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1. Describe a stepwise process to identify responsible parties, determine their applicable share 
of covered greenhouse gas emissions, and determine the cost recovery demand amount as 
described in Act 122. In doing so, please identify the datasets (publicly available) and describe 
the methodology and research the approach is based on. Provide an evaluation of the 
comprehensiveness and accuracy of those data sets. If appropriate, evaluate the utility of using 
additional information not publicly available to determine cost recovery demands. 
 
The State has several options available for (1) identifying responsible parties, (2) determining their 
applicable share, and (3) determining the cost recovery demand amount, as described in Act 122, 
briefly outlined here and more fully detailed below.  
 

1. To identify responsible parties: 
a. A first approach is to use existing, peer-reviewed and/or publicly available 

emissions data of company-level fossil fuel production, assessing the companies 
that exceed the emissions threshold in the law.  

b. A second approach could have the State ask major fossil fuel companies to furnish 
documentation of their emissions over the covered period.  

c. A third approach could be a mix of (a) and (b), taking existing firm-level emissions 
data as given, and providing companies with an opportunity to update those 
numbers. 

2. Determining the applicable share of covered emissions requires dividing a company’s 
emissions by peer-reviewed, consensus-based, scientific estimates of total covered 
emissions, meaning fossil fuel emissions from January 1, 1995 through December 31, 
2024.  

3. Determining the cost recovery demand amount is detailed in response to Question 2, below, 
a function of how much damage is attributable to each party’s applicable share of covered 
emissions. 

 
1.  Identifying responsible parties: 
Per the law, a responsible party is an “entity or  successor in interest to an entity that during any 
part of the covered period was engaged in the trade or business of extracting fossil fuel or refining 
crude oil and is determined by the Agency attributable to for more than one billion metric tons of 
covered greenhouse gas emissions during the covered period. The term responsible party does not 
include any person who lacks sufficient connection with the State to satisfy the nexus requirements 
of the U.S. Constitution.”  
 
There are three elements to this definition that I see: (1) responsible parties generate emissions 
through the production and sale of fossil fuels; (2) they have a threshold of emissions of 1 billion 
tonnes; (3) they have sufficient nexus with the State, presumably based on commerce and sales tax 
laws. I cannot speak to (3), but discuss (1) and (2) below.  
 
a. Using publicly available emissions data: There are at least two publicly available datasets, one 
of which is peer-reviewed (Heede 2014), that compile the historical greenhouse gas (GHG) 
emissions of major fossil fuel firms associated with the production and sale of their products. The 
State can simply use these data as estimates of emissions contributions over the covered period, 
removing entities that do not meet the 1 billion tonne threshold in the law. 
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• The Carbon Majors Database (CMD)1 uses firms’ self-reported production data (e.g., 

annual reports, Securities and Exchange Commission filings) as well as reputable third-
party sources (e.g., the U.S. Energy Information Administration) to estimate annual-scale 
Scope 1 (direction operational) and Scope 3 (combustion of marketed products) emissions 
from 122 of the world’s largest oil, gas, coal, and cement producers traceable to the total 
volume or mass of fossil fuel (e.g., barrels of oil or tonnes of coal) extracted by each firm. 
The database spans back to 1854, covering 72% of anthropogenic carbon dioxide (CO2) 
and methane (CH4) emissions since the start of the Industrial Revolution. The emissions 
from these fuels are calculated using widely-accepted “emissions factors” from the 
Intergovernmental Panel on Climate Change (IPCC)2, which estimate the amount of CO2 
and CH4 released when those fuels are combusted. The Carbon Majors process also 
accounts for additional sources of direct production emissions, such as the flaring of CO2 
or CH4 at oil and gas facilities and fugitive methane emissions from extraction sites, and 
adjusts for non-energy uses of fossil fuels, such as the production of petrochemicals.  

 
• The Columbia Center on Sustainable Investment (CCSI), a joint center of Columbia 

Law School and Columbia Climate School, takes a complete supply chain approach to 
estimate the historical carbon footprint of 6 oil “supermajors” – BP, Chevron, Eni, 
ExxonMobil, Shell, and TotalEnergies – from 1980 to 20193. Rather than the extraction-
based analysis of the Carbon Majors Database, the CCSI method uses a mix of quantitative 
models and reported data on global oil refinery outputs and sales volumes to estimate the 
entire life cycle of fossil fuel emissions, from initial exploration and drilling to processing 
to transport to final combustion. Unlike the CMD, which provides both CO2 and CH4 
emissions, the CCSI database reports only carbon dioxide equivalent (CO2-e), which 
standardizes various greenhouse gasses by their global warming potential, typically until 
2100. Additionally, CCSI reports only emissions from oil production and sales, and 
therefore does not include emissions from gas, coal, or cement by the 6 firms or their 
subsidiaries.  

 
b. Solicit emissions data from firms: A second approach could see the State directly solicit 
emissions numbers directly from the entities themselves. Compiling a list of entities would be 
relatively straightforward given publicly available information on investor-owned companies. 
From that list, which could be ordered by their current stock price, which would be reflective in 
part, of historical production and sale of fossil fuels, one would have a triaged list of companies to 
contact to ask for compliance with the law. 
 
c. Combine a. and b.: A third approach to determining responsible parties could see combining 
approaches a. and b., detailed above. One can use, for example, the CMD data as a basis, and 
provide companies the opportunity to update those emissions numbers, or solicit emissions 
numbers for the most recent years, which are not yet reflected in data like those from CMD. As an 
aside, it is widely understood that the emissions reported in both of the above databases, or that 
solicited directly from firms, are likely underestimations of firms’ real-world emissions. 

 
1 https://carbonmajors.org/ 
2 https://www.ipcc-nggip.iges.or.jp/EFDB/main.php 
3 https://ccsi.columbia.edu/content/oil-supermajors-carbon-footprint-refining-sales-climate-change 
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2. Determining their applicable share: 
Knowing what percentage of emissions over the covered period that is attributable to each of these 
firms is a means to estimating their applicable share. Irrespective of the approach taken above, a., 
b., c., or some other approach, the denominator against which each firm’s emissions are relativized 
(i.e., turned into percentages) remains the same: total covered emissions, meaning total fossil fuel 
emissions between January 1, 1995 and December 31, 2024.  
 
Estimates of total covered emissions can come from peer-reviewed consensus-based data, such as 
those generated by teams of scientists around the world and widely used in the scientific 
community such as in the United Nations Intergovernmental Panel on Climate Change (IPCC) 
Assessments and the United States National Climate Assessment (USNCA).  
 
Briefly, fossil fuel contributions to total emissions are generally calculated by combining 
measurements of atmospheric CO2 concentrations, the land and ocean carbon sinks, land-use 
change, and energy statistics to estimate anthropogenic emissions and then divvy them up among 
major sectors. The Community Emissions Data System (Hoesly et al., 2018), which was used as 
input data to the historical global climate model simulations for the most recent IPCC assessment 
report, contains annual estimates of total emissions of CO2, CH4, and other GHGs. Other widely 
used datasets include the Global Carbon Budget (Friedlingstein et al., 2023), which is an annual, 
peer-reviewed report that employs the methods described above to estimate total anthropogenic 
carbon emissions from fossil fuels and land-use change.  
 
3.  Determining the cost recovery demand amount: 
Determination of the cost recovery amount requires an attribution of the damages associated with 
the covered emissions.  
 
The law notes that “the cost recovery demand shall be equal to an amount that bears the same ratio 
to the cost to the State of Vermont and its residents, as calculated by the State Treasurer pursuant 
to section 599c of this title, from the emission of covered greenhouse gases during the covered 
period as the responsible party’s applicable share of covered greenhouse gas emissions bears to 
the aggregate applicable shares of covered greenhouse gas emissions resulting from the use of 
fossil fuels extracted or refined during the covered period.”  
 
My interpretation of this section is that the Act suggests the possibility of using a linear 
apportioning of damages to responsible parties. This means that if a responsible party’s applicable 
share equals 1% of covered emissions, then that party’s cost recovery demand amount is equal to 
1% of total damages attributable to he covered emissions. This is a straightforward accounting 
with a rational basis, though I think there is more than one way to do this that would be consistent 
with the law.  
 
In particular, the cost recovery amount could be calculated in at least three ways, though there are 
likely more. All three I outline below share the same principle: the idea is to compare the world as 
it is, with all emissions and climate harms and damages, to a simulated world where a particular 
set of emissions is removed (Figure 1). Scientists call this approach a “leave-one-out” simulation. 
Such simulations are performed with climate models, as detailed more fully in answer to Question 
2, below.  
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The first approach to determine the cost recovery amount is straightforward, involving the 
comparison of two worlds: the world as it has been in terms of climate hazards and damages 
including the covered emissions, and the world as it would have been if those emissions had never 
occurred. Relying on a Treasurer’s damage estimate to the State over the covered period from all 
covered emissions, the State could then simply assign responsibility proportionally according to 
each party’s relative contributions to those total emissions over the covered period.  
 
A second approach to determine the cost recovery amount could directly use the firm-level 
data from CMD or CCSI after a determination of the list of responsible parties. This approach 
would then compare the world as it has been with all emissions, to a simulated world without each 
responsible party. The difference between the world as it has been and the world absent one 
responsible party’s emissions is an estimate of the damages attributable to that responsible party 
over the covered period. 
 
A third approach to determine the cost recovery amount would be to use a simulation 
framework that is instead agnostic about any one emitter. Instead it would use a simulation 
technique as above, assessing the damages to the State associated with different levels of different 
applicable shares of covered emissions (e.g., 0.5%, 0.75%, 1%, 2%, 3% and so on). This analysis 
would provide the State with a simple look-up table of the cost recovery demand amount 
corresponding to any conceivable applicable share of covered emissions. It would allow the State 
the ability to assign the cost recovery amount based on the State’s determination of each 
responsible party’s applicable share. This approach immediately provides a damage estimate 
associated with any relative percentage of covered emissions, allowing for straightforward 
association between the applicable share and the cost recovery demand amount.  
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Figure 1 | Schematic illustration of the comparison being made to assess the costs of 
climate impacts. The orange bars represent the distribution of, for example, economic 
growth, that has been witnessed in the real-world. The blue bars represent the possible 
distribution of economic growth in a world where some set of emissions are removed, like 
those associate with a particular responsible party, or all covered emissions. The difference 
between these two distributions is the effect of climate impacts traceable back to the 
removed emissions, on some damage estimate, like economic growth. Note that the blue 
“counterfactual” distribution is created using model simulations of the relationship 
between emissions, warming, climate hazards, and damage. 
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2. Describe a stepwise process to develop the cost to Vermont of the covered greenhouse gas 
emissions. In doing so, identify the data sets available and describe the methodology and 
research approach to develop: 
 
(1) a summary of the various cost-driving effects of covered greenhouse gas emissions on the 
State of Vermont including effects on public health, natural resources, biodiversity, 
agriculture, economic development, flood preparedness and safety, housing, and any other 
effects that may be relevant; 
 
Briefly, there are (1) bottom-up or (2) top-down approaches to estimating the cost-driving effects 
of covered emissions on the State.  
 
