the resulting amount of GHGs emitted. In this context, “heat” refers not just to how buildings are heated in winter, but also to how water is heated, how clothes are dried, how cooking is performed, how industrial processes are fueled, and how other energy end uses that currently rely on fossil fuels are met. A range of strategies can be used to generate the “clean heat” credits that would be necessary to demonstrate annual compliance with the CHS, such as electrification with heat pumps, heat pump water heaters, induction cooktops, and other technologies; renewable biomethane, biodiesel, hydrogen, district heating, and other fuels; advanced wood heating systems; weatherization; and other efficiency measures.</td>
</tr>
<tr>
<td>Weatherization at scale</td>
<td>Buildings</td>
<td>Weatherizing Vermont homes not only saves energy and makes homes safer, healthier, and more comfortable, but by insulating and air-sealing it also reduces buildings’ energy loads and prepares them for installing heat pumps and biomass heating systems. The Weatherization at Scale initiative would significantly ramp up efforts to insulate and air-seal thousands of homes each year through the establishment of sustained funding from the allocation of state and federal resources, increased financial incentives, implementing an innovative on-bill repayment program through utility and financial partners, a carve out for credits for weatherization from the CHS, and significant workforce development initiatives. The Weatherization at Scale initiative has established a goal of treating 120,000 low- and moderate-income Vermont homes over 10 years.</td>
</tr>
<tr>
<td>Statewide rental efficiency requirement</td>
<td>Buildings</td>
<td>Under a rental energy efficiency requirement, all multifamily buildings (three units or more) that have tenants would be required to meet minimum efficiency requirements for insulation levels, air tightness, and heating system efficiency, and/or to meet a performance standard for space heating efficiency. It is assumed that such a standard would be passed into law in the early 2020s with a requirement that all multifamily rental properties be in compliance by 2030, offering financial support to building owners to comply by earlier than 2030. This policy would overlap with the Weatherization at Scale initiative, with most of the multifamily units improved serving low- and moderate-income households and therefore also counting toward the Weatherization at Scale goals, but ensuring that multifamily rental properties are addressed.</td>
</tr>
<tr>
<td>Policy</td>
<td>Sector</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Net zero new construction code</td>
<td>Buildings</td>
<td>New homes and commercial buildings that are built properly from the start to achieve zero energy standards will not need to receive expensive weatherization services in the future. Vermont has established some of the most aggressive new construction standards in the country for residential and commercial buildings by proposing a net zero ready energy code by 2030. While the energy code has been making significant steps toward this goal, newly constructed buildings have not always kept pace, especially in the residential sector. If Vermont is going to achieve its 2030 zero energy new construction goals, a significant effort must be undertaken to enforce compliance with the Residential and Commercial Building Energy Standards by naming an authority having jurisdiction, putting in place a code enforcement system, and training builders, contractors, and those in the building trades in building science and zero energy construction practices.</td>
</tr>
<tr>
<td>Refrigerant management</td>
<td>Non-Energy</td>
<td>Refrigerant management is a major way for Vermont to reduce HFC emissions from ODS substitutes. Efficiency Vermont, for example, has launched a refrigerant management initiative, focused on reducing refrigerant emissions. This includes reducing leaks in existing systems containing refrigerant, replacing or installing new systems or equipment with low GWP equipment, and swapping out high GWP refrigerants with low GWP refrigerants where possible. Refrigerant management in Vermont is a long-term effort and emissions reductions from these efforts are reflected through 2050.</td>
</tr>
<tr>
<td>Agricultural policies</td>
<td>Non-Energy</td>
<td>Agricultural policies can include incentives and other forms of assistance to promote reduced emissions from enteric fermentation, agricultural soils, and manure management. These can include increased research, demonstration, and incentives to promote the adoption of alternative feed practices, soil practices like no-till and cover crop, and waste digestors.</td>
</tr>
<tr>
<td>Process manufacturing</td>
<td>Non-Energy</td>
<td>Policies to promote or require industries that have significant non-energy emissions, including semiconductor manufacturing, to report and develop comprehensive reduction plans incorporating both energy and non-energy emissions.</td>
</tr>
<tr>
<td>Electrification for all</td>
<td>Electricity</td>
<td>To ensure that all Vermonters are able to participate in this transition, programs and policies will be needed to address various barriers including ability to pay for retrofits and upgrades (e.g. developing targeted incentive programs and financing products), identifying and addressing through program design various technical barriers (e.g. need for updated panels, addressing other building issues such as mold, vermiculite), and developing alternative program design opportunities to ensure lower-income and multi-family, condominium residents are able to access specific technologies (e.g. EVSE, community solar).</td>
</tr>
<tr>
<td>Renewable Energy Standard 100%</td>
<td>Electricity</td>
<td>Strategically assessing how Vermont’s RES should be modified and expanded to accurately direct the market to select the preferred mix of renewables and Tier III opportunities. For example, size, type and location of renewable technologies in coordination with Tier III opportunities such as strategic electrification, storage, efficiency, with (perhaps) new activities to be added to Tier III, such as demand management.</td>
</tr>
<tr>
<td>Policy</td>
<td>Sector</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Flexible and coordinated load management</td>
<td>Electricity</td>
<td>Ongoing research, experimentation, and piloting of various flexible and coordinated load management activities will be critically necessary to ensure the power sector build out is as cost-effective and strategic as possible. New regulations, incentives and programs may be needed to leverage optimal approaches.</td>
</tr>
<tr>
<td>Rate design</td>
<td>Electricity</td>
<td>Redesigning rates to assist and allow for greater flexible and coordinated load management will be needed. These are already available through some utilities, particularly for EV charging. Additional support to smaller utilities will likely be needed, as will partnerships with third party aggregators to lessen work required of the end user.</td>
</tr>
</tbody>
</table>

By designing the mitigation scenario in LEAP to reflect the strategies and actions underpinning the CSM Subcommittee pathways, our analysis highlights that, taken together, these interventions can achieve the 2025, 2030, and 2050 targets and are cost-effective in achieving Vermont’s numerous GWSA requirements. The scenario modeling conducted with LEAP provides important information for decision-makers as they further refine and begin to implement these policies, including the level of penetration and pace of adoption necessary in the near and long term. It is important to note that because of the system dynamics of decarbonization, many of these policies are interrelated and should be pursued together.
Conclusion

