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1.0 PREFACE
This section of the Climate Action Plan presents the drivers and processes of climate

change in the Vermont by focusing on the natural hazards that produce effects on multiple
sectors and whose overlapping stressors have a direct influence on our resilience as a state. In
presenting resilience through the dual lenses of inclusion and vulnerability (of peoples, the
natural environment and human infrastructure), we honor Abenaki knowledges (Figure XX) and
all ways of knowing (Betts, 2021), as we seek to do no harm (Figure XX).

For consistency with other state-level Climate Action Plans, this section used data and
statistical methods developed in support the Fifth National Climate Assessment (NCA5) by the
National Center for Environmental Information (NCEI), the Environmental Protection Agency
(EPA) and the Northeast Regional Climate Center (NRCC). One such document is the 2021
Vermont State Climate Summary which is included with permission as Appendix XX. County
level climate projections of future thresholds were summarized from the NOAA Climate
Explorer and included in Appendix XX. Sectoral impacts of climate change across Vermont can
be found in the 2021 Vermont Climate Assessment. Existing tools for monitoring and
quantifying vulnerabilities will be woven throughout this section.

2.0 BACKGROUND
Across Vermont, natural hazards of varying intensity, duration and frequency occur.

These include severe storms, winter storms, drought, flooding, wildfires, air pollution, ground-
level ozone, temperature extremes, localized winds and biotic elements (insects and disease)
(Dupigny-Giroux, 2002). Some of these hazards are ubiquitous, while others tend to occur at
specific locations across the Green Mountain State, posing differing exposure or risk and
therefore, vulnerability. As climate change continues to be observed in Vermont, the
characteristics of these hazards are also changing and this sets up cultural, socioeconomic and
policy implications for Vermonters as individuals, municipalities, communities and indigenous
peoples, as well as for the built and natural environments. In addition to increasing
vulnerabilities at the human and landscape scales, climate change related impacts on our
economic sectors are of central importance in this Climate Action Plan, as we lay out the
inaugural framework for mitigating against and adapting to climate change, while building our
resilience as a State.

2.1 Geographies of vulnerability (human, landscape, infrastructure)
The topography or physical geography of Vermont is one of the most important factors in

the incidence of natural hazards, the affected populations and the capacity to increase resilience.
The north-south spine of the Green Mountains, along with the complex east-west valleys and the
north-south ridges of the Taconic Mountains (Dale, 1905) affect the movement of localized
winds and incidence of freezing rain and cold air damming conditions; produces enhanced
orographic precipitation and the associated flooding events; controls the incidence of pollution
and stagnation events, as well as variations in freeze and frost dates
<https://www.weather.gov/btv/climoFreeze>.



a)

b)

FIGURE XX. Diagrams submitted to the Vermont Climate Council as frameworks to guide
discussions and understanding. We are all related was created by Abenaki scholar and educator
Judy Dow (a) and Do no harm- Peoples, Communities, the Environment by Lesley-Ann
Dupigny-Giroux, in consultation with Abenaki elders and scholars.



3.0 COMPONENTS OF CLIMATE & CLIMATE CHANGE IN VERMONT
3.1 Wind and snowfall climatologies 

The occurrence of high winds in Vermont shows a strong correlation with elevation. This
is simply due to the wind increasing in speed with elevation climatologically in midlatitudes.
Unique meteorological conditions are generally required to get winds aloft to mix or transport
down to the surface within valleys during storms.

Vermont’s distribution of snowfall follows a strong correlation with elevation. This is
due colder temperatures at higher elevations, and the influence of the mountains producing
upslope flow that produces localized clouds and enhances winter precipitation. Total snowfall
ranges from around 70” a year in the deeper valleys to over 200” in the highest Green
Mountains. Winter temperatures and precipitation are increasing, which will likely result in a
greater number of winter storms featuring elevation-sensitive rain or snow accumulations. A
comparison by the National Weather Service Burlington Forecast Office (NWSFO-BTV) of the
average monthly snowfall received during the 1980-2010 vs. 1990-2020 overlapping 30-year
periods <https://www.weather.gov/btv/climoSnowfall>, revealed that with the exception of
January and April, total snowfall received at long-term stations across the North Country,
decreased for the months of November, December (FIGURE XX), February and March
(Banacos, 2011). 

