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Abstract

In the last decade, the transition away from coal and to fossil gas and biomass in the U.S. has had a
major influence on greenhouse gas emissions, especially from electricity generation. However, the
effect of this transition on the public health burden of air pollution is not well understood. We use
three reduced complexity models (RCMs) and emissions inventory data to reconstruct the changes
in health impacts due to PM, 5 exposure from stationary fuel combustion sources in the U.S., from

2008 to 2017. In 2008, the health impacts of air pollution from stationary sources was largely
driven by coal combustion. By 2017, the contribution of coal has dropped precipitously, and the
health burden of stationary air pollution sources is shared among a mixture of source types and
fuels—largely gas and biomass in buildings and industry, and the remaining coal-fired electricity
generation. Nationwide, in 2017, health impacts of biomass and wood combustion are higher than
combustion of coal and gas individually. Industrial boilers had the highest emissions and health
impacts, followed by residential buildings, electricity, and then commercial buildings. All three
RCMs indicate that biomass and wood are the leading sources of stationary source air pollution
health impacts in 24 states, and that the total health impacts of gas surpass that of coal in 19 states
and the District of Columbia. We develop a projection method using state-level energy
consumption data for 2018 and show that these trends likely continued. The RCMs had high
agreement for 2008 emissions, when sulfur dioxide emissions from coal-fired power plants were
the predominant air pollution source. However there was substantial disagreement between the
three RCMs on the 2017 health burden, likely due to pollutants less well-characterized by the
RCMs having a higher proportionate share of total impacts.

1. Introduction

The U.S. has undergone a major energy transition
in the last decade. This has been largely driven
by the boom in unconventional natural gas pro-
duction, resulting in an increase in gas consump-
tion in many sectors of the economy [1]. Total coal
and gas consumption in the U.S. both increased
from 1990 to 2007. In 2007, consumption of gas
reached 23.7 quadrillion Btu (quads) consumed, sur-
passing coal, with 22.7 quads consumed [1]. After

© 2021 The Author(s). Published by IOP Publishing Ltd

2007, gas consumption continued to exceed that of
coal and coal consumption decreased, mainly due
to gas replacing coal in electricity generation and
industry [1, 2]. This made gas the predominant
fuel in sectors with stationary sources (all sectors
except transportation) [1, 2]. Gas consumption con-
tinued to increase in all stationary sectors, with gas
generating basically as much electricity as coal in
2015, and total gas consumption reaching a point
roughly double that of coal in 2016. The transition
from coal to gas, combined with increased share of
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Figure 1. Trends in the U.S. mortality impacts from PM, 5 exposure from 2008 to 2017 for stationary source categories with a
specific fuel type listed, by fuel type and sector.

renewable energy generation and decrease in petro-
leum consumption in stationary sectors, have resulted
in a 12% reduction in energy-related CO, emissions
from 2007 to 2018, reaching 5281 million metric
tons in 2018 [1]. The public health implications of
this energy transition in the last decade are far less
well-understood.

Combustion of fuels for energy also contributes to
the major air pollutants, PM, 5 (particles with aerody-
namic diameter below 2.5 ym) and ozone, which have
a substantial burden on public health [3-5]. Expos-
ure to PM, 5 and ozone has been found to lead to
a variety of health impacts, such as cardiovascular
and respiratory disease, stroke, asthma, autism spec-
trum disorder, and premature mortality 3, 4, 6-8].
These pollutants come from a number of sources,
including combustion of fossil fuels, which emits
PM,; 5, along with PM, 5 precursors including sulfur
dioxide (SO,), nitrogen oxides (NO,), and volat-
ile organic compounds (VOCs) [5]. Many studies

have evaluated the burden of different sources of
air pollution in the U.S,, including a recent study
finding approximately 100 000 premature deaths due
to PM, 5 exposure, with a mixture of sources contrib-
uting [9]. However, these studies have not examined
the effect of changes in the energy sector in the last
decade.