This Vermont Pathways Analysis Report, prepared by the Project Team, provides technical and analytic support for the VCC and its subcommittees and working groups as they develop a CAP to reduce GHGs by 26% by 2025, 40% by 2030, and 80% by 2050. In addition, the GWSA requires that by 2050 Vermont has net zero emissions with total sequestration exceeding emissions of GHGs. Throughout this report, supported by detailed scenario modeling using the LEAP tool, we have identified the scale and pace of changes required to meet these levels of emissions reductions. While these changes are possible, they will not be easy, and will require significant and immediate action in every sector, followed by sustained attention and revisions to programs, initiatives, services, funding, and public messaging. Meeting the requirements of the GWSA can create net economic benefits as Vermont spends less on fossil fuel imports and invests more to improve the performance of and reduce emissions from buildings, transportation systems, agriculture, industrial processes, and the electricity system. Much of the necessary changes build on Vermont’s historical commitments and leadership in developing clean energy solutions. Most critical for Vermont and the global community, however, is to face the reality that planning can no longer displace or delay the need for action, and the decades ahead will be a time of deep and transformative change.
Appendix A. IMPLAN Results

Direct government spending produces ripple effects across an economy, affecting supply chains and household spending. For instance, government spending on EV incentives will increase EV demand, which will affect not only automotive manufacturing but also automotive dealerships and transportation of durable goods. These changes in demand will affect the compensation of workers in these industries, who will then re-spend funds. As the money cycles through the economy, the amounts decrease over time through leakage, or spending on imports or other services from out of the study region.

The purpose of the macroeconomic impact analysis is to quantify the broader Statewide effects of the mitigation scenario relative to the baseline. Cadmus used IMPLAN software based on Vermont’s economy in 2019 (the latest year data are available) to analyze outputs from LEAP.

At its core, IMPLAN is based on an input-output matrix that captures how various parts of the economy are connected. It describes what industries buy and sell to each other and to households and the government. By inputting a direct change to one industry, the software can estimate impacts on connected industries.

IMPLAN produces the following indicators:

- **Employment** – a full or part time job lasting one year, consistent with the definition used by the US Bureau of Economic Analysis and Bureau of Labor Statistics. As person can have more than one job, this is not a count of employed persons.

- **Labor income** – The combination of employee compensation (wages, salaries, benefits, payroll taxes) and proprietor income (e.g., self-employed individuals).

- **Output** – The total annual production of each industry or commodity (e.g. total revenues adjusted for inventory changes). Example: A baker sells $10,000 worth of cake products. The output is $10,000.

- **Value-add** – Output minus the intermediate inputs. In other words, it is the increase in value that an industry contributes. Example: A baker sells $10,000 worth of cakes. The baker pays $3,000 in shop costs and $4,000 for ingredients. The value-add is $10,000 minus $7,000 in costs (intermediate inputs), or $3,000.

Since IMPLAN is based on 2019 data, the model is most accurate for changes in the near term. Economies evolve over time so an analysis for demand changes in 2050 will inherently be less accurate than one for 2030. In this study, the team looked at changes occurring from 2020-2050. Other limitations of the model include use of linear industry relationships, which may not hold true for marginal changes. For example, if an industry has an average employment of 10 per million in output, this would be over all production in one year. Adding an additional (marginal) million in output may not actually require 10 additional jobs, but the IMPLAN software would estimate the impact to be 10 direct jobs. As such, an IMPLAN analysis is intended to be order-of-magnitude in nature.

The IMPLAN modeling does not incorporate opportunity costs. While increased spending typically translates to greater economic activity, any expenditure could have been spent on other activities that
produce alternative economic effects. Due to expanse of alternative spending options, opportunity costs are difficult to quantify.

Results and Discussion

Table A-1 shows the economic impacts across the main indicators are all positive, with the largest contribution from direct spending. The first shaded row shows the impact divided by the total net change in demand ($533 million 2019$). Approximately 154 jobs are generated per million in mitigation scenario spending. There is an eightfold return on the value-add or wealth creation of the local economy for each dollar invested in mitigation, with much of that return directed towards labor income ($6.8 per dollar). These positive outcomes are because of reduced fuel imports and increased local spending. The bottom row shows the impacts normalized by spending without fuel savings. This shows that the fuel savings are key to the strong economic benefits.

Table A-1. Summary Results for Mitigation Scenario from 2020-2050

<table>
<thead>
<tr>
<th>Type</th>
<th>Employment (thousands)</th>
<th>Labor Income (billions)</th>
<th>Value-Add (billions)</th>
<th>Output (billions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>57</td>
<td>$2.32</td>
<td>$2.08</td>
<td>$4.94</td>
</tr>
<tr>
<td>Indirect</td>
<td>10</td>
<td>$0.59</td>
<td>$1.08</td>
<td>$2.06</td>
</tr>
<tr>
<td>Induced</td>
<td>15</td>
<td>$0.73</td>
<td>$1.30</td>
<td>$2.27</td>
</tr>
<tr>
<td>Total</td>
<td>82</td>
<td>$3.64</td>
<td>$4.46</td>
<td>$9.27</td>
</tr>
<tr>
<td>Normalized by Net Spending (533 million 2019$)</td>
<td>154 jobs/million 2019$</td>
<td>$6.8 per dollar invested</td>
<td>$8.4 per dollar invested</td>
<td>$17.4 per dollar invested</td>
</tr>
<tr>
<td>Normalized by Net Spending sans Fuel savings (17,164 million 2019$)</td>
<td>5 jobs/million 2019$</td>
<td>$0.21 per dollar spent</td>
<td>$0.26 per dollar spent</td>
<td>$0.54 per dollar spent</td>
</tr>
</tbody>
</table>

Table A-2 shows the impacts by period. Impacts for both periods are positive across all indicators. Since spending changes are greater in the second, longer period, the impacts are also larger.

Table A-2. Summary of Near and Future Economic Impacts

<table>
<thead>
<tr>
<th>Type</th>
<th>Employment (thousands)</th>
<th>Labor Income (billions)</th>
<th>Value-Add (billions)</th>
<th>Output (billions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020-2030</td>
<td>18</td>
<td>$0.80</td>
<td>$1.02</td>
<td>$2.08</td>
</tr>
<tr>
<td>2031-2050</td>
<td>64</td>
<td>$2.84</td>
<td>$3.44</td>
<td>$7.19</td>
</tr>
<tr>
<td>Total</td>
<td>82</td>
<td>$3.64</td>
<td>$4.46</td>
<td>$9.27</td>
</tr>
</tbody>
</table>

Table A-3 shows the top industries by value-add. The largest increase is in transit and ground passenger transportation (Industry 418). Construction of new powerlines and maintenance of streets are smaller, but still see a significant increase due to increased expenditures in power upgrades and road improvements. The increase seen in Industry 449 is an induced effect as the positive net spend has increased labor income, allowing Vermont residents to make investments in homes or other owner-occupied housing. The industries that decline are gasoline stores and wood product manufacturing. The mitigation scenario promotes electric vehicles and that results in decreased gasoline store demand. There are also significant decreases in cord wood purchases, which corresponds to industry 143.