Bottom-up methods focus on the sectoral costs of emissions-driven climate hazards and then 
aggregate upward. Hazards such as heatwaves and extreme precipitation have well-documented 
impacts on a wide variety of systems, including public health, agriculture, labor productivity, and 
ecosystem services. A potentially tractable bottom-up approach is to consider state level damage 
estimates that are provided as part of the FEMA disaster declaration response, or to use re-
insurance agency estimates of insured and uninsured losses for particular disasters in the State over 
the covered period. The State would then would likely need to furnish, through, for example, a 
traditional climate attribution, that the event was made possible or worse by covered emissions. 
Such an analysis would tie disasters individually back to particular covered emissions and 
potentially, responsible parties. For example, an analysis could consider the insured losses 
associated with the 2023 summertime floods in the State, or the loss estimate provided by the 
Governor in order to issue a FEMA disaster declaration. These losses could be aggregated across 
sectors to provide an estimate of the total insured losses or total damages from the floods. Then a 
separate extreme event attribution could assess how much worse the floods were owing to the 
covered emissions by comparing the precipitation totals in the world as it was relative to a world 
with the covered emissions removed. Then the State could apportion cost recovery demand 
amounts proportionally based on that event. A key question for the State to consider in a bottom-
up accounting of the costs from emissions is what sets of extreme events should be considered, 
what sectors to consider, how damages should be counted (insured versus uninsured losses, for 
example) and how to most appropriately aggregate costs across sectoral impacts to estimate the 
full damages from emissions-driven climate change.  
 
Top-down methods that use macroeconomic indicators, such as per capita gross domestic product 
(GDPpc) and GDPpc changes in response to climate hazards also represents a tractable approach. 
This approach is used by many peer-reviewed studies and is presented in consensus-based 
scientific assessments, such as the IPCC’s 6th Assessment Report (AR6) and the USNCA; it is also 
the approach with which I am most familiar. The approach, rather than estimating individual losses 
in particular economic sectors, instead focuses instead on estimating the economic growth changes 
attributable to emissions-driven climate change and its hazards, like floods, or a particular flood. 
This approach, rather than aggregating local costs upward and tracing the applicable share back to 
individual parties, instead estimates how much economic growth was depressed or amplified by 
the climate hazards under consideration. Essentially, it positions one to answer questions of the 
following nature: how much more would Vermont’s economy have grown in dollars in 2023 and 
beyond, were it not for the historic flooding that shuttered businesses, damaged homes and 
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infrastructure, destroyed crops, and created public health risks? In the absence of flooding, the 
public and private capital that was poured into disaster recovery and adaptation could have been 
instead put towards productive growth (e.g., expanding Vermont’s housing stock or investments 
in new businesses), rather than attempting to restore the economy to its status quo before the floods 
(e.g., repairing flood-damaged housing and washed-out roads). That foregone economic growth is 
a measure of the costs of the hazard that subsumes the direct damages from the hazard, the costs 
of repairs, and the productivity foregone. Because the method is top-down, one can use a single 
attribution of how different levels of emissions shape a the magnitude of the hazard (e.g., floods) 
and a single “damage function” (discussed below) that relates the hazard to economic damages 
(e.g., GDPpc growth). As such it provides a straightforward and integrated way to trace the costs 
of all floods or heatwaves or droughts back to a particular set of emissions, such as those 
originating from a responsible party. As with a bottom-up approach, a top-down approach is likely 
a conservative lower bound on the true costs, given non-market considerations such as ecosystem 
services.  
 
This top-down approach relies on identifying a highly generalizable shared macroeconomic 
response to a hazard, often using national- or global-scale datasets4, which are less limiting than 
state-level sectoral data. This generalizable macroeconomic response is called a “damage 
function.” It is often presented in terms of marginal effects, meaning a damage function can tell 
one, for example, how much marginal economic loss is attributable to a 1% increase in extreme 
precipitation or a 1°C increase in the five hottest days of the year. The power of the damage 
function is its generalizability, and thus is can then be applied to many contexts, such as estimating 
the aggregate economic impacts on Vermont during the covered period of 1995 to 2024, or the 
costs of a specific event, such as the Summer 2023 floods.  
 
There are several publicly-available datasets of indicators that could be used in this analysis. 
Important work on the economic costs of heatwaves (Callahan & Mankin, 2022) and extreme 
precipitation (Kotz et al., 2022, 2024) has leveraged global GDP data at the subnational (e.g., states 
in the United States or provinces in Canada) scale, with the ability to parse out impacts on the 
agricultural, manufacturing, and services sectors (Wenz et al., 2023). For the United States, the 
Bureau of Economic Analysis provides state-level GDP data with a high level of sectoral detail5, 
potentially allowing for a more detailed analysis of where the costs of climate change are borne.  
 
Alternatively, the empirical methods detailed below can also be used to assess more targeted 
damages from responsible parties’ covered emissions. For instance, agroeconomic data from the 
U.S. Department of Agriculture6 can be used to quantify the agricultural costs of changing climate 
risks (Diffenbaugh et al., 2021) and data on insured and uninsured flood losses can be used to 
understand the increase in flood damages attributable to precipitation change (Davenport et al., 
2021). This means that the top-down approach could also provide sectoral-based estimates of 
losses traceable back to particular sets of emissions, as detailed in response to the next question.  
 
 
 

 
4 See, for example, subnational GDP data here: https://zenodo.org/records/7017229  
5 https://united-states.reaproject.org/data-tables/ 
6 https://www.nass.usda.gov/ 

https://www.zotero.org/google-docs/?7FsqW5
https://www.zotero.org/google-docs/?ZX7Fba
https://www.zotero.org/google-docs/?IcVuzq
https://www.zotero.org/google-docs/?4Zbwnr
https://www.zotero.org/google-docs/?4Zbwnr
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(2) a categorized calculation of the costs that have been incurred and are projected to be 
incurred in the future within the State of Vermont of each of the effects identified under 
subdivision (1) of this section; and 
 
The State has a number of options here, including using the Social Cost of Carbon (Climate 
Analytics, 2023; Burke et al., 2023). I would point the State to those resources for details on those 
kinds of approaches, which I believe are entirely rational for this effort.  
 
Below, I detail the recent methodological advances have made it possible to perform an “end-to-
end” attribution of historical climate damages. This approach can also be extended to consider 
future climate damages associated with historical covered emissions. 
 
Briefly this approach identifies the economic costs arising from the climate change associated with 
individual parties’ emissions or identifying the relative emissions over a particular period 
necessary to manifest climate damages (see Callahan & Mankin, attached). This process requires 
three fundamental mappings: (1) the first links particular emissions to a warming response; (2) the 
second links this warming response to a climate hazard response, like floods or heatwaves; and (3) 
the third links the climate hazards to economic damages (Figure 2).  
 

 

ATMOSPHERIC
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DAMAGE
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1k FaIR RCM “leave-one-out” simulations
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Figure 2 | Diagram illustrating the method to assess the costs of extreme heat traceable back to specific emissions 
(adapted from Callahan & Mankin, in press, 2024). The first step simulates temperature changes in world with all 
emissions included; this control simulation becomes the basis for evaluating the change in warming when one emitter 
or a set of emissions are removed (in a “leave-one-out” simulation). The approach can then use annually-resolved 
emissions data (like those from CMD, discussed in response to Question 1, above), and perform a number of 
simulations where one emitter is removed. These two steps are shown for the top five emitters in the CMD database 
using a climate model called the Finite Amplitude Impulse Response Model (FaIR), a Reduced Complexity Model 
(RCM) used in the IPCC. With the global temperature change attributable to particular emissions, one can estimate 
how such warming affects the magnitude of the hazard, here the five hottest days of the year (Tx5d), or “local 
temperature change”. One can then use a “damage function” that relates economic productivity changes to such 
extreme heat to assess the local-scale economic changes due to particular emissions, performing the “damage 
assessment.”  
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1. Emissions to warming 
Determining emitters’ contributions to global warming requires a means of estimating the 
counterfactual: “what might global temperatures have been absent a party’s emissions?” 
Reduced complexity climate models, which simulate the global temperature response to 
GHG emissions and other climate forcings,, provide a means of estimating these 
counterfactuals. They can be run a) with all historical emissions and b) with all historical 
emissions minus those of a particular emitter over a particular time period (using the 
emissions datasets described above). The difference between these two scenarios 
represents the contribution of that party’s emissions to global temperature change. In the 
“emitter-agnostic” framework, different percentages of GHG emissions can be subtracted 
to estimate the warming caused by, say, a party responsible for 5% of global emissions 
over the covered period. Uncertainties in the emissions-temperature relationship can be 
systematically sampled using established protocols and propagated through subsequent 
steps of the analysis. 
 

2. Warming to hazards 
A change in global temperature does not produce the same climate response everywhere. 
The next step in the process, therefore, is to determine the local change in the risk of climate 
hazards resulting from an increase in global temperature. This can be accomplished using 
a technique known as pattern scaling, in which fully-coupled global climate models are 
used to estimate the spatially-explicit pattern of changes in a hazard, such as heatwaves or 
extreme precipitation, in response to an increase in global temperature. Combining steps 1 
and 2 provides an answer to the question: “How has the warming resulting from the 
emissions of a particular party affected the local risk of climate hazards?” As with the 
previous step, uncertainty in the relationship between global temperature and local changes 
in hazard can be systematically sampled and propagated. For Vermont, a particular focus 
would be on how extreme precipitation and floods have been shaped by emissions, 
meaning a hazard model that links warming to extreme precipitation would be developed.  
 