Here, we evaluate the changes in the health
impacts of exposure to PM,s from stationary
emissions sources from 2008 to 2017, using emis-
sions data from the U.S. Environmental Protection
Agency (U.S. EPA) [10] and three reduced com-
plexity models (RCMs)—EASIUR, InMAP, and
AP2—which provide estimates of health-related
social costs of air pollutants emissions in the U.S
[9, 11-13]. These RCMs are designed for policy eval-
uation and research contexts where employing full
chemical transport models is prohibitively resource
intensive, and perform fairly well compared to the
state-of-the-science modeling platform using the
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Figure 2. Trends in the U.S. mortality impacts from PM, 5 exposure from 2008 to 2017 for stationary source categories with a
specific fuel type listed, by fuel type, sector, model, and emitted precursor pollutant.

Community Multiscale Air Quality Model (CMAQ)
in conjunction with the geospatial health benefits
modeling platform BenMAP [14]. We focus on
changes in the health burden of combustion emis-
sions from stationary sources burning coal, gas, and
other fuels along with other industrial sources from
2008 to 2017, and the contribution of different emis-
sions sources in 2017. We also use this as an opportun-
ity to cross-compare the results from the RCMs and
evaluate agreement between the three RCMs. Addi-
tionally, we develop and test a projection method to
estimate the emissions and their health impacts using
energy consumption data.

2. Methods

We built a model framework using emissions estim-
ates of the National Emissions Inventory (NEI) from
the U.S. EPA, from 2008 to 2017, at county level
and broken into Emissions Inventory System (EIS)
sectors, as our primary source of emissions estim-
ates [10]. We also use the Clean Air Markets Data
(CAMD) from the U.S. EPA, as a secondary source
for electricity sector emissions [15]. We then used
the county Federal Information Processing Stand-
ard (FIPS) codes to join the county-level emissions
data from the NEI to county-level health impact
estimates data, for primary PM, s emissions and all
PM, 5 precursor pollutants, as provided by three

4

RCMs—EASIUR, AP2, and InMAP—to produce
health impact estimates for the emissions sources in
the NEI [8, 10—12]. Similarly, we separately joined the
CAMD emissions data to the RCMs by county to pro-
duce a separate set of health impact estimates based
on CAMD. When presenting results, we present res-
ults from all three RCMs to provide a range of estim-
ates to evaluate model agreement. We also track which
RCMs tend to produce estimates that are higher or
lower than the others, along with evaluating trends in
agreement over time.

After constructing the inventory of emissions and
impacts, we categorized each emission source into
source categories and by primary fuel type for sectors
that have fuel type listed in the EIS (table S1 (available
online at stacks.iop.org/ERL/16/054030/mmedia)).
We then developed, tested, and applied a method
derived from our impact results from the NEI, to pro-
ject impacts of energy consuming sectors as repor-
ted in the State Energy Data System (SEDS), a data-
base from the U.S. Energy Information Administra-
tion which provides state-level historical energy use
data [2]. The NEI has fuel types listed for resid-
ential, commercial/institutional buildings, electricity,
and industrial boilers, but not for many other sources
(e.g. industrial processes, waste disposal). Below, we
refer to residential, commercial/institutional build-
ings, electricity, and industrial boilers as ‘major fuel
consuming stationary sources’ and the other sources
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Figure 3. Trends in the U.S. mortality impacts from PM, 5 exposure from 2008 to 2017 for stationary source categories without a
specific fuel type listed, by fuel type, sector, and emitted precursor pollutant.

as ‘other stationary sources’. Each model component
is described in detail below.