Appendix A. IMPLAN Results
Table A-3. Impacts by Industry (Over $200 MM in Absolute Value)

<table>
<thead>
<tr>
<th>Industry</th>
<th>Largest Change (2019$ MM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>418 - Transit and ground passenger transportation</td>
<td>1,003</td>
</tr>
<tr>
<td>52 - Construction of new power and communication structures</td>
<td>544</td>
</tr>
<tr>
<td>62 - Maintenance and repair construction of highways, streets, bridges, and tunnels</td>
<td>281</td>
</tr>
<tr>
<td>405 - Retail - Building material and garden equipment and supplies stores</td>
<td>270</td>
</tr>
<tr>
<td>449 - Owner-occupied dwellings</td>
<td>232</td>
</tr>
<tr>
<td>408 - Retail - Gasoline stores</td>
<td>(241)</td>
</tr>
<tr>
<td>143 - All other miscellaneous wood product manufacturing</td>
<td>(362)</td>
</tr>
</tbody>
</table>

Modeling Process

Cadmus processed inputs generated by SEI from LEAP. The process is summarized in Figure A-1. First Cadmus identified in-state demand and kept those for the next step. Since our IMPLAN model is for the state of Vermont, we are not able to model changes out of the study region. The second step was identifying the appropriate IMPLAN codes to use for each of the LEAP costs. In this step, any imports were removed from the analysis since the impacts would accrue out of the region. We kept supply chain (local) impacts that support those imports. Supply chain impacts include transportation and retail and wholesale operations. Finally, Cadmus modeled the remaining cost categories in IMPLAN and analyzed the results, checking to ensure that the largest impacts could be traced back to the inputs.

Figure A-1. Process of Translating LEAP Outputs to IMPLAN Inputs

A summary of the inputs by sector are shown for each stage of the process in Table A-4. The second column shows the total demand across the whole scenario, the third column shows the remaining amount after removing out-of-region demand (primarily from the electricity sector), and the right

27 LEAP v 1.81 Outputs, values provided in MM $2019 with 2% discount rate
column shows the net amount modeled in IMPLAN. This value that ultimately went into IMPLAN is greater than the original amount because the imports were removed and those were negative changes.28

Table A-4. Summary of IMPLAN Inputs at Different Stages of Processing

<table>
<thead>
<tr>
<th>Sector</th>
<th>Total Demand (Millions 2019$)</th>
<th>In-State Demand (Millions 2019$)</th>
<th>In-State Demand sans Imports (Millions 2019$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>1,969</td>
<td>1,969</td>
<td>972</td>
</tr>
<tr>
<td>Commercial</td>
<td>348</td>
<td>348</td>
<td>348</td>
</tr>
<tr>
<td>Road</td>
<td>3,306</td>
<td>3,306</td>
<td>1,059</td>
</tr>
<tr>
<td>VMT</td>
<td>2,669</td>
<td>2,669</td>
<td>2,669</td>
</tr>
<tr>
<td>Non-Energy</td>
<td>779</td>
<td>779</td>
<td>495</td>
</tr>
<tr>
<td>Delivered Heat</td>
<td>154</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>Electricity</td>
<td>7,939</td>
<td>1,518</td>
<td>1,512</td>
</tr>
<tr>
<td>Fuels</td>
<td>-16,631</td>
<td>-16,481</td>
<td>-4,891</td>
</tr>
<tr>
<td>Total</td>
<td>533</td>
<td>-5,738</td>
<td>2,318</td>
</tr>
</tbody>
</table>

The final IMPLAN inputs are provided in Table A-5 by industry or commodity code.

Table A-5. Final IMPLAN Inputs

<table>
<thead>
<tr>
<th>IMPLAN Code</th>
<th>Description</th>
<th>Amount (2019SMM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>418</td>
<td>Transit and ground passenger transportation</td>
<td>1,334</td>
</tr>
<tr>
<td>62</td>
<td>Maintenance and repair construction of highways, streets, bridges, and tunnels</td>
<td>1,334</td>
</tr>
<tr>
<td>3052</td>
<td>Construction of new power and communication structures</td>
<td>1,308</td>
</tr>
<tr>
<td>3039</td>
<td>Electricity</td>
<td>964</td>
</tr>
<tr>
<td>3402</td>
<td>Retail services - Motor vehicle and parts dealers</td>
<td>669</td>
</tr>
<tr>
<td>61</td>
<td>Maintenance and repair of single-family residential structures</td>
<td>591</td>
</tr>
<tr>
<td>3412</td>
<td>Retail services - Miscellaneous store retailers</td>
<td>481</td>
</tr>
<tr>
<td>3392</td>
<td>Wholesale services - Motor vehicle and motor vehicle parts and supplies</td>
<td>364</td>
</tr>
<tr>
<td>60</td>
<td>Maintenance and repair of commercial structures</td>
<td>244</td>
</tr>
<tr>
<td>269</td>
<td>All other industrial machinery manufacturing</td>
<td>125</td>
</tr>
<tr>
<td>167</td>
<td>Nitrogenous fertilizer manufacturing</td>
<td>125</td>
</tr>
<tr>
<td>45</td>
<td>Biomass power generation</td>
<td>86</td>
</tr>
<tr>
<td>275</td>
<td>Air conditioning, refrigeration, and warm air heating equipment</td>
<td>79</td>
</tr>
<tr>
<td>272</td>
<td>Other commercial service industry machinery</td>
<td>69</td>
</tr>
<tr>
<td>3395</td>
<td>Wholesale services - Machinery, equipment, and supplies</td>
<td>69</td>
</tr>
<tr>
<td>241</td>
<td>Power boiler and heat exchanger manufacturing</td>
<td>61</td>
</tr>
<tr>
<td>222</td>
<td>Other aluminum rolling, drawing and extruding</td>
<td>61</td>
</tr>
</tbody>
</table>