Wet snowfall occurs when partially melted snowflakes have water on their edges, making
them sticky. Freezing rain occurs when rain falls into a shallow subfreezing layer of air and then
freezes on contact to surfaces. These processes are more frequent at higher elevations,
principally due to colder temperatures and higher precipitation accumulations. The greatest risks
from wet snow and freezing rain icing (from a frequency perspective) show a strong correlation
with elevation across Vermont. Thus, wet snow and freezing rain hazards are more likely to
produce power outages at higher elevations. However, intense storms can still occur in valleys,
especially in deeper northern valleys near the international border when shallow cold air can
recharge itself from Canadian source regions (FIGURE XXe).

3.2 Temperature variability

Across Vermont, the 2010-2020 11-year period has been the warmest since records began
in 1895, with the warmest winter and summer seasons occurring in the 2000-2020 period
(Runkle et al., 2021). Vermont’s average annual temperature has increased over 2°F from the
1970s to 2010s and over 3°F from the end of the last century (Figure XX). The rate of warming
has increased through the last 120 years, and is currently around +0.5°F a decade. While this rate
of warming may seem relatively small compared to perceptions of daily temperature changes,
the overall warming is having a number of notable effects. Some of these include a lengthening
of the growing season, less reliable winter snow cover, and shifting peak energy usage to the
summertime. Seasonal temperature trends show the winter season warming nearly twice as fast,
increasing over 4°F from the 1960s to the 2010s. Other observed seasonal shifts include an
expanding warm season causing longer falls and winter to have more false starts, and increased
intra-seasonal and inter-seasonal temperature variability (more fluctuation within seasons).
Backward or false springs (during with snow and freezing rain can occur in April-June after the
normal progression of warming temperatures (Dupigny-Giroux, 2009) continue to be observed,
even with the observation that freeze-free seasons are longer (Runkle et al., 2021).
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Figure XX. 

a) Vermont observed temperatures and climate projections. Low emissions scenario is the
RCP4.5 (moderate global emissions mitigation), and the high emissions scenario is RCP8.5
(emissions continuing on current trends as usual). Inset table based on data from NOAA’s
National Centers for Environmental Information. b) Average cumulative seasonal growing
degree days (using a 50°F base). Based on a 5-km downscaled dataset from 1990-2019 following
Shafer and Cronin (2021)2.
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Growing degree days are a general proxy for warm season growing potential for various
crops; this is basically a measure of growing potential energy available to plants. Growing
degree days are highest in the warmest areas of Vermont (primarily west of the Green Mountains
and in southern valleys), and lowest in the Northeast Kingdom and highest elevations. Growing
degree days have increased by approximately 5 to 10% over the last 40 years (Figure XX). 

As Vermont’s climate warms there has been an observable shift in temperature extremes.
Heat waves are becoming more likely while cold waves are decreasing. Evidence for this from
Burlington shows a steady decline in cold waves peaking around nearly 6 per year in the 1970s
to less than 2 per year in the 2010s. Heat waves have generally increased from around 3 to 4 per
year in the 1960s/1970s to over 7 per year in the 2010s. These changes will cause a shift in peak
energy demand to more likely occur during the summer season, and increase heat exposure
health risks to vulnerable populations. 

Since the mid-2000s, a below average number of very cold nights has also been observed
in winter, with a near to above average annual number of warm nights in the 2000-2020 period
(Runkle et al., 2021; see Appendix XX). The Vermont Department of Health
<https://www.healthvermont.gov/sites/default/files/documents/pdf/ENV_CH_WhitePaper.pdf>
has documented the combined influence of warmer winters and longer warm seasons as
contributing to both a more hospitable environment for blacklegged ticks, as well as their hosts,
white-footed mice. Figure XX captures the exponential increase in probable Lyme disease cases
between 1990 and 2016, with Vermont and Maine being the states with the highest increases in
actual reported case rates since 1991 (EPA Change Indicators, 2021
<https://www.epa.gov/climate-indicators/climate-change-indicators-lyme-disease>) (Figure
XX). The Department’s climate and health pages
<https://www.healthvermont.gov/environment/climate> offer a rich resource of the climate
impacts on health, considerations for vulnerable populations
<https://www.healthvermont.gov/health-environment/climate-health/vulnerable-populations>,
potential impacts (e.g. on pollen, allergies, mold in buildings, waterborne and foodborne
diseases) and the health benefits to be derived from climate change adaptation and mitigation.
The Vermont Heat Vulnerability Index Mapping Tool can be found at
<https://ahs-vt.maps.arcgis.com/apps/MapSeries/index.html?appid=5bfd71bdeff242d4a8f0d2780
369807a> and the Vermont Social Vulnerability Mapping Tool at
<https://ahs-vt.maps.arcgis.com/apps/MapSeries/index.html?appid=ffea40ec90e94093b009d0dd
b4a8b5c8>.