2.1. Emissions

As the NEI is the most complete inventory of emis-
sions in the U.S,, it serves as the basis of our main
analysis. The NEI is a bottom-up inventory of air
pollutant emissions within the U.S. published by the
U.S. EPA every 3 years [10]. The U.S. EPA constructs
the NEI using emissions estimates provided by states,
which are constructed using a mix of economic activ-
ity estimates, source data, energy consumption data,
and monitoring data for larger sources (including
CAMD data for electric generators > 25 MW) [10].
For this analysis, we used county-level data for fuel
combusting sectors listed as non-mobile by the EIS,
stationary sources related to the fuel supply chain,
and other stationary industrial processes for the
years 2008, 2011, 2014, and 2017. We then grouped

each EIS sector into source categories with known
fuel use (electricity, commercial buildings, residential
buildings, and industrial boilers) as ‘major fuel con-
suming stationary sources, and without fuel use or
with unknown fuel type used (commercial cooking,
waste disposal, supply chain, and other industry),
as ‘other stationary sources’. Major fuel consuming
stationary sources were grouped by NEI fuel type
(coal, gas, oil, wood, biomass, and other) (table S1).
We combined wood and biomass into one category.
We also use emissions data from CAMD, which
provides SO, and NO, emissions for some electri-
city generation, from 2008 to 2019 for electricity
generation [15].

2.2. Reduced complexity models

The RCMs (EASIUR, AP2, and InMAP) provide
estimates of the total mortality impacts of PM;;
exposure per ton of each precursor pollutant—SO,,
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Figure 4. Trends in the U.S. mortality impacts from PM; s exposure from 2008 to 2017 for stationary source categories without a
specific fuel combustion type listed, by sector, model, and emitted precursor pollutant.

NOj, VOCs (except EASIUR), ammonia (NH3), and
primary PM,s—for each source county, from low
and high stack heights [8, 10-12, 16]. We used the
annual average values and assigned low, high, or the
average stack heights to each source based on sector
(table S1). We used a concentration response func-
tion (CRF) of a 1.4% increase in mortality risk per
1 ug m~3 change in the annual average PM, 5 expos-
ure [17]. This is a standard value from the RCMs,
based on a CRF from a large cohort study in the epi-
demiological literature, which falls within the con-
fidence intervals of a recent meta-analysis [3]. We
used a value of statistical life (VSL) of $11.2 mil-
lion (2017 USD) [18, 19]. We estimated the impact
per ton of sources listed as ‘portable facilities’ in
the NEI using the state’s average for each RCM. To
estimate the impact of sources on land currently con-
trolled by Indigenous Americans, we assigned each
source impact per ton values corresponding to the
county or the average of all the counties in which

land controlled by Indigenous Americans was located
(table S2).

2.3. Linkage to SEDS

For each of the major fuel consuming station-
ary sources in the EIS—industrial boilers, com-
mercial and residential buildings, and electricity
generation—in each state, we developed state-level
mortality impact factors (HIFs), providing mortality
impacts per unit of energy consumption. To calculate
the HIFs, we matched the mortality impacts for each
state, year, source, and fuel type to energy consump-
tion data in the corresponding state, year, source, and
fuel type from SEDS and then calculate the HIFs using
equation (2).

Health Ilnpactsyear,-7 state;, sourcey, fuel type, ($)
n
= § Health ImPaCtsyear,', county, , sourcey, fuel type, ($)

k=1
(1)

6
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Health ImPaCtSyear,-, state;, sourcey, fuel type, ($)

$
HIFyear,-, state;, sourcey, fuel type, <qua d = Primary Ener

where, HealthImpactsyear; state;, source,, fueltype, 1S the
health impacts of emissions from fueltype, com-
busted by source, (major fuel consuming station-
ary sources of electricity, commercial buildings, res-
idential buildings, and industrial boilers) in state;,
in year;; HealthImpactsyear,; county,, source,, fueltype, 15
the health impacts of emissions from fueltype,
combusted by source, (major fuel consum-
ing stationary sources) in county,, in year;
and there are k = 1, ..., n counties in statej;
Primary Energy Consumptionyear;, state;, source,, fuel type,
is the energy consumption, with unit of quad (1 quad
equals 1 quadrillion, 10'°, Btu), in fueltype, by
source, in state; in year;.