3. Hazards to damages 
The final step is to map climate hazards onto their economic consequences by constructing 
what is commonly referred to as a “damage function”. This function can be estimated using 
peer-reviewed econometrics techniques such as fixed effects panel regression, fit to 
observed historical climate and economic data. Such functions have already been 
constructed to estimate the effects of extreme heat (Callahan & Mankin, 2022) and 
precipitation (Kotz et al., 2022, 2024) on economic growth. As mentioned previously, it is 
necessary to construct these functions using available national or global data7 to identify 
the generalizable response, which can then be applied to specific cases. One can then 
combine these statistical models fit to observed data with the counterfactual scenarios of 
climate hazards generated in steps 1 and 2 to estimate what growth would have been absent 
the changes in climate hazards arising from the global warming caused by a party’s 
emissions. The difference between these historical and counterfactual estimates of 
economic growth represents the economic damages attributable to that party’s emissions, 
thus completing the chain.  
 

 
7 See, for example, subnational GDP data here: https://zenodo.org/records/7017229  

https://www.zotero.org/google-docs/?rgEG2p
https://www.zotero.org/google-docs/?gL1s0C
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This general framework can be applied to a number of state- or county-level economic indicators 
– from whole-economy GDP to specific sectors to flood damages to crop yields – and climate 
hazards to determine attributable damages either over a specific period, such as 1995-2024, or for 
a particular event, such as the 2023 flooding in Vermont. The approach would be to select a few 
emissions-driven hazards that have impacted the State, like floods, heatwaves, and droughts, and 
provide attributions of how emissions have impacted their magnitude in Vermont and then 
aggregate across hazards.  
 
I note that climate models already provide an approach to physically connect warning and a hazard 
like extreme precipitation (IPCC, 2021). There too are damage functions that link extreme 
precipitation to changes in economic productivity (Kotz et al. 2022) and there are approaches to 
aggregate damages across hazards (Kotz et al. 2024). The extension here would be to apply these 
techniques in a singular framework (outlined in Figure 2) to estimate how the covered emissions 
have impacted Vermont’s economy.  
 
Within this approach, there is also the possibility to provide an “emitter-agnostic” estimate of cost 
recovery demand amounts. This approach would calculate the damages to Vermont associated 
with particular levels of emissions (e.g., 0.5% or 1% of covered emissions beyond the 1 billion 
tonne threshold in the law). One can then use the publicly available data from the CMD, CCSI, or 
solicit data directly from firms directly to identify the set of firms exceeding this threshold as 
responsible parties. As part of the required registration process under Section 599a, the State can 
require responsible parties to provide emissions data. 
 
It is worth emphasizing that the outlined approach yields only estimates of historical damages 
from historical emissions. Yet the long-lived nature of carbon dioxide in the atmosphere means 
emissions during the covered period will continue to warm the planet and cause further economic 
damages in the future. It is possible to combine the econometric modeling described above with 
plausible scenarios of future economic growth trajectories and trade-offs to estimate future 
damages resulting from the committed warming of these past emissions (Burke et al., 2023; 
Callahan & Mankin, 2023). 
 
One approach to doing so is to use economic projections of GDP growth changes in the future as 
a baseline against which to calculate damages from historical emissions. These data are part of the 
Intergovernmental Panel on Climate Change scenario generation process, called Shared 
Socioeconomic Pathways (Riahi et al., 2017). This approach has been successfully applied in the 
literature to assess the future economic costs of El Niño, a climate oscillation that generates 
extreme weather (Callahan & Mankin, 2023) and could be applied here.  
 
  

https://www.zotero.org/google-docs/?gUhIGu
https://www.zotero.org/google-docs/?gUhIGu
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(3) a categorized calculation of the costs that have been incurred and are projected to be 
incurred in the future within the State of Vermont to abate the effects of covered greenhouse 
gas emissions from between January 1, 1995 and December 31, 2024 on the State of Vermont 
and its residents. Provide an evaluation of the comprehensiveness and accuracy of available 
data sets,  methodology, and research to develop the cost to Vermont of the covered 
greenhouse gas emissions. 
 
The costs of adaptation are not something I have expertise in. With adaptation costs in hand, and 
estimates of how they alter the marginal damage associated with a hazard, one can update future 
damage estimates using the adaptation-adjusted damage function. 
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3. Please provide any other materials, suggestions, cost, and discussion you deem 
appropriate. 
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 9 

 Will it ever be possible to sue anyone for damaging the climate? Twenty years after this 10 

question was first posed, we argue that the scientific case for climate liability is closed. Here we 11 

detail the scientific and legal implications of an “end-to-end” attribution that links fossil fuel 12 

producers to specific damages from warming. Using Scope 1 and 3 emissions data from major fossil 13 

fuel firms, peer-reviewed attribution methods, and advances in empirical climate economics, we 14 

illustrate the trillions in economic losses attributable to the extreme heat caused by emissions from 15 

individual firms. Emissions linked to Chevron, the highest-emitting investor-owned firm in our 16 

data, for example, very likely caused between $791 billion and $3.6 trillion in heat-related losses 17 

over 1991-2020, disproportionately harming the tropical regions least culpable for warming. More 18 

broadly, we outline a transparent, reproducible, and flexible framework that formalizes how end-19 

to-end attribution could inform litigation by assessing whose emissions are responsible and for 20 

which harms. Drawing quantitative linkages between individual emitters and particularized harms 21 

is now feasible, making science no longer an obstacle to the justiciability of climate liability claims. 22 

 23 

 Once climate attribution emerged as a field of inquiry, scholars both scientific1 and legal2 raised 24 

questions about whether climate liability claims could be pursued via common law3. Extreme weather 25 

events—floods, droughts, extreme heat, and more—upend lives, undermine livelihoods, and damage 26 

property. If such extremes could be tied to climate change, the logic goes, injured parties could seek 27 

monetary or injunctive relief through courts1. Over the last two decades, science and law have been 28 

engaging a set of challenges that take climate liability from a thought experiment into a realistic practice. 29 

 Scientifically, the focus has been on developing standardized methods to codify a scientific 30 

consensus on the role climate change plays in amplifying extreme events, as reflected in the Sixth 31 

Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)4. Such “consensus” 32 

methods are widely accepted and used in the scientific community, having been applied in peer-reviewed 33 

publications to a variety of events5–7 from heat waves8,9 to droughts10,11, floods12, hurricanes13,14, and 34 
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wildfires15. This science has advanced such that events are now attributed in near-real-time16,17 or in 35 

advance using forecast models18. As courts rely on scientific syntheses from organizations like the 36 

IPCC19, the consensus developed around event attribution methods20 suggests they could meet legal 37 

standards for admissibility21. By revealing the human fingerprint on events previously thought to be “acts 38 

of God,” attribution science has helped make climate change legally legible22–24. 39 

 Legally, a focus has been on assessing whether climate attribution is compatible with existing 40 

causation and standing frameworks. Over 100 climate-related lawsuits have been filed annually since 41 

2017; many more will come. The legal theories undergirding these cases vary widely, shaping who is 42 

liable and for what conduct25. For example, some cases seek to accelerate climate policy under the theory 43 

that people have the right to climate stability26. Others use agreements like the Energy Charter Treaty to 44 

stymie climate action27. Some cases center on the disinformation and climate denialism fomented by 45 

fossil fuel firms28, while others contend that firms have failed to adequately disclose climate risks to 46 

investors29. Other climate-related cases fall outside these categories and novel legal theories will continue 47 

to emerge.  48 

 Here we focus on the theory that people can hold emitters liable for the damage wrought by 49 

warming1,30. Such cases mirror efforts to hold industries like tobacco31 and pharmaceuticals32 liable under 50 

legal standards like the duty of care, public nuisance, failure to warn, or strict liability. Because of the 51 

broad financial, legal, and climatic implications of these suits33, assessing the scientific support for their 52 

claims is critical. While these cases—like disinformation-focused cases—use evidence that fossil fuel 53 

firms have long been aware of climate change, they specifically attempt to tie these firms to the human 54 

costs of their emissions. For example, an Oregon county has sued several fossil fuel firms for amplifying 55 

the 2021 Pacific Northwest heat wave and its resulting economic and health costs34. New York City and 56 

Rhode Island have brought similar claims35,36. Firms like ExxonMobil are a frequent target, with plaintiffs 57 

ranging from residents of flooded Alaskan villages to Puerto Rican municipalities damaged by Hurricanes 58 

Irma and Maria37,38. While attribution science is relevant to wider climate policy, accountability, and 59 

justice, it is particularly helpful to this theory of liability, as both initial standing questions and the merit 60 

stages of cases may require plaintiffs to show causal linkages between emitters and particularized injuries. 61 

 The fate of climate liability cases remains uncertain: success, failures, and appeals abound. In 62 

2015, the nonprofit Urgenda won a key ruling that the Dutch government breached its constitutional duty 63 

of care by not reducing emissions39; more recently, a court ruled that Montana’s efforts to deregulate 64 

emissions violated its residents’ right to a healthy environment40. In contrast, New York’s case against 65 

five fossil fuel companies was dismissed in 2018 on the grounds that judges should not make climate 66 

policy. As cases laboriously wind their way through courts around the world, litigation shows no signs of 67 

slowing25. And as extreme events intensify and losses accumulate—and as political action on climate 68 
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change lags the urgency of the crisis—more people are turning to the legal system for relief25. There is 69 

talk of a “coming wave of climate legal action” for which courts are woefully unprepared41. 70 

 Here we illustrate how climate attribution that goes from emissions to impact at the corporate 71 

scale is now possible, addressing a major hurdle to climate liability. Using peer-reviewed methods, we 72 

estimate the economic losses suffered due to the extreme heat caused by emissions from major fossil fuel 73 

firms (“carbon majors”) over 1991 to 2020. We present two actionable approaches for the end-to-end 74 

attribution framework: one considering the accumulated harms from a hazard, like heat waves over 1991-75 

2020, and another considering the harms from a specific event, such as the 2003 European heat wave. The 76 

cumulative and event-specific approaches can be applied to myriad scales of emitters and claimants, and 77 

extended to different classes of hazards, from heat waves as here, to floods, droughts, sea level rise, and 78 

more. We also show how each approach can be applied in a way that is agnostic about any particular 79 

emitter, allowing communities to assess responsibility for losses rather than naming parties prima facie. 80 