28 Demand for commodities produced out of state include only distribution, wholesale, or other in-state costs. Residential heating and cooling equipment, automobiles and light trucks, industrial cooling equipment, inorganic chemicals (fertilizers), storage batteries, coal, refined petroleum products, and other basic organic chemicals are assumed to be commodities produced out of state.
<table>
<thead>
<tr>
<th>IMPLAN Code</th>
<th>Description</th>
<th>Amount (2019$MM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3307</td>
<td>Semiconductors</td>
<td>47</td>
</tr>
<tr>
<td>3413</td>
<td>All other miscellaneous wood products</td>
<td>41</td>
</tr>
<tr>
<td>55</td>
<td>Construction of new commercial structures, including farm structures</td>
<td>31</td>
</tr>
<tr>
<td>52</td>
<td>Construction of new power and communication structures</td>
<td>22</td>
</tr>
<tr>
<td>42</td>
<td>Solar power generation</td>
<td>15</td>
</tr>
<tr>
<td>56</td>
<td>Construction of other nonresidential structures</td>
<td>11</td>
</tr>
<tr>
<td>3415</td>
<td>Rail transportation services</td>
<td>10</td>
</tr>
<tr>
<td>333</td>
<td>Storage battery manufacturing</td>
<td>6</td>
</tr>
<tr>
<td>39</td>
<td>Hydroelectric power generation</td>
<td>6</td>
</tr>
<tr>
<td>479</td>
<td>Waste management and remediation services</td>
<td>2</td>
</tr>
<tr>
<td>48</td>
<td>Natural gas distribution</td>
<td>2</td>
</tr>
<tr>
<td>3396</td>
<td>Wholesale services - Other durable goods merchant wholesalers</td>
<td>0</td>
</tr>
<tr>
<td>3405</td>
<td>Retail services - Building material and garden equipment and supplies stores</td>
<td>0</td>
</tr>
<tr>
<td>3400</td>
<td>Wholesale services - Other nondurable goods merchant wholesalers</td>
<td>-15</td>
</tr>
<tr>
<td>274</td>
<td>Heating equipment (except warm air furnaces)</td>
<td>-44</td>
</tr>
<tr>
<td>3394</td>
<td>Wholesale services - Household appliances and electrical and electronic goods</td>
<td>-56</td>
</tr>
<tr>
<td>3417</td>
<td>Truck transportation services</td>
<td>-101</td>
</tr>
<tr>
<td>3401</td>
<td>Wholesale services - Wholesale electronic markets and agents and brokers</td>
<td>-128</td>
</tr>
<tr>
<td>3404</td>
<td>Retail services - Electronics and appliance stores</td>
<td>-200</td>
</tr>
<tr>
<td>143</td>
<td>All other miscellaneous wood product manufacturing</td>
<td>-1,078</td>
</tr>
<tr>
<td>3399</td>
<td>Wholesale services - Petroleum and petroleum products</td>
<td>-2,037</td>
</tr>
<tr>
<td>3408</td>
<td>Retail services - Gasoline stores</td>
<td>-2,182</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2,318</td>
</tr>
</tbody>
</table>
Table B-1. Program Inventory of Vermont’s Existing Climate Programs

<table>
<thead>
<tr>
<th>Ref #</th>
<th>Name</th>
<th>Description</th>
<th>Sector</th>
<th>Implementing Organization</th>
<th>Budget</th>
<th>Funding Source</th>
<th>Authority/Rule</th>
<th>Status</th>
<th>Additional Notes and Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low Emission Vehicle Program, including Zero Emission Vehicles (ZEV) requirements</td>
<td>Light-duty vehicle sales mandate regulating original equipment manufacturers (OEMs).</td>
<td>Transportation</td>
<td>DEC</td>
<td>No program funding</td>
<td>N/A</td>
<td>N/A</td>
<td>Section 177 Clean Air Act</td>
<td>Actively regulating automakers</td>
</tr>
<tr>
<td>2</td>
<td>Volkswagen Environmental Mitigation Funding</td>
<td>Funding from VW Settlement which funds emission mitigation initiatives, including up to 15% EV chargers.</td>
<td>Transportation</td>
<td>DEC</td>
<td>$18.7M</td>
<td>VW Settlement</td>
<td>Partial Consent Decree, US District Court</td>
<td>Actively funding NOx reduction programs</td>
<td>https://dec.vermont.gov/sites/dec/files/Vermont_VW_Env_Mitigation_Trust_BMP_2020Dec2019_revision1_FINAL.pdf</td>
</tr>
<tr>
<td>3</td>
<td>EV Incentive Programs (utility and Vtrans, Federal Tax Credit, Federal Low or No-Emission Funding)</td>
<td></td>
<td>Transportation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Need clarification on program</td>
</tr>
<tr>
<td>4</td>
<td>ZEV MOU and Action Plan</td>
<td>ZEV MOU to commit to having 3.3 ZEVs on roads by 2025</td>
<td>Transportation</td>
<td>DEC</td>
<td>N/A</td>
<td>N/A</td>
<td>NESCAUM</td>
<td>Active</td>
<td>https://dec.vermont.gov/sites/dec/files/aqc/mobile-sources/documents/Final%20VT%20ZEV%20Action%20Plan_080114.pdf</td>
</tr>
<tr>
<td>5</td>
<td>EVSE Installation Grant Programs</td>
<td>Fund projects in designated areas to expand EVSE</td>
<td>Transportation</td>
<td>DHCD</td>
<td>$750,000</td>
<td>VW Settlement</td>
<td>Actively funding EVSE projects</td>
<td></td>
<td>https://accd.vermont.gov/sites/accdn/files/documents/CD/CP/CP-2021-EVSE_Annual_Report.pdf</td>
</tr>
<tr>
<td>8</td>
<td>VTrans Complete Streets, Bike/Ped, and Public Transit Programs</td>
<td>Bill to ensure all users of Vermont’s transportation systems have their needs met</td>
<td>Transportation</td>
<td>VTrans</td>
<td>$3.6M</td>
<td>VTrans Municipal Assistance Program</td>
<td>Agency of Transportation’s Strategic Goal #3: Provide Vermonters energy efficient travel options, specifically through the increased use of walking and biking for transportation</td>
<td>Actively funding projects</td>
<td>https://vtrans.vermont.gov/sites/aot/files/highway/documents/HT/2021%20Small-scale%20BikePed%20Grant%20Guide.pdf; https://environment.transportation.org/news/vtrans-awards-mobility-and-transportation-innovation-grants/ (grant program award)</td>
</tr>
<tr>
<td>Ref #</td>
<td>Name</td>
<td>Description</td>
<td>Sector</td>
<td>Implementing Organization</td>
<td>Budget</td>
<td>Funding Source</td>
<td>Authority/Rule</td>
<td>Status</td>
<td>Additional Notes and Sources</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------------------</td>
<td>--------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Financial and technical assistance to transit systems</td>
<td>Transportation</td>
<td>VTrans</td>
<td>$500,000</td>
<td>Mobility and Transportation Innovation program</td>
<td>Vermont Transportation Bill 2020</td>
<td>Actively funding</td>
<td>https://vtrans.vermont.gov/public-transit</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Descriptive Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Additional Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>and Sources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Ref #</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Sector</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Implementing Organization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Budget</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Funding Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Authority/Rule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Support for Drive Electric Vermont (DEV)