J

gy Consumptionyear,-, statej, sourcey, fuel type, (quad)

We then project health impacts from energy use
reported by SEDS, using HIFs calculated from the
most recent prior year available (i.e. impacts estim-
ated using the 2014 NEI were divided by 2014 energy
use from SEDS to produce state level estimates of
emissions factor (tons per unit of energy) and HIFs

for 2014; the 2014 emissions factors and HIFs were
then used to estimate impacts for 2015 and 2016 using

SEDS data from the corresponding years).

HIFyeari , state;j, sourcey, fuel type,

~ HIFyear,ur,,, , state;j, sourcey, fuel type, ( 3 )

$
Health IrnpaCtSyear,-_;_,,,7 state;, sourcey, fuel type, ($) = HIFyeari, state;, sourcey, fuel type, (@

x Primary Energy Consumptionyer,, .. s

tate;, sourcey, fuel type, (quad) (4)
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Figure 6. Mortality impacts of major stationary source types with no fuel combustion listed, by model, emitted precursor
pollutant, and fuel type, for 2017.

where Health Impactsyear,,.,, state;, source,, fuel type, 1S
the health impacts projected in year;i,,; Primary
Energy Consumptionyear, . state;, source,, fuel type, 1S the
energy consumption in year;;,,; and m (1, 2, and 3)
represents the years in which the health impacts are
projected based on the most recent HIF calculated
using the most recent available historical emissions
data from year; and the corresponding energy use
data in year;.

We then compared the results of this pro-
jection method against the next available estim-
ates derived from the NEI (i.e. we estimated 2017
impacts using 2017 SEDS data and a 2014 state-
level HIFs, and then compared it to estimates
using the 2017 NEI emissions data), using per-
cent difference between the NEI-based histor-
ical estimate and the corresponding projected
impact.

HealthImpactProjection Error (%)

(HeathImpacty.

_ —Heath ImpaCtYeari+m,historical) %100 (5)
"~ Heath Impacty,

ATi4m, projected

AL 4, historical

where HealthImpactProjectionError is the percent
difference between HeathImpactyear, ,, yjerea  (the
projected health impacts in year;;, using HIF cal-
culated from emission and energy data in year;)
and HeathImpactyear,,,, o (the historical health
impacts in year;,,, using historical emission data in

yeariym). . o
Positive and negative Health Impact Projection

Error values represent overestimation and underes-
timation of the estimated health impacts using the
state-level projection method, compared to estimates
derived from the county-level historical data from the
NEL. For this comparison, we are treating the health
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Figure 7. The combusted fuel with the highest public health burden from PM, 5 in 2017, by state, as indicated by each RCM.
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impacts estimated from historical NEI data as the
more accurate model for the basis of comparison.

3. Results

3.1. Trends in health impacts from major fuel
combusting stationary sources

The mortality impacts of PM, 5 from major fuel com-
busting stationary sources have changed substantially
in the last decade. The trend was consistent across
RCMs, but with some disagreements in magnitude.
All ranges provide the range of estimates from
the three RCMs with our chosen CRF and VSL.
Impacts of electricity had the greatest reduction,
from 59 000-66 000 deaths ($660—$740 billion)

in 2008 to 10 000—12 000 deaths ($110—$140 bil-
lion) in 2017 (figure 1, table 1), largely driven
by reduced emissions from coal (figures 2 and
S1(a)). Sources categorized as ‘Other Industry’ had
the second largest reduction, from 41 000-49 000
attributable deaths ($460—$550 billion) in 2008 to
27 000-32 000 attributable deaths ($300—$350 bil-
lion) in 2017 (figure 3, table 1), largely driven by
reductions in impacts from SO, and PM, 5 emissions
(figures 4 and S2(b)).

