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Abstract

Glyphosate is the most widely used herbicide in the world, being routinely applied to control weeds in both agricultural and

urban settings. Microbial degradation of glyphosate produces aminomethyl phosphonic acid (AMPA). The high polarity and

water-solubility of glyphosate and AMPA has, until recently, made their analysis in water samples problematic. Thus, compared

to other herbicides (e.g. atrazine) there are relatively few studies on the environmental occurrence of glyphosate and AMPA. In

2002, treated effluent samples were collected from 10 wastewater treatment plants (WWTPs) to study the occurrence of

glyphosate and AMPA. Stream samples were collected upstream and downstream of the 10 WWTPs. Two reference streams

were also sampled. The results document the apparent contribution of WWTP effluent to stream concentrations of glyphosate

and AMPA, with roughly a two-fold increase in their frequencies of detection between stream samples collected upstream and

those collected downstream of the WWTPs. Thus, urban use of glyphosate contributes to glyphosate and AMPA concentrations

in streams in the United States. Overall, AMPAwas detected much more frequently (67.5%) compared to glyphosate (17.5%).
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1. Introduction

Glyphosate (N-Phosphonomethyl glycine) is a

non-selective, broad spectrum herbicide that is the

most widely used herbicide in the world (Baylis,

2000; Woodburn, 2000). Dramatic increases in the

agricultural use of glyphosate occurred in 1997
ent 354 (2006) 191–197



Fig. 1. Sample collection locations. Circles indicate the 10 waste-

water treatment plants being investigated; triangles designate the

two reference locations.
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corresponding to the introduction of genetically

altered glyphosate-resistant crops (such as corn,

cotton, and soybeans) through a glyphosate-resistant

protein product isolated from a naturally occurring

gene that was cloned and expressed in the target crops

(Padgette et al., 1995; Giesy et al., 2000; Pline et al.,

2001). Microbial degradation of glyphosate produces

aminomethyl phosphonic acid (AMPA), the primary

glyphosate transformation product (Rueppel et al.,

1977; Forlani et al., 1999). AMPA, however, is also

formed by the degradation of phosphonic acids in

detergents (Skark et al., 1998). The chemical and

toxicological properties of glyphosate appear to be

well documented (Carlisle and Trevors, 1988; Duke,

1988; Malik et al., 1989; Tate et al., 1997; WHO,

1994; Giesy et al., 2000), with multiple studies

finding that glyphosate-based formulations are more

toxic to aquatic organisms than glyphosate itself

(Folmar et al., 1979; Mann and Bidwell, 1999; Servizi

et al., 1987; Tsui and Chu, 2003; Tsui and Chu, 2004)

due to surfactants present in the technical formula-

tions. AMPA is thought to be equal or less toxic than

glyphosate (Carlisle and Trevors, 1988; Giesy et al.,

2000). Research has shown that low levels of

glyphosate are frequently detected in the urine of

farm workers shortly after a glyphosate application

(Acquavella et al., 2004).

The high polarity and water-solubility of glyph-

osate and AMPA (Rubio et al., 2003; Skark et al.,

1998; Veiga et al., 2001) makes their analysis in water

samples problematic. Thus, compared to other herbi-

cides (e.g. atrazine) there are relatively few studies on

the environmental occurrence of glyphosate and

AMPA, particularly given its extensive worldwide

use. Recent research, however, has documented the

environmental occurrence of glyphosate and AMPA

associated with use on crops (Araujo et al., 2003;

Battaglin et al., 2005; Fomsgaard et al., 2003;

Scribner et al., 2003), forests (Veiga et al., 2001;

Thompson et al., 2004), and railway tracks (Skark et

al., 1998). Little data appears to exist on the environ-

mental occurrence of glyphosate and AMPA derived

from the extensive urban use of glyphosate.