We argue that while this type of end-to-end attribution will provide clarity in some respects, the ultimate 81 

question of whether climate liability is justiciable will be resolved in courts. More widely, we advocate 82 

for the creation of a transparent and objective science-based initiative to provide peer-reviewed and 83 

reproducible attributions and expert testimony to ensure courts can evaluate these emerging legal claims. 84 

 85 

Attribution science and causation 86 

 To sue over an injury, a litigant typically must demonstrate a causal connection between the 87 

action of the defendant and the plaintiff’s injury, sometimes via meeting a “but for” standard: “but for the 88 

actions of the defendant, the plaintiff would not have been injured”2. Demonstrating “but for” causality in 89 

the context of climate impacts is difficult2: Atmospheric carbon dioxide is well-mixed and many parties 90 

have emitted; emissions and impacts are dislocated in space and time42; the causal chain from emissions 91 

to impacts is nonlinear43; and uncertainties compound from emissions, to warming, to hazards, to 92 

impacts44. Such causal ambiguity is not unique to the climate. It is a feature of assessing liability for 93 

environmental hazards more widely, which has led to a tiered legal strategy of establishing both “general” 94 

and “specific” causation45. General causation assesses whether a hazard could cause a type of harm, such 95 

as the way asbestos increases cancer risk. It is often held to a high standard of scientific certainty46. 96 

Specific causation, on the other hand, considers whether a defendant’s actions caused the particular injury 97 

to the litigant: whether a specific worker’s cancer was caused by asbestos in their workplace, for example. 98 

In some jurisdictions, specific causation is held to a less-strict “more likely than not” standard45. 99 

 Resolving causality in climate liability could take many forms beyond establishing “but for” 100 

causation. One can, for example, assign liability proportionally according to emitters’ contributions to 101 

total emissions47,48, using deductive storyline-type approaches about how emissions-driven warming has 102 
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shaped particular types of climate impacts49, or based on the social cost of carbon50,51. These approaches 103 

alleviate the need to show that the injury would not have occurred without a specific emitter’s 104 

contribution and is generally consistent with the original formulation of climate liability: if global 105 

warming has tripled the risk of a flood, then warming is responsible for two-thirds of its risk, making 106 

contributors proportionally liable for two-thirds of its harm1. Such a philosophy accords with the extreme 107 

climate event attribution field, which links the risk or magnitude of an event to global warming. Yet 108 

proportional contributions to global warming may not translate into equivalent contributions to 109 

particularized injuries. Nonlinearities among warming, climate extremes, and people imply that the same 110 

emissions can have different effects at different times52, and cascading uncertainties mean that the signal 111 

of an individual emitter may not rise above the noise in a complex climate system53. Furthermore, some 112 

jurisdictions have limited the application of market-share liability theories54 and courts may be reluctant 113 

to accept this approach in place of more traditional “but for” causation standards2.  114 

 Such realities clarify the need to scientifically demonstrate “but for” causation, specifically the 115 

linkage between an individual emitter and a particular injury. The lack of end-to-end attributions has been 116 

cited as a barrier to climate litigation2,22,55,56 and has been used by fossil fuel firms to argue that plaintiffs 117 

lack standing to sue over climate damages57. As a result, despite the important role for existing attribution 118 

science in informing approaches such as proportional liability, scientific approaches that demonstrate 119 

causal linkages from emitters to impacts have been termed the “Holy Grail” of climate litigation56. 120 

  121 

Advances enabling “end-to-end” attribution 122 

 Despite these challenges, two recent advances make end-to-end climate attribution possible. 123 

Firstly, physical science can more confidently connect individual emitters to local climate change. 124 

Secondly, social science can more confidently connect local climate change to socioeconomic outcomes.  125 

On the first, “source attribution” research58 has linked emissions from countries59–61 and carbon 126 

majors62 to increases in global mean surface temperature63 (GMST), sea level rise63, ocean acidification64, 127 

and local extreme climate events65–67. Source attribution often uses an emissions-driven climate model to 128 

simulate historical and counterfactual climates, where the latter is the same as the historical save for the 129 

removal of one emitter’s time-varying emissions (i.e., a “leave-one-out” experiment). The difference 130 

between the two simulations represents the contribution of the removed emitter, providing a test of “but 131 

for” causation2: but for the emissions of this actor, the climate would have been thus. One could perform 132 

these simulations with a coupled Earth system model68, but such models are opaque and computationally 133 

expensive. A computationally tractable approach is to use reduced-complexity climate models (RCMs) 134 

that accurately simulate the behavior of the Earth system using a smaller number of equations.  135 
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RCMs69–72 have long been part of the consensus methods used in IPCC assessment reports73 for 136 

purposes like simulating mitigation pathways74. More recently, RCMs have been applied to source 137 

attribution for tasks such as simulating country-level contributions to global mean temperature 138 

change50,53. RCMs are zero-dimensional, lacking spatial information. But peer-reviewed methods like 139 

pattern scaling75–77 provide robust statistical relationships between global and local climates that allow 140 

scientists to estimate local temperature change based on RCM output78. Together, RCMs and pattern 141 

scaling link the contributions of individual emitters to local temperature changes in an efficient, 142 

transparent, and reproducible manner50,53,67. 143 

Yet local climate changes do not inevitably imply particularized injuries. To connect individual 144 

emitters to impacts, researchers must quantify the human consequences of local climate changes. Enter 145 

the second major advance: more robust quantifications of the socioeconomic impacts of climate change79. 146 

Recent peer-reviewed work has used econometrics to infer causal relationships between climate hazards 147 

and outcomes like income loss79, reduced agricultural yields80, increased human mortality81,82, and 148 

depressed economic growth83–85. In the attribution context, these causal relationships have been applied to 149 

quantify the historical costs of flooding86, crop losses87, and reduced economic output from increases in 150 

average88 and extreme89 temperatures. These methods are also consensus-based, reflected in synthesis 151 

reports like the fifth U.S. National Climate Assessment90.  152 

While the “fraction of attributable risk” (FAR) metric is another consensus-based attribution 153 

approach applied widely to extreme events and their impacts91–95, it is not necessarily suitable for 154 

quantifying the influence of climate change on people, which are often nonlinear and can depend on event 155 

intensity rather than probability43,96–98. Approaches that better-resolve hazards and costs are helpful to 156 

directly connect GHG emissions to socioeconomic losses. For example, Strauss et al.99 relied on 157 

hydrodynamic modeling and property damage estimates to quantify the anthropogenic contribution to 158 

damages from Hurricane Sandy in New York, an approach more tailored and nuanced than the FAR. Our 159 

more generalized framework uses econometric dose-response functions that parameterize relationships 160 

between climate hazards and human outcomes, but it could easily be adapted to other settings such as 161 

flooding from a particular storm.   162 

Here we show that emissions traceable to carbon majors have increased heat wave intensity 163 

globally, causing quantifiable income losses for people in subnational regions around the world. Our 164 

analysis uses reductions in GDP per capita growth to represent particularized injuries, consistent with 165 

recent suits in Oregon34 and several Puerto Rican municipalities37. Both of these cases cite the severe 166 

economic burden associated with extreme climate events, so scientific attribution of that claim is 167 

potentially valuable, even if it does not fully resolve the precise damages in those cases. Yet the power of 168 

the attribution framework we present is that it is flexible, transparent, and modular, meaning that other 169 
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damages (e.g., adaptation costs based on alternative damage functions), other hazards (e.g., tropical 170 

cyclones), and other time periods (whether for emissions or damage accounting) can be included to 171 

support particular attribution questions as the scientific, legal, and climatic landscapes develop. 172 

 173 

An end-to-end attribution framework 174 

 The oil, coal, and gas extracted by fossil fuel firms have produced substantial emissions of carbon 175 

dioxide and methane over the last 100 years (Fig. 1a). Between 1920 and 2020, Saudi Aramco, Chevron, 176 

and ExxonMobil produced a cumulative total of 16.6, 14.2, and 13.2 GtC in CO2 emissions, respectively. 177 

Emissions data are drawn from the publicly available Carbon Majors database62,100, which leverages 178 

public production information from sources such as company regulatory filings as well as standard 179 

emissions factors. These data include both Scope 1 and Scope 3 emissions, which includes emissions 180 

from the production and combustion of the fossil fuels sold by these companies. We note these emissions 181 

ledgers are likely conservative: they do not include Scope 2 emissions or leaks and spills, and are subject 182 

to under-reporting, especially early in the 20th century62. While we only illustrate emissions since 1920 in 183 

Fig. 1, our analysis uses all available firm-level data (Table S1). 184 

 To link these firms to specific impacts from their emissions, we leverage a three-step peer-185 

reviewed end-to-end attribution framework53 (Methods). The goal of this framework is to construct a 186 

“counterfactual” world in which an emitter’s contribution to local extreme heat is isolated and removed. 187 

We first use the FaIR RCM72 to translate firms’ emissions into GMST changes (Fig. 1b); next, we apply 188 

pattern scaling77 to calculate resulting subnational changes in extreme heat, defined here as the 189 

temperature of the five hottest days in each year, or “Tx5d” (Fig. 1c); lastly, we apply an empirical 190 

damage function to calculate income impacts of these extreme heat changes89 (Fig. 1d). We compare heat-191 

driven economic damages between the historical and counterfactual worlds, with their difference being 192 

the firm’s contribution to damages. Non-climate factors, such as changes in the global oil trade, are held 193 

constant. Our analysis centers only the temperature effects of the emissions produced by carbon majors. 194 

We first simulate historical GMST change using total emissions with FaIR v2.1.0 over 1000 195 

times, sampling parametric uncertainty using IPCC-based parameter combinations101. In our 196 

counterfactual simulations, we re-simulate GMST change after subtracting each firm’s CO2 and CH4 197 

emissions from global emissions. The difference between the observed and each firm’s counterfactual 198 

simulation represents the GMST change attributable to that firm (Fig. 1b), revealing that, for example, 199 

Chevron is responsible for ~0.025 °C of the >1°C warming in 2020. We then translate these FaIR-based 200 