3.3 Moisture variability

As Vermont’s climate warms, the overall amount of precipitation is also increasing.
Warmer temperatures produce increased evaporation of water vapor from nearby bodies of
water, resulting in a greater potential for weather systems to produce higher amounts of
precipitation. The decadal correlation between annual precipitation and temperature shows a
statistically significant relationship (not shown). Increases in annual changes are relatively small,
on the order of +0.5” to +1.0” a decade. The winter season has shown the greatest increases to
precipitation (not shown). 

Vermont’s distribution of precipitation follows a strong correlation with elevation with
nearly a doubling factor in the deeper valleys which receive less than 40”/year while, the highest



Figure XX. Observed changes in severe heat and cold. Heat waves are defined as three
consecutive days reaching 85°F or warmer. Cold waves are defined as three consecutive days
falling to 0°F or colder. Based on observations at Burlington International Airport (KBTV
(a).Climatology of days >= 87EF as issued by the National Weather Service Burlington, in
collaboration with the Department of Health (b). Vermont Department of Health’s quantification
of the sources of human health vulnerability to heat by age (c); exposure and/or life status (d). 
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FIGURE XX. Confirmed and probable cases of Lyme
disease 1990-2016, Vermont Department of Health (a). Comparison of the reported cases of
Lyme disease in 1996 and 2018 for the Northeast and Upper Midwest, Centers for Disease
Control and Prevention, EPA Climate Change Indicators (b). Change in the reported cases of
Lyme disease 1991- 2018 for the Northeast and Upper Midwest, Centers for Disease Control and
Prevention, EPA Climate Change Indicators (c).



peaks nearly reach 80”/year (FIGURE XX). Terrain produces local areas of precipitation
enhancement in upslope areas and precipitation suppression in downslope areas. The Champlain
Valley, for example, rests in the climatological rain shadow from the Adirondack Mountains of
New York. As westerly airflow reaches the Green Mountains, and if sufficient moisture and
cloud growth processes exist, additional precipitation is produced as air reaches the Green
Mountain crest and other downstream sub-ranges. 

As noted in Runkle et al. 2021 (and shown in the Standardized Precipitation Index values
on Figure XXa), the year 1970 marked a shift towards annual average precipitation trending
above the long term average, increasing by almost 6" since the drought decade of the 1960s. The
wettest period since 1895 was observed in 2005-2014. Extreme precipitation (defined as greater
than 2") has also trended above the long-term average since 1995. These trends are reflected in
the increases in stormflow between 1950-2006 (Figure XX b; Hodgkins and Dudley, 2011), as
well as the increasing magnitudes of the 1% (100-year return interval) storms across timescales
from 1 hour (Figure XXc) to 1 day(Figure XXd). Such changes in recurrence intervals and other
precipitation statistics should be factored into infrastructure planning, hydraulic studies and
floodplain management in order to mitigate against ongoing loss, failure or disruption.

Vermont is marked by tremendous hydrologic variability over time and space.
Temporally, fluctuations of importance can occur over very short time frames (e.g. in the
transportation sector, heavy precipitation on the order of minutes to hours is of critical interest)
up to weeks, months and years (which are important to the agricultural sector where moisture
availability during key phenological stages of the planting, growing and harvesting seasons is
paramount). Moisture extremes (droughts and floods) can and have occurred simultaneously
across the state (e.g. flooding in Southern Vermont in 2021, while the northern reaches were in
moderate drought). In fact, Southern Vermont just experienced its wettest four summer months
(June through September 2021) on record, with major localized flooding throughout the month
of July and its most widespread major flooding event occurring on July 29, 2021 since Tropical
Storm Irene, nearly 10 years earlier. The region was fortunate to experience only glancing blows
from tropical systems Fred, Henri, and Ida thereafter.  Both the flooding that did occur, and the
catastrophic flooding that could have occurred but did not had the paths of major systems,
confirm the need for climate adaptation and resilience even as the production of greenhouse
gases must be reduced.