Coalition to promote spread of electric transportation

- Transportation
- VTrans
- $500,000
- Statewide Public-Private Partnership
- Actively promoting EVs
- https://www.driveelectricvt.com/

Support for Passenger and Freight Rail

Update of the Rail Plan and Freight plan to meet current federal requirements

- Transportation
- VTrans
- $354M for rail capital projects
- State and Federal sources
- Active

Low Income Weatherization Program

Covered in Building Sector below

- RCI Fuel Use

Utility Efficiency Programs

Covered in Building Sector below

- RCI Fuel Use

Renewable Energy Standard - Tier 3

Covered in Building Sector below

- RCI Fuel Use

Renewable Energy Standard - Tiers 1 & 2

Tier I requires that Vermont DUs procure a defined percentage of their retail electric sales from any source of renewable energy. Tier II requires that Vermont DUs procure a defined percentage of their retail electric sales from new distributed renewable generation

- RCI Fuel Use
- VT Public Utility Commission
- N/A
- N/A
- 30 V.S.A. § 8002-8005
- Current
- https://puc.vermont.gov/electric/renewable-energy-standard

Building Energy Standards/Codes

Covered in Building Sector below

- RCI Fuel Use

Large Customer Self-Managed Energy Efficiency Program (SMEEP)

Allows certain transmission and industrial electric customers to be exempt from the energy efficiency charge provided they have an existing comprehensive energy-management program and commit to investing the minimum spending levels

- RCI Fuel Use
- VT Public Utility Commission
- N/A
- N/A
- 30 V.S.A. § 209(j)
- Current
- https://puc.vermont.gov/energy-efficiency-utility-program/energy-efficiency-utility-program