GMST change time series into spatiotemporal patterns of Tx5d change using pattern scaling coefficients 201 

estimated from 80 Earth system model simulations, showing that, for example, ExxonMobil is 202 

responsible for a 0.036 °C increase in average Tx5d values over 1991-2020 globally (Fig. 1c).   203 
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 Finally, we use an empirically derived damage function that generalizes the relationship between 204 

extreme heat intensity and economic growth89 to estimate the impacts of firm-caused Tx5d changes (Fig. 205 

1d). This relationship varies as a function of regional average temperature: tropical regions lose more than 206 

1 percentage point (p.p.) in growth for each 1°C increase in the intensity of the hottest five days in each 207 

year, whereas temperate regions experience modest effects89 (Fig. 1d). While other factors such as 208 

sectoral composition and adaptive capacity may affect regional sensitivity to extreme heat, average 209 

temperature has been found to predict that sensitivity more effectively than average income, consistent 210 

with other work84,102.  211 

We calculate losses in the historical and leave-one-out simulations 10,000 times for each region 212 

using a Monte Carlo approach (Methods), taking their difference to calculate losses attributable to the 213 

emissions from each firm. Because changes in annual mean temperature shape the impacts of extreme 214 

heat, we also pattern-scale regional annual mean temperature. Our final calculations incorporate both 215 

changes in Tx5d itself as well as changes in the average temperatures that moderate the effect of Tx5d89. 216 

As a result, emissions increase both the intensity of extreme heat and its marginal damage by raising 217 

underlying average temperatures. The interaction between mean and extreme temperature explains why 218 

the pattern of heat-driven losses does not simply mirror that of the marginal effect of extreme heat, which 219 

shows benefits in high-latitude regions89. We also account for the economic rebound shown in previous 220 

work89, whereby the effect of extreme heat is recovered after 2-3 years, meaning we do not assume 221 

permanent growth impacts of extreme heat. 222 

In this analysis, we focus on the costs due to extreme heat as represented by Tx5d, rather than 223 

combining the total costs across myriad hazards103,104, such as rainfall extremes105 or sea level rise99. The 224 

first reason for this choice is legal: to date, litigation has often been motivated by a single hazard or high-225 

impact event, such as an Oregon county’s suit over the 2021 Pacific Northwest heat wave, likely due to 226 

the legal imperative to demonstrate specific causality. While combining damages from many hazards 227 

would better capture the overall costs of warming103,104, it is inconsistent with the specificity that has 228 

motivated legal claims to date. As legal efforts evolve to consider multiple hazards or a more complete 229 

accounting of damages, so too could the attribution framework we present here. The second reason is 230 

physical: extreme heat is robustly linked to global warming78 and has large and direct economic costs89,106. 231 

 232 

Heat wave damage from carbon majors 233 

 The global economy would be $28 trillion richer (90% [very likely] range: 12 – 49, in 2020 $US) 234 

were it not for the extreme heat caused by the emissions from the 111 carbon majors considered here (Fig. 235 

2). Saudi Aramco is responsible for $2.05 trillion (90% range: 0.85 – 3.6) in global economic losses from 236 

intensifying extreme heat, and Gazprom is responsible for ~$2T (90% range: 0.83 – 3.6). The 237 
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contributions from these two state-owned enterprises are due to their recent and rapid emissions (Fig. 1a), 238 

despite not making large contributions earlier in the 20th century. Chevron, ExxonMobil, and BP have 239 

caused $1.98 trillion (0.79 – 3.6), $1.91 trillion (0.77 – 3.4), and $1.45 trillion (0.59 – 2.6) in losses, 240 

respectively (Fig. 2a). Investor-owned companies (e.g., Chevron, ExxonMobil) and state-owned 241 

enterprises (e.g., Saudi Aramco, Gazprom) are each collectively responsible for ~$14T in losses (Fig. 2b). 242 

Ranges in these damage estimates arise from carbon cycle and climate uncertainties in the FaIR 243 

simulations and the parametric uncertainties from the pattern scaling and damage function. Yet the 99% 244 

range for each of the top five firms does not include zero (Fig. 2a), making it virtually certain that each 245 

has contributed to global heat-driven losses.  246 

 Losses can also be assessed at finer, more legally relevant regional scale, revealing inequities in 247 

the causes and consequences of global warming (Fig. 2c). Together, extreme heat from the five highest-248 

emitting firms (Fig. 2a) has driven annual GDP per capita reductions exceeding 1% across South 249 

America, Africa, and Southeast Asia. In contrast, the United States and Europe—where Gazprom, 250 

Chevron, ExxonMobil, and BP are headquartered—have experienced milder costs from extreme heat. 251 

Owing to the dependence of Tx5d damages on mean temperatures, mid-latitude regions experience 252 

greater heat-driven losses as their average temperatures rise; the same holds for higher latitudes, but the 253 

losses are smaller. If we hold mean temperatures at their observed values and instead estimate damages 254 

from changes in Tx5d intensity alone, the pattern of damages becomes heterogeneous, with mild benefits 255 

in high-latitude regions rather than mild losses, reflecting the pattern of Tx5d marginal effects (cf. Fig. 2c, 256 

Fig. ED1). The gradient of losses increases equatorward irrespective of whether we allow mean 257 

temperatures to change (Fig. 2c, Fig. ED1), emphasizing the global inequity in extreme heat impacts and 258 

their spatial dislocation from the emissions that produced them. 259 

 We foreground a cumulative framing of end-to-end attribution, noting that an emitter’s impact 260 

can encompass multiple events and years. However, much of climate attribution and liability is focused 261 

on exceptional singular events, like the 2021 Pacific Northwest heat wave107. A flexible end-to-end 262 

attribution framework should be able to account for individual extreme events in addition to cumulative 263 

exposure. Our approach does this, showing the contributions of carbon majors to four historic heat waves: 264 

India in 1998 (Fig. 3a, e), France in 2003 (Fig. 3b, f), Russia in 2010 (Fig. 3c, g), and the continental U.S. 265 

in 2012 (Fig. 3d, h). While each heat wave has been studied extensively (e.g., refs.8,9,87,108,109), the 266 

contributions of carbon majors have not yet been quantified.  267 

Together, the top five firms increased the intensity of the five hottest days corresponding to those 268 

events by 0.08 °C, 0.11 °C, 0.27 °C, and 0.09 °C, respectively (Fig. 3a-d), and thus can be tied to losses 269 

from those events (Fig. 3e-h). For example, Chevron’s emissions are responsible for $1.9B (0.31 – 4.7), 270 

$3B (0.05 – 7), $2.8B (gains of 0.99 – losses of 7.7), and $28.8B (4 – 61) in losses from the 1998 Indian, 271 
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2003 French, 2010 Russian, and 2012 American events, respectively. We perform these attributions by 272 

applying the observation-based generalized damage function to specific regions and years, a practice 273 

consistent with work that estimates how individual extreme events affect economic output106 and the 274 

wider usage of deduction in climate attribution49. While any individual region or year will modestly 275 

deviate from the generalized response we estimate, the approach mathematically approximates their 276 

responses on average. 277 

Collectively, these results provide the first estimate of the global economic toll that individual 278 

fossil fuel firms have produced due to the extreme heat caused by their emissions of carbon dioxide and 279 

methane. The veil of plausible deniability that carbon majors have hid behind for decades is threadbare. 280 

 281 

Clarifying who is responsible 282 

 How could end-to-end attribution analyses like ours be used? Each case will differ and depend on 283 

the motivation of the litigants and their climate context. As presented in Figures 2 and 3, science can 284 

clarify “but for” causation at various scales across a class of hazards, like heat waves, or for a particular 285 

event, like the 1998 Indian heat wave. But it is also essential to clarify who is potentially liable. There are 286 

many emitters, and affected communities may want to know who is most liable for impacts they endure—287 

whom do they name as defendant? A nation? A firm? A collective? A sector? This, too, science can help 288 

clarify.  289 

 To date, attorneys and litigants have often named defendants as part of the initial legal process, 290 

under the assumption that knowing a defendant’s emissions is sufficient to make a claim. Our analysis 291 

makes clear, however, that what matters is not simply the magnitude of the emissions, but also the 292 

timescale over which they were released and the impact under consideration. Nonlinearities at each step 293 

from emissions to impacts imply that proportional contributions to global warming are not necessarily 294 

equivalent to proportional contributions to impacts. And yet calculating the contributions of all possible 295 

emitters could be costly. Legal work is expensive and time-consuming, and the need to retain experts 296 

could be a crucial barrier to the low-income or under-resourced communities who have the greatest 297 

claims for restitution.  298 

 Science can help claimants assess potential defendants in a transparent and low-cost way. As an 299 

example, we present a strategy for assessing who is responsible for cumulative losses from extreme heat 300 

(Fig. 4). Here, the analysis asks: “how much extreme heat damage is attributable to a given percentage of 301 

global emissions?” Our approach is straightforward: we repeat our leave-one-out simulations using 302 

idealized percent contributions to total 1850-2020 CO2 and CH4 emissions, rather than the emissions of 303 

any particular firm. Such an approach is actor- and scale-agnostic, meaning it simply presents the impacts 304 

associated with a given contribution to global emissions made over a given time period.  305 
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Global losses from extreme heat scale quasi-linearly with emissions contributions (Fig. 4a). Each 306 

additional percentage point contribution to total 1850-2020 CO2 and CH4 emissions generates an 307 

additional $834 billion in global economic losses from extreme heat in 1991-2020. Our generalized 308 

approach enables litigants to consider emitters at various scales quickly: any individual or group of 309 

emitters can be placed in this contribution-damages space to rapidly assess their attributable impacts. For 310 

example, the general relationship between contributions and heat wave damages can be used to link the 311 

top five firms (Fig. 4a, orange) or all firms (Fig. 4a, blue) to losses, based on collective emissions. 312 