Apart from heavy precipitation, especially from slow-moving or stalled storms, flood-
producing conditions include the presence of deep snow cover, frozen ground and ice-covered
rivers (primarily in the cool season), with saturated soil, existing bankfull conditions, full
reservoirs and complex topography

Droughts followed by flooding in the same year is also a characteristic of Vermont, a
pattern which has not changed over the last 100 years. For example, this flip-flop was observed
in 1927 (where the November floods remain the flood of record for Northern Vermont) and more
recently in August 2011 (where the flooding due to Tropical Storm Irene stands as the flood of
record for Southern Vermont). The August 2011 drought was an example of a new type of
drought called a flash drought, which is now observed more frequently in Vermont. Flash
droughts (Otkin et al., 2019), as their name suggests, develop very quickly (weeks), typically in
the spring/summer months, where the lack of precipitation and decreased soil moisture is often
exacerbated by high daytime temperatures and low relative humidities in the air. 

Apart from the newer flash droughts, traditional droughts tend to fall into staggered
categories with meteorological (precipitation deficit) occurring first, followed by agricultural
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FIGURE XX. Increases in summer precipitation (a) and stormflow (b) for the 1950-2006 period
(Hodgkins and Dudley, 2011). Estimated precipitation amounts for the 1-day, 100-year return
interval (c) and 1-hour, 100-year return interval (d) for Vermont, as derived from the Extreme
Precipitation in New York and New England tool <http://precip.eas.cornell.edu/>.



droughts (soil moisture deficit) and then hydrologic ones (when surface waters, lakes,
groundwater and wells are affected over the course of months to years). As Figure XX shows, it
is possible to be in a meteorological drought (e.g. 1910s, 1930s), but not a longer term
hydrologic drought. Recent droughts in Vermont and across New England suggest that this
traditional sequence is changing. The year 2020 was a marker year when short term flash
droughts over the summer were followed by record-setting streamflow and groundwater
droughts in the fall  (Lombard et al., 2020). This was significant because some of these records
that were set or tied occurred on streams with 71, 89 and 90 years of records, dating back to the
droughts of the 1930s.  Across Vermont, evidence of this severe 2020-2021 hydrologic drought
included the number and depth of new wells being drilled, and the fact the well drillers were still
managing homeowner requests into the fall of 2021. 

Hydropower generation is also subject to fluctuations in water levels. The Connecticut
River is a heavily-managed river due to the presence of hydropower facilities at Wilder, Bellows
Falls, Vernon, and Northfield, Massachusetts (which affects the flow of the river and erosion in
Vernon, Vermont).  It is also falls within the jurisdiction of both the states of Vermont and New
Hampshire, with the river at and below the low-water mark on the western shore falling within
the jurisdiction of the latter.  To the extent climate change forecasts suggest intensification of the
hydrologic cycle, this has implications for Connecticut River water quality and quantity that will
require greater coordination between the states of Vermont and New Hampshire, greater
management of competing uses, and which could have significant downstream implications
including the Long Island Sound Total Maximum Daily Load for nitrogen.  This coordination
could create new purpose for the Connecticut River Joint Commissions (see 10 V.S.A. § 1193).
Drought impacts on drinking water supplies as well as adequate water availability for key
Vermont sectors such as hydropower, agriculture, forestry and other water-based recreation and
tourism activities, represent a pressing need for building resilience to moisture extremes.

4.0 Economic impacts of climate change in Vermont
Due to the small geographic extent of Vermont as a state relative to the global economy,

it is difficult to provide absolute attribution to the gradual, but certain climate changes that are
occurring. Similarly, it is also difficult to tease out all of the specific economic impacts directly
attributed to climate change.  However, there are three categories of economic damage where the
impacts are clear. These are structural damage, human health impacts and the disruption to
production and supply chain within the business sector.