Appendix B. Program Inventory of Vermont’s Existing Climate Programs

B-2
<table>
<thead>
<tr>
<th>Ref #</th>
<th>Name</th>
<th>Description</th>
<th>Sector</th>
<th>Implementing Organization</th>
<th>Budget</th>
<th>Funding Source</th>
<th>Authority/Rule</th>
<th>Status</th>
<th>Additional Notes and Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>State Energy Management Program</td>
<td>Administer energy management measures in State buildings and facilities, including the implementation of energy efficiency and conservation measures, and the use of renewable resources. The SEMP is implemented through two revolving funds that are used to finance energy management measures in State buildings and facilities.</td>
<td>Electricity</td>
<td>VT Building and General Services (BGS)</td>
<td>As of 2020, $9 million were spent on projects through the SEMP</td>
<td>N/A</td>
<td>N/A</td>
<td>Current</td>
<td>https://bgs.vermont.gov/sites/bgs/files/documents/SEMP%20Guidelines%202020%20Procedure%202016.pdf</td>
</tr>
<tr>
<td>18</td>
<td>Above-Ground Storage Tank Rule</td>
<td>Requires inspection of above ground heating oil fuel tanks and inspectors to affix red tags to tanks that are at risk of a fuel spill.</td>
<td>Electricity</td>
<td>VT Agency of Natural Resources (ANR)</td>
<td>N/A</td>
<td>N/A</td>
<td>10 V.S.A. Chapter 59 Section 1929a and 10 V.S.A. Chapter 159</td>
<td>Current</td>
<td>https://dec.vermont.gov/waste-management/storage-tanks/aboveground</td>
</tr>
<tr>
<td>19</td>
<td>Conservation Practices (e.g., cover cropping, nutrient management)</td>
<td></td>
<td>Agriculture</td>
<td></td>
<td></td>
<td></td>
<td>Need clarification on program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Support for on-farm Anaerobic Digesters</td>
<td>Support for anaerobic digesters may be available through the Environmental Quality Incentives Program (EQIP) and NRCS conservation partners.</td>
<td>Agriculture</td>
<td>Rural Development/NRCS</td>
<td>Not identified</td>
<td>Not identified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Farmland Conservation Practices (state, federal, and partners)</td>
<td></td>
<td>Agriculture</td>
<td></td>
<td></td>
<td>Need clarification on program</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Regional Greenhouse Gas Initiative</td>
<td>Mandatory cap and trade with ten other states.</td>
<td>Electricity</td>
<td>PUC / ANR / DEC</td>
<td></td>
<td></td>
<td>30 V.S.A. Section 255</td>
<td>Need clarification on program</td>
<td>https://dec.vermont.gov/ar-quality/climate-change/rggi</td>
</tr>
<tr>
<td>23</td>
<td>Support for Energy Efficiency at Wastewater Treatment Facilities</td>
<td></td>
<td>Electricity</td>
<td>Efficiency Vermont (EVT) / ANR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Incentives to Support Specific Types of Distributed Generation, Particularly on Brownfields and Landfills</td>
<td></td>
<td>Electricity</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Electric Rate Design</td>
<td>EVs, load management</td>
<td>Electricity</td>
<td>PUC approving DU activity</td>
<td>N/A</td>
<td>N/A</td>
<td>Title 30 Section 8010; Rule 5.100</td>
<td>Current</td>
<td>https://puc.vermont.gov/electric/net-metering</td>
</tr>
<tr>
<td>26</td>
<td>Net-Metering</td>
<td>An electricity billing mechanism that allows for excess generation to be reimbursed</td>
<td>Electricity</td>
<td>PUC</td>
<td>N/A</td>
<td>N/A</td>
<td>Title 30 Section 8010; Rule 5.100</td>
<td>Current</td>
<td>https://puc.vermont.gov/electric/net-metering</td>
</tr>
<tr>
<td>27</td>
<td>Vermont Standard Offer</td>
<td>Requires distribution utilities to pay renewable power from an eligible generator at a set price for a set time.</td>
<td>Electricity</td>
<td>PUC</td>
<td>N/A</td>
<td>N/A</td>
<td>Title 30 Section 8005</td>
<td>Current until 127.5 MW has been installed</td>
<td></td>
</tr>
<tr>
<td>Ref #</td>
<td>Name</td>
<td>Description</td>
<td>Sector</td>
<td>Implementing Organization</td>
<td>Budget</td>
<td>Funding Source</td>
<td>Authority/Rule</td>
<td>Status</td>
<td>Additional Notes and Sources</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-------------</td>
<td>--------</td>
<td>---------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>---------------</td>
<td>--------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>28</td>
<td>Renewable Energy Standard Tier 1</td>
<td>Requires DUs to procure a defined % of retail sales from any source of renewable.</td>
<td>Electricity</td>
<td>PUC</td>
<td>N/A</td>
<td>N/A</td>
<td>30 V.S.A. § 8002-8005</td>
<td>Current until 75% reached in 2032.</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Renewable Energy Standard Tier 2</td>
<td>Requires DUs to procure a defined % of retail sales from new distributed renewables.</td>
<td>Electricity</td>
<td>PUC</td>
<td>N/A</td>
<td>N/A</td>
<td>30 V.S.A. § 8002-8005</td>
<td>Current until 10% reached in 2032.</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>"Alternative" or "Incentive Regulation"</td>
<td>Allows for DUs to be regulated not by a cost-of-service approach.</td>
<td>Electricity</td>
<td>PUC</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Vermont System Planning Committee (VSPC)</td>
<td>Stakeholder group that assists in VTs electric transmission planning process.</td>
<td>Electricity</td>
<td>VELCO</td>
<td>N/A</td>
<td>N/A</td>
<td>Docket 7081</td>
<td>Current</td>
<td>https://www.vermontspc.com/</td>
</tr>
<tr>
<td>33</td>
<td>Power Purchasing Agreements / Other unique RE projects</td>
<td>DU agreements with specific developers</td>
<td>Electricity</td>
<td>VPPSA: Solar partnership with Encore Renewable Energy to develop 10 MW utility scale renewable generation; Partnership with PECOs Wind to develop community wind projects (early stages). BED: Solar test center at McNeil Plant.</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Various peak management programs</td>
<td>DU efforts to reduce peak</td>
<td>Electricity</td>
<td>VPPSA: Internal behavioral demand response- messaging to member utilities and WEC to alert of transmission/capacity peak; MDU with Efficiency Vermont that includes (a) R&D project centered on flexible load management, completed prior to 2023. Project TBD and (b) Tailored Effort program offering enhanced efficiency and electrification incentives. Focuses on 3 VPPSA members annually from 2021-2023; • Enosburg Falls Community Impact Rider Pilot- provides a discounted rate to industrial customers with annual load factor >60% and minimum of 45% annual load occurring during off peak hours. Commits customer to fully participating in cost effective energy efficiency and beneficial electrification programs. WEC: Partner project with EVT called Powershift</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Appendix B. Program Inventory of Vermont’s Existing Climate Programs
<table>
<thead>
<tr>
<th>Ref #</th>
<th>Name</th>
<th>Description</th>
<th>Sector</th>
<th>Implementing Organization</th>
<th>Budget</th>
<th>Funding Source</th>
<th>Authority/Rule</th>
<th>Status</th>
<th>Additional Notes and Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>Various pilots pertaining to storage</td>
<td>DU efforts to incorporate storage</td>
<td>Electricity</td>
<td>GMP: Bring Your Own Device / Tesla Powerwall VPPSA: Storage RFP: developing a partnership to reduce peak loads and assist with renewable integration. Currently in the final stages of the RFP vendor selection process.</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td>https://greenmountainpower.com/rebates-programs/home-energy-storage/</td>
</tr>
<tr>
<td>37</td>
<td>Incentives for community solar for income eligible VTers</td>
<td></td>
<td>Electricity</td>
<td>Clean Energy Development Fund</td>
<td>Varies</td>
<td>Varies</td>
<td></td>
<td>Coming soon</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Hydrofluorocarbon (HFC) Rule</td>
<td>Phase-down of refrigerants with high GHGs</td>
<td>Industrial Processes</td>
<td>DEC</td>
<td>(Waiting for information from EVT)</td>
<td></td>
<td>Actively Regulating</td>
<td></td>
<td>https://dec.vermont.gov/sites/dec/files/aqc/laws-rules/documents/20P-016_HFC_final_proposed_rule_package.pdf Hydrofluorocarbons are extremely potent greenhouse gases (1000-10000 times more potent than carbon dioxide). This rule phases down the use of HFCs in Vermont. It applies to AC/Refrigeration coolants, aerosol propellants, and foam end-uses. Any act that causes prohibited HFC’s to enter Vermont is a violation.</td>
</tr>
<tr>
<td>39</td>
<td>Universal Recycling Law</td>
<td>Bans disposal of recyclables and requires disposal companies to offer recycling and composting services</td>
<td>Waste</td>
<td>DEC</td>
<td></td>
<td></td>
<td>Actively Regulating</td>
<td>Vermont Act 148</td>
<td>https://dec.vermont.gov/waste-management/solid/universal-recycling This law bans the disposal of common recyclables including plastics, glass, yard debris, clean wood, and compostable food scraps. Prior to the act, nearly half of all garbage in Vermont could have been recycled.</td>