Industrial boilers and commercial buildings had
substantial decreases in coal and oil impacts, mostly
from SO,, but these were essentially replaced by
increases in biomass combustion impacts, mainly
PM, 5 emissions (figures 2 and S1(a)). Impacts from
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commercial building gas use peaked in 2011, and
then decreased from 2011 to 2017; industrial boiler
gas use impacts consistently decreased from 2008 to
2017 (figures 2 and S1(a)). Biomass and wood com-
bustion was the largest contributor to health impacts
from residential buildings, largely driven by primary
PM, 5 emissions (figures 1 and 2), but impact from
this source decreased from 2008 to 2017. Gas use was
the second-largest contributor to health impacts from
residential buildings, largely driven by NH; emissions
(figures 1 and 2). The two main contributing emit-
ted pollutants were NOy, which had peak impact in
2011, and PM, 5, which had peak impact in 2014
(figures 1 and 2).

3.2. Health impacts of other stationary sources

Other stationary sources generally had decreasing
impact over time, roughly paralleling decreasing
emissions (figures 3 and S1(b)). All industrial pro-
cesses except for oil and gas production had decreas-
ing impact over time, largely driven by reductions in
SO, and PM, 5 emissions (figures 3, 4 and S1(b)).
The highest of these sectors—industrial processes not
elsewhere classified—had a health burden of 16 000—
20 000 excess mortality cases ($180—$230 billion)
in 2008, which decreased to 12 000—14 000 mortal-
ity cases ($130—$150 billion) in 2017 (figures 5, 6
and table 3). Waste disposal impacts varied substan-
tially year to year but stayed between 6900 and 11 000
mortality cases, mostly from changes in emissions of
PM, 5 and NHj (figures 3, 4 and table 3). Commercial
cooking impacts consistently increased from 2008 to

2017, with 4800-8200 mortality cases ($53—$92 bil-
lion) in 2008, increasing to 7100-13 000 mortality
cases ($80—$150 billion) in 2017 (figures 5, 6, S1(b)
and table 3).

3.3. Trends over time

Agreement between RCMs tended to be the highest
for major fuel combusting stationary sources, espe-
cially coal, and was higher in 2008 compared to
2017. From 2008 to 2017, disagreement between
RCMs increased for all sources except Other
Industry (table 1). InMAP tended to give the highest
estimates—7 of 8 in 2008, and 5 of 8 in 2017; AP2
tended to give the lowest, providing the lowest val-
ues for 5 of the 8 sectors in 2008, and 7 of 8 in 2017
(table 1). The agreement between RCMs decreased
from 2008 to 2017 for 14 of the 17 sector and fuel
type combinations (table 2). For sectors that had coal
as a fuel type, the percent difference between RCMs
was between 13% and 19% (table 2). The percent dif-
ference between RCMs for gas, oil, biomass, and all
other fuel types ranged between 29% and 46%, 23%
and 35%, 45% and 55%, and 4.8% and 41%, respect-
ively (table 2). There was lower agreement between
the RCMs for the non-combustion sources, and less
of a consistent pattern between models (table 3). AP2
or EASIUR tended to provide the lowest value, while
the highest values were more evenly shared between
RCMs. The percent differences also had a much wider
range for these sources, especially for sources dom-
inated by VOC emissions, since EASIUR does not
provide estimates for VOCs (table 3) [11, 12].
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Figure 9. Non-combustion source with highest public health burden from PM, 5 in each state in 2017, as indicated by each RCM.
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3.4. Current air pollution health impacts

In 2017, the highest contributing sectors were
industry, industrial boilers, and residential heat-
ing, with electricity and commercial buildings both
now dropping to 4th highest (table 1). In 2017, the
impacts from industrial boilers were largely from
PM, 5 emissions from biomass combustion, followed
by both SO, from coal and NO, from gas (figure 5).
The highest contributor to the impact from res-
idential heating in 2017 was emissions of mainly
PM, 5 emissions from biomass and wood, followed
by a mix of NO,, NH3, and PM, 5 emitted from gas
(figure 5). Electricity impacts were still dominated by
coal emissions, largely from SO,. Commercial build-
ing impacts were driven mainly by emissions of NOy,
PM, 5, and some NHj3 from gas, followed by PM, 5
from biomass (figure 5). For non-combustion sta-
tionary sources, the three sectors with the highest
impacts were the other industrial processes (mainly
from PM, 5 emissions), commercial cooking (entirely

PM, 5 emissions), and waste disposal (mainly PM; 5
emissions) (table 3, figure 6).