Nations, economic sectors, or industries could equally be placed in this space to assess contributions to 313 

heat-driven losses. 314 

Crucially, these losses depend on the time period over which the emissions are counted (Fig. 4b), 315 

demonstrating key choices that must be made by policymakers, litigants, and courts. If one’s accounting 316 

begins in 1990, around the development of the scientific consensus on climate change60, heat wave losses 317 

attributable to an actor contributing 5% of global emissions tally $2.5 trillion (90% range: 1.05 – 4.5), 318 

contrasting with the $4.2 trillion (1.7 – 7.5) when counting from 1850. Yet fossil fuel firms have 319 

accurately predicted climate change since the 1970s110 and have since used their power and profit to cast 320 

doubt on the relationship between fossil fuels and warming111. If we use the 1977 date of the first reported 321 

successful projection of global warming by ExxonMobil110, heat wave losses attributable to an actor 322 

contributing 5% of global emissions come to $3.3 trillion (1.4 – 5.8). These losses are all large, with 99% 323 

ranges that do not include zero, but can vary by >50% across start dates.  324 

 325 

Remaining work and ways forward 326 

 By clarifying “what” damages and “who” is responsible, our attribution frameworks have 327 

flexibility and applicability to many contexts. Extreme heat is one of myriad climate impacts and the costs 328 

we assess are large. As science advances and new hazard models, damage functions, and climate impacts 329 

estimates are developed, such as extreme rainfall105 or El Niño112, these costs could be incorporated into a 330 

fuller accounting of climate damages attributable to emitters. Given the flexible, open-source nature of 331 

RCMs and the maintenance of preexisting pattern scaling libraries75, such damage estimates can be easily 332 

ported into our framework to provide a more complete documentation of the costs attributable to 333 

particular emitters. On the other hand, some injuries motivating suits, such as the adaptation costs 334 

incurred by a municipality for local sea level rise, could require cost assessment approaches that are not 335 

only reliant on globally derived damage functions. In those cases, our emitter-based attribution 336 

framework can potentially provide quantitative estimates of how the hazard has been altered by particular 337 

emitters, but other mixed-methods approaches could be used to connect those estimates to the specific 338 
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choices facing local decision-makers. The framework we advance here is flexible and its potential 339 

applications are broad. 340 

Performing coordinated near-real-time end-to-end attribution following events would allow 341 

communities to understand the contributions of individual actors to the losses they suffer. Scientific 342 

enterprises like the World Weather Attribution16 could be extended to include end-to-end attribution in 343 

their workflow, or could be a model for a new scientific body centered on assessing causation in climate 344 

impacts. Recent calls to operationalize extreme event attribution for loss and damage debates have been 345 

motivated by the consensus methods that have been developed for event attribution20. And just as event 346 

attribution has moved from a scientific thought experiment to the mainstream over the last twenty years, 347 

the same could be true of end-to-end attribution. A standing scientific body would be an essential 348 

resource for courts and citizens, providing tailored end-to-end attribution analyses, translation, and 349 

potentially expert testimony, responsibly informing the coming wave of litigation to ensure claims use the 350 

best available science.   351 

A key area for future collaboration among attribution and legal scholars concerns shared 352 

evidentiary standards. Frequentist statistical practices common in scientific studies (e.g., “p < 0.05”) may 353 

not be appropriate for climate liability cases for a number of reasons. First, they set the bar for evidence 354 

higher than legal standards such as “more likely than not.”113 Moreover, significance testing can be 355 

abused and misinterpreted114, its thresholds are generally arbitrary115, and such testing provides a poor 356 

characterization of uncertainty116. Here, we have chosen to present the range of outcomes and damage 357 

estimates possible given uncertainties in the causal chain from emissions to impact. 358 

Other scientific approaches in attribution science, such as “storylines,” could help reconcile 359 

epistemic differences between the legal and attribution communities and reduce the need for end-to-end  360 

attribution to specific harms in each case. Storylines are a narrative-driven attribution approach using 361 

conditional assumptions, often about the dynamics underpinning an extreme event, to assess the 362 

thermodynamic contributions of global warming. Storylines foreground deterministic rather than 363 

probabilistic characterizations of causality117 and thus complement the application of our end-to-end 364 

attributions of individual events, such as floods or tropical cyclones—an area for future work. Our present 365 

analysis reflects the primacy of “but for” causation in existing legal frameworks, but as climate impacts 366 

grow and cases advance, the evolution of legal approaches to causation could allow other attribution 367 

approaches to become sufficient for legal standing118. Complementary and simultaneous development of 368 

multiple approaches is the most effective way for the scientific and legal communities to evaluate the 369 

growing evidence for climate liability49. 370 

 The validity of the scientific case for climate liability does not mean that claims will succeed in 371 

court. Essential questions remain, such as the period over which emissions should be counted. That fossil 372 
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fuel firms have predicted climate change and its consequences for decades implies a potential “duty of 373 

care” violation, meaning that those firms could be liable for emissions occurring before the consensus on 374 

climate change emerged119. Research using archival methods120, computational frame analysis121, and 375 

interviews122 has documented the disconnect between the internal and public communications of fossil 376 

fuel firms. Advances in this area could add credibility to climate liability cases. Ultimately, however, 377 

accounting and framing choices reside beyond the scope of science—they must be made by legal teams 378 

and decided by judges and juries. Other legal barriers include legislation like the United States Clean Air 379 

Act, which may displace federal common-law claims123, or courts’ perception that these cases 380 

inappropriately intervene in policymaking124. 381 

Moreover, despite the harm arising from extreme heat, fossil fuels have also produced immense 382 

prosperity. We do not assess the economic benefits from fossil-fueled energy, for which these firms have 383 

already been handsomely paid. Courts may need to consider how the benefits of energy use are balanced 384 

against its externalities and the potential duty of care these firms have to the public119. Recent alternatives 385 

to litigation, like “polluter pays” bills drawing on superfund and loss and damage logic, are advancing in 386 

state legislatures around the United States. The first one passed in Vermont125 suggests that some 387 

lawmakers see a clear distinction between the benefits and harms of fossil fuels and can evaluate them 388 

individually. Climate damages are a negative externality from fossil fuels not reflected in the current 389 

value of these firms. This disconnect is particularly strong given that these externalities have fallen most 390 

severely on the poorest people across the globe—those who have benefited least from fossil fuels or have 391 

been exploited for its extraction126. More broadly, just as the benefits of a medication do not absolve a 392 

manufacturer who fails to warn its customers about side effects, it is clear that the benefits of fossil fuel 393 

use should not absolve carbon majors of liability for these devastating externalities2, particularly when 394 

they have misled the public about the dangers of their products120.  395 

As climate disasters accumulate, courts will see more and more climate cases. Formalizing 396 

communication and education between the scientific and judicial communities is vital, ensuring that 397 

science is useful and that courts recognize its limits. Alongside these efforts, new legal theories and the 398 

urgent press of climate disaster could spur courts to embrace climate liability claims118. The next twenty 399 

years will bring greater clarity on these remaining questions. Here we provide an essential start: the 400 

development of a rigorous, flexible, transparent, and widely applicable end-to-end attribution framework.  401 
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 658 

 659 

Figure Captions 660 

 661 

Fig. 1 | Carbon majors have individually contributed to extreme heat intensification. A) CO2 662 

emissions in megatons of carbon (MtC) per year from the five top-emitting fossil fuel firms (“carbon 663 

majors”). B) Changes in global mean temperature caused by the cumulative emissions of each carbon 664 

major. Vertical axis denotes the magnitude of global warming due to each firm in each year. Solid line 665 

shows the mean from 1001 FaIR simulations, each run with a different calibrated parameter set; shading 666 

shows the 90% range across the FaIR ensemble. C) Changes in 1991-2020 global average subnational 667 

Tx5d (temperature of the five hottest days in each year) from each carbon major, estimated by combining 668 

the FaIR simulations with CMIP6-based pattern scaling. Solid line shows the mean and shading shows 669 

the IPCC uncertainty ranges arising from interacting FaIR and pattern scaling uncertainties. D) Marginal 670 

economic effect of increases in Tx5d on economic growth in percentage points per degree Celsius (p.p. 671 

°C-1) across a range of regional annual mean temperature values. Solid line shows the mean estimate and 672 

shading shows the 90% range, based on the observed relationship between Tx5d and economic growth. 673 

Positive values indicate that cool regions benefit from higher temperatures whereas negative indicate that 674 

warm regions suffer from higher temperatures.  675 

 676 

Fig. 2 | Carbon majors have caused cumulative economic losses from extreme heat. A) Cumulative 677 

global heat-driven economic losses linked to the five top-emitting fossil fuel firms over 1991-2020. Black 678 

line shows the mean across 10,000 simulations convolving all sources of uncertainty and gray shading 679 

denotes the IPCC likely (66%), very likely (90%), and virtually certain (99%) ranges. B) Heat-driven 680 

economic losses linked to groups of carbon majors: all, investor-owned companies (IOCs), state-owned 681 

enterprises (SOEs), and the top five shown in A. In A and B, bottom inset text denotes the average losses 682 

linked to each actor or group. C) Average annual GDP per capita (GDPpc) change in subnational regions 683 

due to heat extremes driven by the combined emissions of the top five firms shown in A. White regions 684 

are those for which we do not have continuous GDPpc data over 1991-2020. Map was generated using 685 

cartopy v0.17.0 and regional borders come from the Database of Global Administrative Areas. 686 

 687 

Fig. 3 | Carbon majors have caused losses from individual extreme heat events. A-D) Average 688 

change in regional Tx5d values due to the emissions of the five top-emitting carbon majors in 1998 (A), 689 
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2003 (B), 2010 (C), and 2012 (D). Note that C uses a distinct color scale from A, B, and D. E-H) 690 

Economic losses due to Tx5d intensification in India in 1998 (E), France in 2003 (F), Russia in 2010 (G), 691 

and the continental U.S. in 2012 (H) due to the emissions of carbon majors. In E through H, dot shows the 692 

average estimate and lines span the 90% (very likely) range. Maps were generated using cartopy v0.17.0 693 

and regional borders come from the Database of Global Administrative Areas.  694 

 695 

Fig. 4 | Damages attributable to any actor depend on their emissions and the time period 696 

considered. A) Attributable global heat-driven economic losses over 1991-2020 as a function of the 697 

percent contribution to global CO2 and CH4 emissions over the 1850-2020 period. B) Losses attributable 698 

to a 5% contribution to global emissions, when that contribution is assessed starting in 1850 (as in A), 699 

1997, or 1990, and ending in 2020 in all cases.  700 

  701 
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Figure 3.  709 
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Figure 4.711 
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Extended Data Figure 1.  713 
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 714 