</tr>
<tr>
<td>40</td>
<td>Landfill Gas to energy Projects</td>
<td>Use of landfill methane to displace conventional natural gas use</td>
<td>Waste</td>
<td>VGS</td>
<td></td>
<td></td>
<td>Actively Enrolling</td>
<td></td>
<td>https://www.vermontgas.com/renewablenaturalgas/ Vermont Gas Systems is enrolling customers in renewable methane sources. Instead of fracking for it, this methane come from landfill gas. Landfills naturally produce methane, along with other gases, and if captured it can be used to fuel power plants or be sent to residences for heating usage.</td>
</tr>
<tr>
<td>Ref #</td>
<td>Name</td>
<td>Description</td>
<td>Sector</td>
<td>Implementing Organization</td>
<td>Budget</td>
<td>Funding Source</td>
<td>Authority/Rule</td>
<td>Status</td>
<td>Additional Notes and Sources</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-------------</td>
<td>--------</td>
<td>---------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>41</td>
<td>Efforts to Test for and Reduce Leakage</td>
<td>EVT works to proactively test refrigeration systems for leaks and repair them to save money and emissions</td>
<td>Fossil Fuel Industry</td>
<td>EVT</td>
<td>Active Enrollment</td>
<td>Active Testing</td>
<td>https://www.efficiencyvermont.com/ Media/Default/docs/bpx/bpx-2019-refrigeration-double-version.pdf</td>
<td>The annual leakage rate of refrigerant is 24%, with a GWP of 1500 it leads to almost 2 million lbs. of CO2 equivalent a year. To put that in perspective, it takes 970 acres of forest to remove that much CO2 from the atmosphere annually. In addition to the emissions, systems with less refrigerant work significantly worse and replacing refrigerant costs a lot, especially as refrigerants are phased out by federal and local governments and the import and production of them are banned.</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Tree Planting: Urban and Community Forestry’s Vermont Community Canopy and support given to tree plantings in municipalities</td>
<td>VT Urban and Community Forestry runs multiple programs to support citizens in stewarding trees and associated ecosystems in and around human settlements</td>
<td>Sequestration</td>
<td>VT Urban and Community Forestry</td>
<td>Varied by program</td>
<td>Varies by program</td>
<td>https://vtcommunityforestry.org/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Forest Management Techniques that Increase Carbon Sequestration</td>
<td>Sequestration</td>
<td>Sequestration</td>
<td>Sequestration</td>
<td>Sequestration</td>
<td>Sequestration</td>
<td>Need clarification on program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Programs that Aim to Avoid Deforestation and Forestland Conversion: Current Use program, Forest Legacy Program, Conservation Easements</td>
<td>Sequestration</td>
<td>Sequestration</td>
<td>Sequestration</td>
<td>Sequestration</td>
<td>Sequestration</td>
<td>Need clarification on program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Efficient Products</td>
<td>EVT provides rebates for efficient products, including lighting and smart thermostats</td>
<td>Buildings</td>
<td>Efficiency Vermont (EVT)</td>
<td>“The estimated budget for... Efficient Vermont... for the first year is about $7.6 million”</td>
<td>Efficiency Vermont is funded by an “energy efficiency charge” (EEC) that appears on consumers’ electric bills (except in Burlington Electric Department’s service territory).</td>
<td>30 V.S.A. § 51</td>
<td>Current</td>
<td>https://www.efficiencyvermont.com/rebates</td>
</tr>
<tr>
<td>47</td>
<td>Deep Retrofit for Businesses</td>
<td>Offers technical guidance and incentives for deep retrofit (reduction of 50% energy use) for commercial buildings</td>
<td>Buildings</td>
<td>Efficiency Vermont (EVT)</td>
<td>“The estimated budget for... Efficient Vermont... for the first year is about $7.6 million”</td>
<td>Efficiency Vermont is funded by an “energy efficiency charge” (EEC) that appears on consumers’ electric bills (except in Burlington Electric Department’s service territory).</td>
<td>30 V.S.A. § 51</td>
<td>Current</td>
<td>https://www.efficiencyvermont.com/services/project-support/deep-retrofit</td>
</tr>
<tr>
<td>Ref #</td>
<td>Name</td>
<td>Description</td>
<td>Sector</td>
<td>Implementing Organization</td>
<td>Budget</td>
<td>Funding Source</td>
<td>Authority/Rule</td>
<td>Status</td>
<td>Additional Notes and Sources</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-------------</td>
<td>--------</td>
<td>---------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>---------------</td>
<td>--------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>48</td>
<td>Home Performance with ENERGY STAR</td>
<td>Work with an Efficiency Excellence Network contractor to improve your home's insulation and air sealing to get 50% off project costs.</td>
<td>Buildings</td>
<td>Efficiency Vermont (EVT)</td>
<td>"The estimated budget for... Efficient Vermont... for the first year is about $7.6 million"</td>
<td>Efficiency Vermont is funded by an "energy efficiency charge" (EEC) that appears on consumers' electric bills (except in Burlington Electric Department's service territory).</td>
<td>30 V.S.A. § 51</td>
<td>Current</td>
<td>https://www.efficiencyvermont.com/rebates/list/home-performance-with-energy-star/</td>
</tr>
<tr>
<td>49</td>
<td>Appliances</td>
<td>EVT provides incentives for heat pumps, room air conditioners, clothes dryers, and wood pellet stoves</td>
<td>Buildings</td>
<td>Efficiency Vermont (EVT)</td>
<td>"The estimated budget for... Efficient Vermont... for the first year is about $7.6 million"</td>
<td>Efficiency Vermont is funded by an "energy efficiency charge" (EEC) that appears on consumers' electric bills (except in Burlington Electric Department's service territory).</td>
<td>30 V.S.A. § 51</td>
<td>Current</td>
<td>https://www.efficiencyvermont.com/rebates/</td>
</tr>
<tr>
<td>50</td>
<td>HEAT Squad</td>
<td>Provides home energy audits, can also provide project management and financing for improvements, and offers incentives</td>
<td>Buildings</td>
<td>NeighborWorks of Western Vermont (Neighborworks Alliance)</td>
<td>Rebates to cover 50% of weatherization costs up to $1,000 or $3,000.</td>
<td>Business Energy Loan</td>
<td>Not identified</td>
<td>Current</td>
<td>http://heatsquad.org/</td>
</tr>
<tr>
<td>52</td>
<td>3E Thermal</td>
<td>3E Thermal specializes in multifamily and mixed-use building retrofits. 3E provides cash incentives and technical support, to help ensure that projects maximize energy efficiency.</td>
<td>Buildings</td>
<td>3E Thermal</td>
<td>Up to $35,000 can be borrowed, with a minimum loan amount of $3,500. All of an energy efficiency project's costs can be financed.</td>
<td>Business Energy Loan</td>
<td>Not identified</td>
<td>Current</td>
<td>https://3ethermal.org/</td>
</tr>
</tbody>
</table>
| 53 | Commercial HVAC Rebates | Rebates for HVAC systems (including heat pumps) in businesses | Buildings | Efficiency Vermont (EVT) | "The estimated budget for... Efficient Vermont... for the first year is about $7.6 million" | Efficiency Vermont is funded by an "energy efficiency charge" (EEC) that appears on consumers' electric bills (except in Burlington Electric Department's service territory). | 30 V.S.A. § 51 | Current | https://www.efficiencyvermont.com/rebates/list/?cat=Heating%2C+Cooling+%26+Ventilation&hvacfilter=&type=Business
https://ilsr.org/rule/2550-2/|
| 54 | Continuous Energy Improvement | Energy management program that helps large commercial customers cut energy consumption. Includes Strategic Energy Management and Existing Buildings Commissioning | Buildings | Efficiency Vermont (EVT) | "The estimated budget for... Efficient Vermont... for the first year is about $7.6 million" | Efficiency Vermont is funded by an "energy efficiency charge" (EEC) that appears on consumers' electric bills (except in Burlington Electric Department's service territory). | 30 V.S.A. § 51 | Current | https://www.efficiencyvermont.com/rebates/list/?cat=Energy
https://ilsr.org/rule/2550-2/|
| 55 | Commercial New Construction | Offers energy consulting, incentives, and technical support for projects of any size | Buildings | Efficiency Vermont (EVT) | "The estimated budget for... Efficient Vermont... for the first year is about $7.6 million" | Efficiency Vermont is funded by an "energy efficiency charge" (EEC) that appears on consumers' electric bills (except in Burlington Electric Department's service territory). | 30 V.S.A. § 51 | Current | https://www.efficiencyvermont.com/services/project-support/strategic-energy-management
https://ilsr.org/rule/2550-2/|
| 56 | Commercial Equipment Rebate Program | Rebates for commercial equipment | Buildings | Vermont Gas Systems (VGS) | Total rebate must be equal to $4,000 or less. | Not identified | Not identified | Current | https://www.vermontgas.com/commercial-energy-services/commercial-equipment-rebates/|