The highest impact fuel type varied substan-
tially by state in 2017. All three RCMs indic-
ate that coal was the highest impact fuel in 12
states, biomass and wood in 24, and gas in 3
(figure 7), with model disagreement in 11 states.
When broken down by source, in most states, coal
is the highest contributor to electricity generation
impacts, gas and biomass and wood are the highest
contributors to impacts in both commercial build-
ings and industrial boilers, and biomass and wood
are the highest contributor for residential buildings
(figure 8).

The highest impact non-combustion sector var-
ied substantially between states—industrial processes
not elsewhere classified had the highest impact in 11
states and waste disposal and commercial cooking
were each highest impact in 5 states. The RCMs dis-
agreed in 22 states (figure 9).
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Figure 10. Historical and projected mortality impacts of PM, s-related emissions from coal, gas, and wood and biomass
consumption, in the energy consuming sectors — residential buildings, commercial buildings, industry, and electricity — from

2008 to 2018, in the U.S.

3.5. The change in health impacts due to the
transition from coal to gas and biomass

Across sources, the total mortality impacts of coal
have decreased substantially from 2008 to 2017. While
trends in impacts of gas combustion varied across
sources, total health impacts from gas were slightly
lower than that of coal in 2017, with the two essen-
tially converging in 2018 (table 2, figure 10). In
2018, health impacts from coal are projected to be
$150-$170 billion, while gas impacts are projected to
be $130-$170 billion (figure 10), with InNMAP project-
ing that health impacts from gas exceed that of coal.
Between 2008 and 2017, impacts from coal dropped
substantially in commercial buildings, industrial boil-
ers, and electricity, and were negligible in residen-
tial buildings. Gas impacts remained roughly con-
stant in buildings and electricity, but decreased in
industrial boilers (figure 11). The state-level projec-
tions, when compared with impacts based on histor-
ical data from the NEI, perform better at a national
level compared to state level. On an aggregate national
level, projection errors range between ~76% under-
estimation and ~88% overestimation (figure S2),
while projection errors for state-level health impacts
range between ~100% underestimation and ~390%
overestimation, for coal, gas, and biomass and wood
(figures S3 and S4).

Health impacts modeled using the CAMD data-
set are lower than those using the NEI, in part due to
NEI having more comprehensive coverage of electri-
city generation emissions (figure 12) [10, 15]. Never-
theless, CAMD results do indicate a further decrease
in 2018 and 2019 in health impacts from coal-fired
power plants emissions, supporting the results from

16

our state-level projections. All three RCMs indic-
ate that gas had higher health impacts than coal in
8 states in 2008, and that number increased to 20
in 2017, largely on the eastern and western coasts
of the U.S. (figure 13). In 2017, emissions from
gas combustion had higher impact than those from
coal in all 48 states, the District of Columbia, and
land currently controlled by Indigenous Americans
for residential buildings, 45 states for commercial
buildings, 29 states for industrial boilers, and 10
states for electricity (figure 14). Across fuel types
and major fuel combusting sources, the RCMs results
were within a factor of 2 to an order of magnitude of
each other, and this was consistent across county to
state to nationwide levels of aggregation (figures 15,
16, and S7).