Methods 715 

 Our end-to-end attribution integrates model experiments with three steps: (1) emissions to 716 

warming; (2) warming to hazards; and (3) hazards to damages. For the first step, we use a reduced-717 

complexity climate model (RCM), which translates emissions into global temperature change, reconciling 718 

the carbon cycle and climate response uncertainty (see Step 1: FaIR simulations). For the second step, we 719 

use a statistical model that translates global temperature change into local changes in the hottest five days 720 

of the year (see Step 2: Pattern scaling). For the last step, we use an empirical model that estimates the 721 

marginal economic damage of the five hottest days of the year (see Step 3: Damage function). Different 722 

sets of emissions data could be included in Step 1, other hazard models could be ported in at Step 2, and 723 

other damage models could be used in Step 3, suggesting the flexibility of the framework.  724 

 725 

Step 1: FaIR simulations 726 

 We use the Finite amplitude Impulse Response (FaIR) emissions-driven RCM to quantify the 727 

contributions of individual emitters to global mean surface temperature change. FaIR takes input time 728 

series of greenhouse gas emissions and natural climate forcings, simulates the carbon cycle and radiative 729 

forcing response, and calculates resulting warming, providing an output time series of global mean 730 

surface air temperature (GMST). All FaIR simulations are run from 1750 to 2020. 731 

 For each firm, our analysis requires comparing three experiments: in the first experiment, we run 732 

FaIR in a “natural” scenario, with only naturally occurring historical forcings, like solar variations and 733 

volcanic eruptions, preserved. This experiment calculates the time series of GMST in a counterfactual 734 

world with no human GHG emissions. In the second experiment, we run FaIR in a “historical” scenario, 735 

inputting both total historical human-caused emissions as well as the natural forcings to calculate the 736 

GMST we have experienced from observed historical forcing. The difference between the “historical” and 737 

“natural” FaIR simulations provides a time series of the change in GMST attributable to historical human-738 

caused emissions and allows us to validate the skill of our simulations. Our simulations are skillful, 739 

reproducing the experimental results from the Detection and Attribution Model Intercomparison Project127 740 

(DAMIP) run with the fully coupled Earth System Models participating in the sixth phase of the Coupled 741 

Model Intercomparison Project128 (CMIP6). The IPCC best estimate of human-induced warming over 742 

2010-2019 relative to 1850-1900 is 1.07 °C, with a likely (66%) range of 0.8 °C – 1.3 °C (ref.128). The 743 

results from our FaIR simulations are consistent with this estimate, with an average warming in 2010-744 

2019 relative to 1850-1900 of 1.05 °C and a 66% range of 0.89 °C – 1.23 °C.  745 

 Our third experiment is performed for each emitter separately. This experiment has the same 746 

protocol as the “historical” experiment, but this time we remove the emissions from a single firm from 747 
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total emissions. This “leave-one-out” experiment provides the counterfactual time series of GMST where 748 

the chosen firm did not emit. The difference between the time series of “historical” and “leave-one-out” 749 

GMST provides a time series of the change in GMST attributable to a single emitter. 750 

 A “leave-one-out” experimental design does not consider socioeconomic consequences of 751 

counterfactual emissions, only thermodynamic ones. As such, our counterfactual approach is agnostic 752 

about whether a “leave-one-out” framing implies that the fossil fuel production itself never took place 753 

(with opaque and unpredictable market and production implications), or whether it is analogous to a 754 

scenario where a firm instead took steps to mitigate or remove the emissions associated with their fossil 755 

fuel production.  756 

 Each firm’s emissions are time series of carbon dioxide and methane emissions—representing 757 

Scope 1 and Scope 3 emissions from fossil fuel production—drawn from data from the Carbon Majors 758 

database100; we use all available years of emissions data for each firm. We exclude actors from the 759 

database that are listed as nation states, using only investor-owned companies or state-owned enterprises. 760 

Not all firms have data spanning the same number of years as companies were incorporated at different 761 

times, but we use all available emissions data to avoid artificially constraining our analysis. Table ED1 762 

shows the years over which emissions data are available for the five top-emitting firms in our data. 763 

Similarly, for the experiments for all 111 firms in our data or the groups of investor-owned/state-owned 764 

firms, we use all available data for each firm regardless of start date. 765 

 To sample carbon cycle and radiative forcing uncertainties, we perform each of the above FaIR 766 

experiments 1001 times, providing a large perturbed-parameter ensemble for each experiment. The 1001 767 

parameter combinations were developed as part of the IPCC sixth assessment report101. Our 1001-member 768 

FaIR parameters are a subset of a larger parameter set of 1.5 million, which was then constrained to be 769 

consistent with fully coupled CMIP6 Earth System Models. We therefore run 1001 simulations for the 770 

“natural,” “historical,” and each “leave-one-out” experiment, sampling each parameter set for each firm. 771 

These simulations provide a distribution of GMST changes attributable to each firm for each year, where 772 

the range in values is attributable to uncertainties in the carbon cycle and the response of warming to 773 

forcing. These parameter sets were downloaded on September 13, 2023, with further information 774 

available at the following URL: 775 

https://docs.fairmodel.net/en/latest/examples/calibrated_constrained_ensemble.html 776 

 777 

Step 2: Pattern scaling 778 

 The scale of our damages analysis is the subnational region, equivalent to states in the United 779 

States or provinces in Canada. This is the scale at which heat waves have been found to affect economic 780 

growth89 (in contrast to the country-level approach of previous studies83,84, a finer spatial scale is 781 
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necessary to account for the effect of heat waves). Following previous work, heat waves are defined here 782 

as the five hottest days in each year (denoted “Tx5d”), though other heat metrics could be used.  783 

 In order to quantify the effects of carbon majors’ emissions on local extreme heat, it is necessary 784 

to link changes in GMST provided by the FaIR simulations to regional changes in Tx5d. Motivated by the 785 

strong linear relationship between GMST change and local extreme heat78, we use pattern scaling to 786 

calculate changes in Tx5d in each region as a linear function of GMST change. To do this, we leverage 787 

the “hist” and “hist-nat” experiments conducted as part of the DAMIP protocol for CMIP6, which are the 788 

fully coupled analogues to our “historical” and “natural” FaIR experiments. For each participating model 789 

and each experiment, we calculate regional Tx5d. Next, we take the difference between the “hist” and 790 

“hist-nat” experiments in both GMST and regional Tx5d over the 1991-2020 period to calculate 791 

anthropogenic changes in those quantities. We then linearly regress the time series of anthropogenic Tx5d 792 

change onto the time series of anthropogenic GMST change for each region to yield a pattern scaling 793 

coefficient that represents the sensitivity of local Tx5d change to GMST change in units of “degree of 794 

regional Tx5d change per degree of GMST change.” Multiplying these coefficients with the firm-level 795 

sets of FaIR simulations that provide the GMST change attributable to each emitter yields the Tx5d 796 

change due to each carbon major in each subnational region (Fig. 1c). We use 1991-2020 as the time 797 

period of this analysis to match the time period of the damages analysis.  798 

 We perform this local pattern scaling regression separately for each of 80 CMIP6 climate model 799 

simulations, specifically those which have hist and hist-nat simulations available for daily high surface air 800 

temperature (“tasmax”) and monthly mean air temperature (“tas”). For the CMIP6, 8 distinct models are 801 

available, but we use as many ensemble members for each model as possible. This choice allows us to 802 

sample uncertainty from both model structure (i.e., uncertainty across models) and internal climate 803 

variability (i.e., uncertainty across realizations within an initial-condition ensemble of each model). 804 

Previous work showed that internal climate variability can form an important component of uncertainty in 805 

local attributable damages53, and we explicitly incorporate this uncertainty in the pattern scaling step of 806 

our analysis. 807 

The choice to use many ensemble members from a single model means that some models are 808 

overrepresented in this ensemble but ensures that we are sampling pattern scaling uncertainty due to both 809 

model structure and internal climate variability. When we perform our final Monte Carlo uncertainty 810 

assessment (see Uncertainty quantification), we adjust the model sampling probabilities so that models 811 

with fewer realizations are equally likely to be sampled as models with more89.  812 

 813 

Step 3: Damage function 814 
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We use a damage function that relates changes in local Tx5d to changes in GDP per capita 815 

growth (“economic growth”) in subnational regions. This function was derived following peer-reviewed 816 

methods of ref.89, using a panel regression of observed Tx5d and observed GDP per capita growth in a 817 

global sample of regions over 1979-2016, isolating the causal effect of year-to-year changes in extreme 818 

heat from other geographic or time-trending correlates.  819 

Specifically, we use the coefficients from the following regression estimated using Ordinary 820 

Least Squares: 821 

git = a1Tit + a2Tit
2 + b1Txit + b2Txit*Tit + g1Vit + g2Vit*Ai + pPit + µi + dt + eit 822 

T refers to annual mean temperature, Tx refers to Tx5d, V refers to temperature variability, A 823 

refers to annual cycle of temperature, P refers to temperature, µi is a region fixed effect that removes all 824 

time-invariant regional average characteristics, and dt is a year fixed effect that removes all global shocks 825 

that are common to a given year. The coefficients of interest are b1, which denotes the effect of Tx5d 826 

when mean temperature is 0, and b2, which denotes the change in the effect of Tx5d as mean temperature 827 

increases. Marginal effects of Tx5d are shown in Fig. 1d in the main text. We include the terms for 828 

temperature variability (V) and the annual cycle (A) following Kotz et al.129. Specifically, they allow us to 829 

distinguish the impacts of temperature extremes from the impacts of within-year temperature variability, 830 

which may be independently damaging.  831 

The estimated effects of Tx5d on economic growth are spatially heterogeneous, with negative 832 

effects of extreme heat in warm regions (regions with annual mean temperature above ~14 °C), but 833 

negligible or positive effects in cool regions. The disproportionate negative effect of marginal changes in 834 

Tx5d in warm tropical regions could occur due to both their underlying warmth, which may place them 835 

closer to physiological thresholds for human health or agriculture, as well as the lower income in tropical 836 

regions, which may make them more economically vulnerable to climate stress. Uncertainty in these 837 

subnational damage function coefficients is estimated by bootstrap resampling the regression, producing a 838 

distribution of 1000 coefficients that reflects sampling uncertainty in our estimates.  839 