The purpose of this study was to provide a better

understanding of the potential contribution of glyph-

osate and AMPA to streams derived from the urban

use of this herbicide. This paper describes the ana-

lytical results of 29 stream samples and 11 treated
effluent samples collected across the United States

during 2002.
2. Methods

This study focused on 10 WWTPs across the

United States (Fig. 1). Site selection was primarily

based on results of previous research activities

(Kolpin et al., 2002, 2004b). Most sample sets

consisted of one upstream, one effluent, and two

downstream samples (DS1=sites proximal to WWTP

discharge and DS2=sites more distal from WWTP

discharge) (Glassmeyer et al., 2003). The network

consisted of 40 sampling sites: eight upstream

samples (one site had no upstream sampling point

and one sample at an upstream site was not able to be

analyzed), 11 WWTP effluent samples (one site had

two WWTP discharge points), 19 downstream sam-

ples (one sample at a downstream site was not able to

be analyzed). In addition, two reference sites were

sampled (Fig. 1) in areas anticipated to have little

glyphosate use because of limited human activity. The

10 WWTP locations represent a variety of climatic

conditions, population densities, stream sizes, and

treatment practices (Table 1). The distances from the

treatment plants to the upstream and downstream

locations vary, due to sampling accessibility.

All samples were collected by U.S. Geological

Survey personnel using consistent protocols and

procedures designed to obtain a representative water

sample using standard depth and width integrating
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techniques (Shelton, 1994). At each stream site, a

composite water sample was collected from about 4 to

6 vertical profiles through a stream cross section. This

composite sample was subsequently split into pre-

cleaned, amber, glass bottles and prepared in duplicate.

The duplicate samples were used for backup purposes

(in case of breakage of the primary sample) and for

laboratory replicates. Samples were passed through a

0.7 Am, baked, glass-fiber filter. After filtration, all

samples were immediately chilled and shipped to the

laboratory for analysis. Samples were collected

between July and November of 2002. Streamflow

significantly increased between the sites upstream of

the WWTP (median flow=0.39 m3/s) and those

downstream (median flow=2.44 m3/s). Discharge

from the WWTPs contributed roughly between

10% and 95% of the flow at the DS1 sites.

All samples were analyzed for glyphosate and

AMPA using a precolumn derivatization with 9-

fluorenylmethylchloroformate followed by an auto-

mated online solid-phase extraction and direct injec-

tion into a liquid chromatograph/mass spectrometer

(Lee et al., 2002). The analytical reporting limit was

0.1 Ag/L for both compounds.

Five field blanks were collected during this study

to determine if field conditions were introducing

target analytes to the environmental samples. These

blanks were prepared from laboratory-grade organic-

free water and were subject to the same sample

processing, handling, and equipment as the stream

samples. There were no detections of either glyph-

osate or AMPA in these field blanks.
3. Results

Glyphosate or its degradate AMPAwere commonly

detected in the stream and WWTP effluent samples,

being present in 67.5% of the 40 samples collected.

Concentrations were generally low, although nine

detections of AMPA (maximum concentration=3.9

Ag/L) and three detections of glyphosate (maximum

concentration=2.2 Ag/L) exceeded 1 Ag/L. AMPAwas

detected much more frequently (67.5%) than glyph-

osate (17.5%). Previous research has shown that

herbicide degradates are often detected more fre-

quently than their parent compounds in both streams

(Battaglin et al., 2003) and ground water (Kolpin et al.,
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Fig. 3. Glyphosate concentrations by sample type (1=stream

samples upstream of wastewater treatment plants, 2=treated

effluent, 3=first stream sample downstream of wastewater treatment

plants, 4=second stream sample downstream of wastewater treat-

ment plants, 5=reference samples). Number in parentheses is the
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2004a). Results of this study are similar to a study of

herbicide concentrations in 51 Midwestern streams

during three runoff events where AMPA was detected

in 69% and glyphosate in 36% of the samples

(Scribner et al., 2003; Battaglin et al., 2005).