4. Discussion

Here, we show substantial changes in the contribu-
tions to mortality impacts from stationary sources
of PM,5 in the U.S. between 2008 and 2017. The
transition from coal to gas and biomass has changed
the compositional mix of emissions that contribute
to PM; 5 across the U.S. and the subsequent health
burdens (figure S1, tables S5 and S6). In 2008, the
biggest contributor to health impacts from PM,5
exposure was coal combustion for electricity genera-
tion, largely from SO, emissions. In 2017, a variety of
sources, fuels, and pollutants from more distributed
nonpoint sources have proportionately much larger
contributions to health impacts. The greatest con-
tribution coming from biomass and wood combus-
tion in residential and commercial buildings, along
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Figure 11. Historical and projected mortality impacts of PM, 5-related emissions from coal, gas, and wood and biomass
consumption, by sector, from 2008 to 2018, in the U.S.

with industrial boilers, and other industry sources.
The impacts of coal dropped below the impacts of
biomass and wood in 2017, and were just above
that of gas. Impacts from residential buildings and
industrial boilers now exceed that of electricity.
Our state-level projections indicate these trends may
have continued, with biomass impacts increasing in
2018, and total impacts of coal dropping below that
of gas.

At the state level, biomass and wood combustion
has supplanted coal as the leading sources of mortality
impacts from fuel combustion in many states. While
coal is still the highest impact fuel for electricity in

many states, gas and biomass are the highest fuel for
commercial buildings and industrial boilers in many
states. Biomass and wood is the highest impact fuel
in residential buildings in most states. In 2017, total
impacts from mortality from PM, 5 exposure have
surpassed coal in 20 states and has surpassed or is
near equal to coal in all sectors except electricity. With
continuing retirement of coal-fired power plants, the
continued growth of gas and biomass, these trends are
likely to continue.

The RCMs had quite good agreement for source
categories characterized by large coal-combustion
sources with high SO, emissions, and generally
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Figure 12. Total mortality impacts of PM; 5 from coal and gas combustion, using the U.S. EPA National Emissions Inventory from
2008 to 2017, and the Clean Air Markets Database from 2008 to 2019.

higher agreement in 2008 than in 2017. As emissions
from these sources decreased with time, the mod-
els began to diverge. This is consistent with a
recent intercomparison of the RCMs which found
much higher agreement for SO, than for NO, and
NH; [11]. The temporal pattern in model dis-
agreement that we find here may be due to the
growing relative role of NO,, NHj;, VOCs, and
to an extent, primary PM,s emissions, since the
RCMs have more disagreement for these pollut-
ants [11]. Our model framework scales linearly, so
the implications of alternative values for paramet-
ers, such as the CRF for PM,5 exposure and the
VSL can also be explored by scaling linearly. For
total impacts of source categories, the RCMs were
within a factor of 2-10 of each other. This made
them able to provide clear differentiation of impacts
between fuels for residential buildings and electricity,
but less so for commercial buildings and industrial
boilers.

18

While our study does evaluate the public health
impacts of combustion of gas and coal, it is not a
comprehensive life cycle assessment or health impact
assessment. It does not include any health impacts
of direct ozone or NO, exposure, morbidity impacts
related to PM, 5, ozone, or NO, like respiratory hos-
pitalizations and birth outcomes, or localized health
impacts from hazardous air pollution emissions from
fuel extraction processes or combustion [4, 20-28]. It
does not include impacts to climate change, includ-
ing methane leaks across the gas supply and distri-
bution chain [29-33], or carbon cycling with bio-
mass [34-37]. Furthermore, it does not include health
impacts of indoor exposures, including unvented gas
combustion from cooking, indoor gas leaks, or indoor
exposure to wood smoke [33, 38]. This analysis impli-
citly holds population constant, and while this allows
the effects of emissions changes on health impacts
to be isolated from the effect of population growth
and aging, it may result in our estimates in later years
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Figure 13. Changes over time in model agreement on mortality impacts of PM, 5 from gas combustion emissions compared to
coal combustion emissions, from 2008 to 2018, by source state.
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to be underestimated. Additionally, since the RCMs
demonstrate more disagreement in future years, and
more disagreement with more disaggregated sources,
they may need to be updated to continue to provide
reliable results. Since emissions of primary PM,s,
NO,, NHj;, and VOCs are playing a much more
important role in the total health impacts of air pol-
lution in the U.S., future iterations of RCMs, or mod-
els that can be used similarly such as CMAQ dir-
ect decoupled method, may be well-served by pay-
ing more attention to these pollutants. There is uncer-
tainty to all elements of the chain of this analysis, from
emissions, to pollutant transport, to health impacts
of exposure and underlying health status. Our res-
ults show that the role of sources where emissions
are monitored, especially large electricity generators,
is shrinking, and that smaller, distributed sources
where emissions are estimated based on activity and
emissions factors—buildings and industrial facilit-
ies, now have a larger share. This indicates that there
may be some value in expanding emissions monitor-
ing efforts or improving methods in how emissions
inventories are estimated.