Tx5d is only one of the many ways to measure extreme heat130. Other metrics based on the 840 

temperature of hot periods include the hottest day131, hottest seven days132, or hottest month6. In previous 841 

work89, we showed that all of these measures have broadly similar damage functions, but that Tx5d has 842 

the clearest economic effect among them, potentially because it is the best geophysical measure of the 843 

synoptic time scale of most heat events.  844 

An alternative approach is to define location- or time-specific thresholds, above which heat is 845 

termed “extreme” and can be accumulated over time, similar to the “degree day” metrics used in many 846 

agricultural applications. In the climate-economic context, an example of this is Miller et al.106, in which 847 

they use cumulative measures of extreme heat above a threshold to examine economic impacts of 848 
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historical heat waves. Such cumulative metrics have the advantage of incorporating multiple heat events 849 

over the course of a year and the varying duration of those events. On the other hand, they require 850 

researchers to make several arbitrary choices: what threshold is chosen, whether that threshold is relative 851 

to a day of year, month, or season, whether extreme heat has equivalent effects in spring or fall as in 852 

summer, and so on. We believe that the simplicity and transparency of our approach has advantages in 853 

this emerging legal context. More complex metrics of extreme heat or other events are a fruitful target for 854 

future research. Because our framework is flexible and modular, it can accommodate more complex or 855 

tailored metrics of heat, other extremes, and other hazards as needed. 856 

To assess heat-driven damage attributable to individual emitters, we integrate the three steps 857 

outlined above, calculating economic changes in the “historical” and “leave-one-out” scenarios for each 858 

firm, relative to the “natural” scenario which only includes solar and volcanic forcing. We do the 859 

following: 860 

1) First, we calculate the change in each region’s Tx5d values due to the difference in Tx5d 861 

between the pattern-scaled FaIR “historical” (or “leave-one-out”) simulation and the pattern-862 

scaled FaIR “natural” simulation. This difference is then subtracted from the observed, real-863 

world time series of Tx5d for each region, providing counterfactual subnational annual-scale 864 

time series of Tx5d. This common “delta method” ensures that the Tx5d differences are 865 

benchmarked to the observed climate, both to bias-correct the model predictions and to 866 

impute realistic timing to interannual variability.  867 

2) The difference between observed and counterfactual Tx5d is then multiplied by the damage 868 

function coefficients to calculate a change in each region’s economic growth, due to the 869 

change in Tx5d between the “natural” and “historical” or “leave-one-out” experiments. 870 

3) We then add this difference in economic growth to observed economic growth. This provides 871 

a counterfactual trajectory of economic growth consistent with the included emissions. 872 

Higher counterfactual economic growth values than those observed in the real world implies 873 

damages from emitter-driven Tx5d changes—i.e., a region would have grown faster but for 874 

the effect of the extreme heat attributable to the included emissions.  875 

4) We then put these economic changes in dollar terms by taking these counterfactual economic 876 

growth time series from each emitter and re-integrating each region’s GDP per capita time 877 

series. Further details on this procedure are available in Callahan and Mankin89 and 878 

Diffenbaugh and Burke88. We now have, for each region, a time series of per capita GDP 879 

damages in the historical world and a time series of per capita GDP damages in a world with 880 

one emitter removed.  881 
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5) Finally, we take the difference between the historical damage estimate and the leave-one-out 882 

damage estimate to calculate the contributions of individual firms. Further details on this 883 

procedure are available in Callahan and Mankin53. 884 

The effect of extreme heat on economic growth is not permanent. In previous work89, we 885 

observed a rebound effect whereby economic growth accelerates in the years following heat waves—for 886 

example, as crops are resown or people return to work. From a distributed lag model based on Eqn. 1, 887 

where we add lags of each term to assess their effect over time, we find that this effect appears to last 888 

three years. Neglecting such a rebound effect could lead to overestimates of the effect of heat waves on 889 

long-term growth. We therefore account for this recovery in our damage estimates, allowing Tx5d 890 

changes to affect both contemporary and future economic growth such that no single heat wave has a 891 

permanent effect.  892 

Additionally, because changes in annual mean temperature moderate the effect of Tx5d change, 893 

we perform a similar pattern scaling analysis with regional annual mean temperature. Following previous 894 

work, the final damages calculations incorporate both changes in Tx5d itself as well as changes in the 895 

underlying annual mean temperature values that moderate the effect of Tx5d89. 896 

 897 

Predicting regional income 898 

 Our analysis requires continuous GDP per capita time series order to integrate counterfactual 899 

economic growth and calculate counterfactual income. Many regions around the world, especially those 900 

in the poorest and warmest areas of the tropics—those that are most strongly affected by extreme heat—901 

do not have such subnational data available, making it difficult to assess the impacts of climate change in 902 

those regions. To fill this gap, we extend the regional GDP per capita prediction procedure outlined in 903 

Callahan and Mankin89 to predict subnational GDP per capita from 1991-2020. 904 

 This procedure takes three inputs: country-level GDP per capita (GDPpc) data from the World 905 

Bank World Development Indicators, gridded nighttime luminosity data from satellites, and subnational 906 

GDPpc (from the regions where such data is available) from the DOSE dataset collected by Wenz et 907 

al.133. We estimate a multiple regression model where observed regional GDPpc is regressed on the 908 

corresponding country’s GDPpc, regional average nighttime luminosity, and their interaction134. (To 909 

perform this procedure over 1991-2020, we linearly extrapolate regional nightlights beyond their original 910 

1992-2013 time boundaries.) This regression model skillfully explains variation in regional GDPpc, with 911 

an R2 of approximately 0.9, and has performed well in out-of-sample cross-validation tests89. We then 912 

predict regional GDPpc in the regions where it is not available, using the country-level GDPpc and 913 

nightlights data in these regions. There are some countries where the relationship between national and 914 

regional GDPpc appears abnormal, specifically Uzbekistan and Kenya, so we drop these countries from 915 
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the final data construction (see Supplementary Fig. 8 of Callahan and Mankin89). In other countries, such 916 

as Afghanistan, even country-level GDPpc data is not continuously available across the 1991-2020 917 

analysis time period. In both cases, white regions in Fig. 2 show the areas for which GDPpc data is not 918 

available in the final analysis.  919 

 We use the US GDP deflator to correct for inflation and convert each dollar to 2020-equivalent 920 

dollars. 921 

 This procedure inherently introduces uncertainty in our final estimates, and we sample this 922 

uncertainty in two ways following Callahan and Mankin89. First, we bootstrap the multiple regression 923 

model 250 times, resampling by country with replacement to account for within-country autocorrelation 924 

in growth. Second, in each bootstrap iteration, we add random noise to the predictions with amplitude 925 

equal to the standard deviation of the estimation model’s residuals. This procedure ensures that the 926 

uncertainty from this prediction procedure is reflected in our final damage estimates.  927 

 We emphasize that we do not use these GDPpc reconstructions in the original regression 928 

estimates that produce the damage function, only in the process of calculating absolute GDPpc losses 929 

from changes in economic growth.  930 

 931 

Event-specific estimates 932 

To quantify the influence of carbon majors on damages from specific events, we use a similar 933 

method as in our main analysis. The key difference is that we only calculate the damages from the change 934 

in Tx5d and average temperature in the year of the event. In practice, this means we set the Tx5d and 935 

average temperature values in the leave-one-out simulation equal to the observed values in all years, 936 

except the year of the event. For example, we calculate damages for India in 1998 by setting the historical 937 

and leave-one-out Tx5d and temperature values to be exactly the same as the observed values, except for 938 

in 1998. We then repeat our damage calculation, with damages only being produced by the climate 939 

change in 1998 and not any other year. We also note that these heat waves happen to coincide with the 940 

Tx5d in each case we present. We would not always expect that to be the case, as damaging heat waves 941 

may not always include the five hottest days of the year. Indeed, even in the cases we present, five days 942 

may not encompass the full duration of the heat wave; for example, the 2010 Russian heat wave occurred 943 

over several weeks in July. However, previous analysis showed that extending the time window of the 944 

analysis, such as using the hottest 15 days instead of the hottest 5, yields very similar answers89. Other 945 

heat metrics or approaches may be appropriate for other events that do not occur during the hottest parts 946 

of the year. 947 

As described above, heat waves produce an economic rebound in the years following the event. 948 

As such, we continue to account for the economic recovery in these single-event estimates by allowing 949 
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Tx5d changes to affect growth in the year of the event as well as the two years following it. When we 950 

present country-level damage estimates for these individual events, we sum damages across all regions in 951 

the chosen country for that year and the 2 years following. For example, for India in 1998, the damage 952 

estimates presented in Fig. 3 represent losses in 1998, 1999, and 2000, induced by the 1998 heat wave, 953 

before India catches back up to its original economic trajectory in 2001 and damages are zero thereafter. 954 

For the United States in 2012, we exclude Hawaii and Alaska from this calculation to only calculate 955 

damages for the contiguous U.S.   956 

 957 

Uncertainty quantification 958 

Our damage calculations reflect uncertainty from the FaIR simulations, pattern scaling, damage 959 

function estimates, and regional income prediction. To propagate these uncertainties into our final 960 

estimates, we use a Monte Carlo approach, sampling uncertainty with 10,000 iterations. In each iteration, 961 

we sample one of the 1001 FaIR simulations, one of the 80 climate model estimates of the pattern scaling 962 

coefficients (keeping all regional coefficients together from a single climate model), one of the 1000 963 

damage functions from the bootstrap estimate, and one of the 250 regional GDPpc predictions. 964 

 965 
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Extended Data Legends 1020 

 1021 

Extended Data Figure 1 | Damages when annual average temperatures are held at their observed 1022 

values. As in Fig. 2A, but when emissions only affect the intensity of Tx5d values and not the annual 1023 

average temperatures that moderate the effect of Tx5d. Map was generated using cartopy v0.17.0 and 1024 

regional borders come from the Database of Global Administrative Areas. 1025 

 1026 

Firm Name Headquarters  Start Year End Year 

Saudi Aramco Saudi Arabia 1938 2020 

Gazprom Russia 1989 2020 

Chevron United States 1912 2020 

ExxonMobil United States 1884 2020 

BP United Kingdom 1913 2020 
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Extended Data Table 1 | Availability of emissions data for top five firms. This table shows the name 1028 

(first column), country of headquarters (second column), first year of available emissions data (third 1029 

column), and last year of available emissions data (fourth column) for the five top-emitting firms in our 1030 

data. Data is from the Carbon Majors database100, based on work by Heede62. 1031 