One partial measure of structural damage resulting from the increasing strength and
frequency of storms is represented by FEMA-designated disaster declarations and the resulting
payments. A review of FEMA designations between 2010 and 2019, shows that Vermont
receives on average $9-30 million in assistance support. The range is based on either including
or not including Irene-related damages that influence the ten year average significantly.
However, FEMA only addresses short term catastrophic impacts and not the less destructive but
still significant issues associated with increased precipitation and storms resulting in wet
basements and tree damage. To get a handle on the size of these smaller scale impacts, it is
instructive to review consumer expenditures as reported by the Census Bureau Consumer
Expenditure Survey (CES). The CES includes a category for home maintenance, repair and
insurance. For the northeastern states (Vermont specific data are not robust enough for
reporting), the proportion of household income attributed to home maintenance, repair and
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FIGURE XX. Monthly Standardized Precipitation Index (SPI) values showing meteorological
droughts and wet periods from 1895-2021 (a) <https://www.drought.gov/states/vermont>. Lake
Champlain heights in 1927 relative to the extremes and median observation as of November
2021 (b) <https://www.weather.gov/btv/lakeLevel?year=1927>.  USGS hydrographs showing
the 7-day average runoff for 1929-1930 (c) and 2020-2021 (d). USGS height of the groundwater



well at Glover, Vermont for December 2020-November 2021 highlighting the record low
observations (e)
<https://groundwaterwatch.usgs.gov/AWLSites.asp?mt=g&S=443952072114001&ncd=awl>.



insurance has increased from 1.88% to 2.15% between the 2003-4 and 2019-20 reports. This
amounts to an average increase of $250 per household and for Vermont adds up to an additional
$66 million in economic costs per year. It should be noted that, applying a similar approach to
southern states in the US, with higher incidences of storm related damage due to hurricanes,
tornadoes and tropical storms, yields an annual increase in maintenance, repair and insurance of
$576 per household when comparing the 2003-4 data with 2019-20.

The impacts on residential properties parallel damage to commercial properties. In
Vermont, the Grand list value Commercial and Industrial properties is about 12% of that of
residential properties. If Commercial and Industrial properties suffer the same proportion of
damage increases as do residential properties, the damage estimate increases by $8 million to a
total property damage estimate of almost $75 million per year.

There are several examples of human health that are affected by climate change. While
the human suffering associated with these human health impacts is important, it is still possible
to assign dollar amounts to the increased health care services that result. In terms of the
aforementioned exponential increase in probable and actual reported cases of Lyme disease and
other tickborne illness, the Tick Borne Disease Working Group at the federal level estimates the
dollar costs for Lyme disease at about $1.3 billion  and because Vermont represents 1.5-2% of
national cases, the dollar costs are $20-25 million per year. This value is in addition to the 
dramatic increases in anaplasmosis observed across the state. Prior to 2008, case of anaplasmosis
were close to zero and that number increased to more than 200 in 2016. Finally, in terms of
mosquito-borne diseases have been observed in Vermont for decades and include the West Nile
Virus and Eastern Equine Encephalitis. A website focusing on mosquito-borne diseases puts
national level economic damages in the billions of dollars.

Apart from vector-borne ailments, increasing temperatures pose economic effects due to
water contamination impacts and those related to heat waves. In terms of the former, beach
closures in Vermont are the result of a combination of increased water temperatures and
increased nutrient loads. There is no dollar estimate that specifically informs the climate change
component, but Vermont spends tens of millions of dollars each year to address water quality
contaminants in our large lakes. Finally, in terms of heat waves, periods of extreme heat result in
increases to the emergency room. Using the aforementioned threshold of 87EF as an extreme
heat day since 2016, it should be noted that, prior to the year 2000, extreme heat days averaged
about 6 per year resulting in dozens of emergency room visits.  Models show these numbers
increasing significantly with a resulting increase in emergency room visits. Perhaps more
economically important than acute health events is the trend towards adding air conditioning to
Vermont homes. One of the drivers behind an increase in the installation of heat pumps is the
ability of a heat pump to also provide air conditioning services. The dollar cost for heat pump
installation from 2019 to 2021 is estimated in this report to be $84 million or $27 million per
year.