Both AMPA (Fig. 2) and glyphosate (Fig. 3) had

the greatest frequency of detection in the WWTP

effluent samples, with roughly a two-fold increase in

the frequency of detection for both AMPA and

glyphosate between stream samples located upstream

and those located downstream of the WWTPs. These

results suggest an apparent contribution of WWTP

effluent to both AMPA and glyphosate concentrations

in streams. AMPA concentrations found in the WWTP

effluent samples were significantly greater (P=0.03,

Kruskal–Wallis test) than those measured in stream

samples collected upstream of the WWTPs studied,

but not significantly different (P=0.56, Kruskal–

frequency of detection for each sample type. An explanation of a

boxplot is provided in Fig. 2.
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Fig. 2. AMPA concentrations by sample type (1=stream samples

upstream of wastewater treatment plants, 2=treated effluent, 3=first

stream sample downstream of wastewater treatment plants,

4=second stream sample downstream of wastewater treatment

plants, 5=reference samples). Number in parentheses is the

frequency of detection for each sample type.
Wallis test) than those measured in stream samples

collected downstream of the WWTPs studied. To our

knowledge, this is the first time that it has been

documented that the urban use of glyphosate contrib-

utes to glyphosate and AMPA concentrations in

streams. It should be noted, however, that AMPA

can also be derived from the degradation of phos-

phonic acids (such as EDTMP and DTPMP) in

detergents (Skark et al., 1998). About 18.1 million

kg of phosphonates are used in the United States

annually (Nowack and Stone, 1999). Thus, part of the

AMPA detections from this study could be derived

from a detergent source. Other components of

detergents, such as 4-nonylphenol diethoxylate and

4-nonylphenol monoethoxylate were also measured in

the samples collected for this study (Glassmeyer et al.,

2003) and were both found to be present in 22% of the

upstream, 91% of the WWTP effluent, 70% of the

first downstream and 60% of the second downstream

samples. Detergent compounds also have been fre-

quently detected in streams containing WWTP dis-

charge (Kolpin et al., 2002; Lye et al., 1999; Rice et

al., 2003). However, AMPA was always present in

samples that had detections of glyphosate, which

suggests that at least part of the AMPA concentrations

in this study were derived from the degradation of

glyphosate.
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Diazinon (a common urban insecticide) and atra-

zine (a common agricultural herbicide) were exam-

ined for supporting evidence that the urban use of

glyphosate contributes to stream concentrations. The

trends for diazinon (Fig. 4) were similar to that of

glyphosate (Fig. 3) and AMPA (Fig. 2) in that WWTP

effluent had the most detections (72.7%), with much

greater detections in samples located downstream

(50.0%) of the WWTPs than in samples located

upstream (37.5%) of the WWTPs. Previous research

has shown that the urban use of diazinon contributes

to diazinon concentrations in streams (Hoffman et al.,

2000). Conversely, atrazine (Fig. 5) displayed a much

different pattern compared to both diazinon (Fig. 4)

and the glyphosate compounds (Figs. 2 and 3) in that

detections in the WWTP effluent (27.2%) were less

common than in the stream samples, with greater

detections found in samples located upstream (62.5%)

of the WWTPs than in samples located downstream

(50.0%) of the WWTPs.

Even though travel time was not taken into account

when collecting the stream samples for this study, the

data may give a crude idea of spatial concentration

patterns as water is transported downstream. As water

moved from the first to the second downstream

sampling sites, glyphosate detections decreased about
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Fig. 4. Diazinon concentrations by sample type (1=stream samples

upstream of wastewater treatment plants, 2=treated effluent, 3=first

stream sample downstream of wastewater treatment plants,

4=second stream sample downstream of wastewater treatment
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frequency of detection for each sample type. An explanation of a
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t

,

t

45% (Fig. 3), whereas AMPA detections only

decreased about 3% (Fig. 2). This suggests that

AMPA is more mobile than glyphosate (as indicated

by its greater frequency of detection compared to

glyphosate), and may be more persistent (as indicated

by downstream concentration patterns). The overall

results of this study suggests that glyphosate and

AMPA are more mobile and persistent in aquatic

environments that earlier research has indicated

(Giesy et al., 2000).
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