Appendix B. Program Inventory of Vermont's Existing Climate Programs
Descriptive Information

<table>
<thead>
<tr>
<th>Ref #</th>
<th>Name</th>
<th>Description</th>
<th>Sector</th>
<th>Implementing Organization</th>
<th>Budget</th>
<th>Funding Source</th>
<th>Authority/Rule</th>
<th>Status</th>
<th>Additional Notes and Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>Residential New Construction</td>
<td>Offers technical guidance and incentives now to new residential buildings</td>
<td>Buildings</td>
<td>Efficient Vermont (EVT)</td>
<td>Up to $4,000</td>
<td>Efficiency Vermont is funded by an "energy efficiency charge" (EEC) that appears on consumers' electric bills (except in Burlington Electric Department's service territory).</td>
<td>30 V.S.A. § 51</td>
<td>Current</td>
<td>https://www.efficiencyvermont.com/services/renovation-construction/residential-new-construction</td>
</tr>
<tr>
<td>60</td>
<td>Multifamily Renovation & New Construction</td>
<td>Offers technical support and rebates on appliances, HVAC systems, lighting, air sealing, and insulation</td>
<td>Buildings</td>
<td>Efficiency Vermont (EVT)</td>
<td>Not identified</td>
<td>Efficiency Vermont is funded by an "energy efficiency charge" (EEC) that appears on consumers' electric bills (except in Burlington Electric Department's service territory).</td>
<td>30 V.S.A. § 51</td>
<td>Current</td>
<td>https://www.efficiencyvermont.com/services/renovation-construction/multifamily-new-construction</td>
</tr>
<tr>
<td>61</td>
<td>Regional Weatherization Assistance Program</td>
<td>Provides weatherization assistance and energy efficiency measures are available at no cost to Vermont residents who meet income eligibility guidelines</td>
<td>Buildings</td>
<td>Vermont Office of Economic Opportunity (OEO)</td>
<td>An average of $8,500.00 per unit allocated on a cost-effective basis.</td>
<td>33 V.S.A. § 2502</td>
<td>Current</td>
<td>https://www.conservationfund.org/sites/default/files/legislation/vermont/docs/33-2502.pdf</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Building Energy Standards (RBES and CBES)</td>
<td>Sets minimum efficiency requirements for new and renovated buildings</td>
<td>Buildings</td>
<td>Vermont Department of Public Service</td>
<td>N/A</td>
<td>N/A</td>
<td>30 V.S.A. § 51, 53</td>
<td>Current</td>
<td>https://publicservice.vermont.gov/content/building-energy-standards</td>
</tr>
<tr>
<td>63</td>
<td>Montpelier district heating project</td>
<td>The city developed and constructed a hot water district heating system to serve city, state, federal, and private buildings within the community. The heat source for the hot water system is a state-owned biomass-fired boiler.</td>
<td>Buildings</td>
<td>City of Montpelier</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Current</td>
<td>https://www.kingsburyco.com/project/montpelier-district-heating-system/; https://www.evergreenenergy.com/project/district-heat-montpelier/</td>
</tr>
<tr>
<td>64</td>
<td>Vermont RPS Tier 3 heat pump</td>
<td></td>
<td>Buildings</td>
<td>Vermont Public Utility Commission (PUC)</td>
<td>N/A</td>
<td>N/A</td>
<td>30 V.S.A. § 8002-8005</td>
<td>Current</td>
<td>https://puc.vermont.gov/electric/renewable-energy-standard</td>
</tr>
</tbody>
</table>
Program Inventory of Vermont’s Existing Climate Programs

<table>
<thead>
<tr>
<th>Ref #</th>
<th>Name</th>
<th>Description</th>
<th>Sector</th>
<th>Implementing Organization</th>
<th>Budget</th>
<th>Funding Source</th>
<th>Authority/Rule</th>
<th>Status</th>
<th>Authority/Rule</th>
<th>Status</th>
<th>Additional Notes and Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>Vermont RPS Tier 3 weatherization/efficiency</td>
<td>Tier III requires that DUs either procure additional new distributed renewable energy consistent with the requirements of Tier II, above, or acquire fossil-fuel savings through energy transformation projects. Energy transformation projects are those that reduce the fossil-fuel consumption of a DU’s customers and the greenhouse gas emissions associated with that consumption. 12% of retail sales in 2032.</td>
<td>Buildings</td>
<td>Vermont Public Utility Commission (PUC)</td>
<td>N/A</td>
<td>N/A</td>
<td>30 V.S.A. § 8002-8005</td>
<td>Current</td>
<td>https://puc.vermont.gov/electric/renewable-energy-standard</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix C. Additional Resources

https://aoa.vermont.gov/content/agriculture-and-ecosystems-subcommittee-vermont-climate-council

Vermont Climate Council (Agency of Natural Resources). n.d. “Climate Change in Vermont.”
https://climatechange.vermont.gov/

https://aoa.vermont.gov/content/cross-sector-mitigation-subcommittee-vermont-climate-council

https://aoa.vermont.gov/content/just-transitions-subcommittee-vermont-climate-council

Vermont Climate Council. n.d. “Science and Data Subcommittee of the Vermont Climate Council.”

Vermont Climate Council, Subcommittees. n.d. “Vermont Climate Council.”
https://aoa.vermont.gov/content/vermont-climate-council