4.1 Vulnerabilities exposed by the COVID-19 pandemic
The ongoing SARS-CoV-2 (COVID-19) pandemic has acted as a compound stressor or

threat multiplier on communities and activities that were already vulnerable to natural hazards,
climate change impacts and socioeconomic disruptions. In particular, 2020-2021 has been
marked by climate migration and business disruptions.

The influx of out of state residents to Vermont during the COVID-19 pandemic, and



others transitioning second homes into primary homes, provides a glimpse into what could be the
leading edge of climate influenced, if not driven, migration to Vermont and the northeast.  This
has resulted in housing demand outstripping supply, leading to increased housing prices,
decreased housing availability, and the exacerbation of housing fairness, equity and justice
issues.  Lack of infrastructure (chiefly community wastewater and water systems) makes
compact settlement a challenge, thereby causing housing development to follow the path of least
resistance, which is dispersed single-family home development on large lots along rural roads. 
This de facto development pattern will only exacerbate energy use patterns that will make
achievement of many of the goals and objectives of the GWSA a challenge, and underscore the
need to create an effective land use planning and regulation rubric that can achieve housing
development and accessibility, compact settlement, smart growth, and just transitions policy
imperatives.

News headlines in 2021 also report disruptions to the supply chain due to the COVID-19
pandemic. Prior to 2020 and continuing through the pandemic are transportation disruptions due
to coastal storms. One of the most apparent sectors affected by climate change induced storms is
for oil and gas production. Gulf of Mexico drilling platforms and coastal refineries are closed
with increased frequency, each time causing a spike in petroleum and natural gas prices.
Droughts cause a disruption in hydroelectricity generation requiring electric utilities to purchase
alternative, higher priced generation (and often with greater greenhouse gas emissions).
Agriculture is probably most susceptible to climate change. While Vermont may see longer
growing seasons, most of our food comes from other parts of the world, many of which are
subject to water restrictions due to drought. Shipping food on barges is often delayed during
flooding events on the major river corridors.

5.0 Projections of future climate change
A warming and wetter climate has varying effects on different weather and climate

hazards (Figure XX).  Projected changes in temperature through 2050 show a high degree of
confidence in temperatures increasing, resulting in a higher frequency of warmer temperatures
and heat waves. On the other hand, the most extreme cold temperatures will likely decline in
magnitude slightly as arctic warming tends to diminish the strength of wintertime arctic air
masses. Overall annual precipitation will likely increase, although at a slower rate than
temperature (moderate confidence). Extreme precipitation events, such as those with 2” or
greater precipitation in a 24-hour period, will likely increase in frequency (moderate
confidence); these precipitation systems may come from a variety of weather systems, as a
warmer and wetter climate simply has the capacity to produce higher amounts of precipitation.

Annual snowfall variability will likely remain high, as some winter seasons with more
precipitation may actually produce higher than average snowfall, as the climate remains cold
enough to continue to support snowfall. However, the general trend will be for more winter rain
and reduced annual snowfall, especially in lower elevations. Risks from power outages related to
wet snowfall are expected to increase, as more winter storms will likely be closer to freezing
where snowfall is wet or sticky in nature (moderate confidence).

Wind storms are expected to increase in intensity, but these will likely be related to
unique meteorological storm types. Tropical Storms or Hurricanes, if they make landfall and
move inland, will likely be able to maintain strength at higher latitudes from warming ocean
temperatures, therefore increasing the risk for low-frequency but catastrophic storm impacts. On
the other hand, as the jet stream generally migrates further to the north, gradient wind events



from midlatitude storm systems across Canada or nor'easters may decline in frequency.
The projected frequency of ice storms and thunderstorms remain low confidence as the

current science is incomplete and there are competing meteorological risk factors for each.
Low-end icing events with minor ice accretion from freezing rain are expected to increase, as
warmer winter temperatures produce more winter storms with mixed precipitation types.  

Overall risks to the power distribution grid have been shown to be increasing, more due
to storm systems becoming more intense. A combination of weighing current trends, literature,
and two climate simulations shows that overall power outage risks are projected to increase by
approximately 5-10% through 2050, due to more frequent wet snowfall, and potentially stronger
wind storms (Shafer and Cronin 20212)

Vermont’s annual precipitation is projected to increase 1” to 2” through 2050 (Figure
XXa). These rates of increase track closely to current precipitation rate changes over the last 30
to 40 years. Through 2100, the lower emissions scenario predicts approximately 4” greater
precipitation whereas the high emissions scenario predicts 9” greater annual precipitation. The
spatial distribution precipitation change is relatively equal across Vermont counties. Extreme
precipitation events will increase as annual precipitation increases, likely following current ratios
of extreme events to annual precipitation rate changes.