This study demonstrates that the RCMs are use-
ful for retrospective research on health benefits of
emissions reductions, and that there is value in using
all three [11], especially since the RCMs have vary-
ing performance when compared to CMAQ, which
can depend on source sector [14]. Use of RCMs can
allow more systems research exploring interactions
between energy choices, air pollution, and health,
and for health to be more explicitly integrated into
energy policy design [9, 19]. This simplification does
come at a cost of not being able to characterize the
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substantial degree of interstate transport of pollu-
tion [39]. We also show that the state-level projec-
tion method developed here can be used to make reas-
onable projections of emissions and health impacts
based on energy consumption data. Despite the large
projection error range, the medians of projection
errors are smaller than about 44% overestimation and
53% underestimation, across all sectors for coal, gas,
and biomass and wood. The discrepancies between
our projection and estimates directly from the NEI
could be due to increasing combustion efficiency, fil-
tration, increasingly stringent environmental regu-
lations, fuel blending, or preferential retirement of
high-emitting or high-impact sources, which can-
not be captured by our projection method. The pro-
jections tend to be less precise when the emissions
change by different proportions.

Our results indicate that the U.S. may have
transitioned to a substantially different regime in
terms of leading contributors to health impacts of
PM, 5 exposures from stationary sources. Reductions
in SO, emissions, largely from electricity genera-
tion from coal, have led to a much more mixed pic-
ture of contributors to PM; 5 exposure and health
impacts. In 2017, biomass combustion in industrial
boilers, residential combustion of wood, the remain-
ing coal-fired electricity generation, and gas com-
bustion in buildings industrial boilers, and electri-
city now all have much more similar shares of health
impacts from PM, 5 exposure—all within roughly the
same order of magnitude. With decreases in these
high-impact stationary sources, this indicates that
transportation emissions could now have a larger pro-
portion of total air pollution health impacts [39].
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Figure 16. State-level mortality impacts of PM, 5 from major fuel combusting stationary sources in the U.S., in 2017, by fuel type
and model.

While we show that there have been gains to pub-
lic health from the reduction in coal emissions, we
also demonstrate that replacement of coal with gas
and biomass is not impact-free. Despite reductions
in the combustion emissions rate from replacing coal
with gas, there are still substantial and growing public
health impacts from gas combustion. Similarly, des-
pite the U.S. classifying biomass as a renewable energy
source [1], there are still substantial health impacts
from biomass. While greenhouse gas (GHG) neut-
rality of biologically derived fuels—wood-derived
fuels, biodiesel, ethanol, renewable natural gas, and
others—is often evaluated and considered as part
of their implementation decision-making, this work
indicates that health impacts of combustion should as
well [35-37].

The increasing role of gas and biomass and wood
emissions in the health burden of PM, s exposure
indicates that swapping one air pollution-emitting
fuel source for another is not a pathway to a healthy
energy system. Our work demonstrates that health
can be considered in energy decisions, health and
energy policy are inextricably linked, and that inclu-
sion of health in energy policy may be necessary for
true primary prevention of a large portion of disease
burden in the U.S. New energy infrastructure that is
installed now will likely be operational for decades—
likely ‘locking in’ their health impacts along with
their GHG emissions for decades [40—42]. This means
that deployment of zero-emission renewable energy
sources now may be necessary to continue on a path
toward a healthy energy system, and to avoid changes
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to the energy system that will become ‘regrettable
assets’ in the future [40-42].
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