Vermont’s annual temperatures are projected to increase over 2°F through 2050 on either
the lower emission or high emissions scenarios (Figure XXb). These scenarios differ
significantly through 2100, with the lower emissions scenario predicts 4°F of warming whereas
the high emissions scenario predicts 9°F of warming. The spatial distribution of warming is
relatively equal across Vermont counties. With a warming climate comes a greater likelihood of
higher temperatures. Extreme temperatures (as defined by a high temperature >= 90°F) are
projected to double in frequency by 2050 through either the lower emission or high emissions
scenario (Figure XXc). Vermont-wide average days above 90°F go from 4 days a year to 9 days
a year by 2050. By 2100, however, there is significant variability, with the lower emissions
scenario reaching 15 days a year, and the high emissions scenario projecting 45 days a year.
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FIGURE XX.
Vermont projected average annual (a) precipitation changes (b) temperature changes and (c) days
with temperatures $ 90EF through the 2040s and 2090s based on lower emissions (RCP4.5) and
high emission (RCP8.5) scenarios). Based on data from the US Climate Resilience Toolkit
Climate Explorer. 
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VERMONT
Key Messages
Temperatures in Vermont have risen about 3°F since the beginning of the 20th century. The 
last 11-year period (2010–2020) was the warmest 11-year period on record. Under a higher 
emissions pathway, historically unprecedented warming is projected to continue through this 
century. The intensity of extreme winter cold is projected to decrease.

Annual average precipitation has increased nearly 6 inches since the 1960s (a decade marked by prolonged, 
multiyear droughts and cold temperatures), with the largest increases occurring in mountainous regions of the 
state. Winter and spring precipitation is projected to increase throughout this century, and warming will increase 
the proportion of that precipitation that will fall as rain.

Extreme weather events, particularly floods and severe storms, are having a stronger impact on Vermont. At the 
same time, multiyear meteorological and hydrological droughts continue to pose challenges for water-dependent 
sectors. Extreme rainfall events are projected to become more frequent and intense in the future.

Vermont’s northerly latitude and geographic location on the eastern edge of the North American continent expose 
it to the moderating and moistening influence of the Atlantic Ocean and the effects of the hot and cold air masses 
from the interior of the continent. Its climate is characterized by cold, snowy winters and pleasantly warm summers. 
The jet stream that is often located near the state gives it highly variable weather patterns, widely ranging daily and 
annual temperatures, and generally abundant precipitation throughout the year. Changes in Vermont’s elevation, 
terrain, and its proximity to Lake Champlain and the Atlantic Ocean all contribute to variations in climate across the 
state. The western part of the state is moderated by the lake and experiences higher temperatures and a longer 
growing season than the more mountainous northeastern region (also referred to as the Northeast Kingdom). 
Southeastern Vermont, with its lower elevation and landlocked location, tends to be warmer and more drought-
prone than the rest of the state.

Observed and Projected Temperature Change

Figure 1: Observed and projected changes 
(compared to the 1901–1960 average) in 
near-surface air temperature for Vermont. 
Observed data are for 1900–2020. Projected 
changes for 2006–2100 are from global 
climate models for two possible futures: 
one in which greenhouse gas emissions 
continue to increase (higher emissions) and 
another in which greenhouse gas emissions 
increase at a slower rate (lower emissions). 
Temperatures in Vermont (orange line) have 
risen about 3°F since the beginning of the 
20th century. Shading indicates the range of 
annual temperatures from the set of models. 
Observed temperatures are generally within 
the envelope of model simulations of the 
historical period (grey shading). Historically 
unprecedented warming is projected to 
continue through this century. Less warming 
is expected under a lower emissions future 
(the coldest end-of-century projections 
being about 3°F warmer than the historical 

average; green shading) and more warming under a higher emissions future (the hottest end-of-century projections being about 12°F 
warmer than the hottest year in the historical record; red shading). Sources: CISESS and NOAA NCEI.


