INDIVIDUAL STORMWATER DISCHARGE PERMIT APPLICATION

1. Applicant Name(s)¹: Jon Armstrong, Vermont Agency of Transportation

2. Is this NOI being submitted in connection with a subdivision²? Yes No

3. Address of Applicant(s): Vermont Agency of Transportation

<u>1 National Life Dr.</u>

Montpelier, VT 05633-500

- 4. Telephone Number: (802) 828-1332
- 5. Fax: (802) 828-2437
- 6. E-mail: jon.armstrong@state.vt.us
- 7. Project Name: Colchester HES NH 5600(14)
- 8. Project Location Address: US Route 7 & I-89 Exit 16
- 9. Project Location Coordinates (center of project): Latitude: <u>44</u>°<u>30'36</u>"

Longitude: <u>73°10′46</u>"

- 10. Act 250 Permit Number (if applicable): <u>**TBD**</u>
- 11. Existing Stormwater Permit Number related to this project (if any): n/a
- 12. Number of discharge points for the project: $\underline{8}$
- 13. Receiving Water(s): <u>Sunnyside Brook</u>
- 14. If your project will discharge to a <u>stormwater impaired water</u> you will need to provide a sediment off-set for your project. Please contact the stormwater program to discuss this requirement.
- 15. Have or will you be submitting an application for coverage under a construction discharge permit also? ⊠ Yes □ No □ Not Applicable
- 16. The following items <u>must</u> be included in your application materials for your application to be considered complete. **Be certain to use the most up-to-date forms by downloading them directly from our <u>webpage</u>**. Submitted applications using out-of-date forms may be rejected.
 - □ Narrative
 - Provide the information requested on the "Application Narrative Instructions" $\boxtimes(\checkmark)$
 - □ Schedule A(s) and Standard Treatment Practices (STPs)/Credit worksheets
 - Complete and attach a copy of Schedule A for each discharge point from the project. $\square(\checkmark)$
 - Complete and attach STP/Credit/Waiver worksheets for each STP/Credit/Waiver listed on the Schedule A for each discharge point, as well as any necessary WQ_v/Re_v calculation sheets. ⊠(✓)
 - □ Maps/Site Plans (11" x 17" preferred, all maps must have legend, scale bar and north arrow)
 Topographic map showing the location of the site, points of discharge, discharge points and receiving water(s). ⊠(✓)

¹ If the applicant is a business, the business must be registered with the Secretary of State.

² Includes, but is not limited to, residential or commercial subdivisions, condominiums or industrial parks.

- Soils map (with HSGs), overlaid with site outline. $\boxtimes(\checkmark)$
- If existing impervious/stormwater treatment systems are present, include a site plan of existing conditions. ⊠(✓)
- Proposed conditions site plan, with existing impervious, redeveloped impervious and new (expanded) impervious clearly identified in the legend, labeled discharge points, and labeled locations of STPs or Credits. ⊠(✓)
- A detail sheet containing all applicable STPs for your project and demonstrating adherence to the design criteria for the STPs. ⊠(✓)
- Credit design detail sheet ("typical") when and where credits requiring specific design criteria will be used to meet standards. ⊠(✓)
- □ Runoff Modeling (where applicable)
 - Pre-development/existing conditions sub-watershed delineations with labels and labeled points of interest/discharge points, overlaid over existing site plan with contours. $\Box(\checkmark)$
 - Pre-development/existing conditions model schematic. $\Box(\checkmark)$
 - Post-development/proposed conditions sub-watershed delineations with labels and labeled study points/discharge points, overlaid over proposed site plan with contours. □(✓)
 - Post-development/proposed conditions model schematic. $\Box(\checkmark)$
 - Sub-watershed information (area and curve number assignment) for pre and post scenarios.
 - Time of concentration calculations for pre and post scenarios. $\Box(\checkmark)$
 - Runoff calculations for each element in the model. $\Box(\checkmark)$
 - Calculation time span adjusted to include entire volume of runoff. $\Box(\checkmark)$
 - Modified CN calculations if Water Quality (< 0.9") storm was modeled. $\Box(\checkmark)$
- □ Additional Supporting Information
 - Any information/calculations required by STP/Credit/Waiver worksheets
- 17. Include a check for the appropriate permit fees:

"Exempt; project funded by an appropriation of VTrans capitol transportation construction act."

Administrative processing fee (\$120.00):	\$ <u>Waived</u>
plus	+
Application review fee (\$x <u>4.779</u> impervious acre ³): (A minimum fee of \$220.00 applies)	\$ <u>Waived</u>

Total Permit Fees (Chec	k#):	\$ <u>Waived</u>

The minimum fee total is \$340.00.

Date of application: <u>1/5/15</u>

³ Class A waters: \$1400/impervious acre

Class B waters: \$430/impervious acre

Round impervious acreage listed on Schedule A's to nearest 0.01 acre (e.g. 1.35 acres vs. 1.4 acres)

18. DESIGNER CERTIFICATION: I hereby certify that the design-related information submitted with this application for coverage under General Permit 3-9015 was prepared under my direction or supervision and that the information is, in the exercise of my reasonable professional judgment, true, accurate and complete. I also hereby certify that the stormwater collection, treatment and control system design submitted with this application complies with DEC's Stormwater Management Rule and the Vermont Stormwater Management Manual.

hal Signature of Stormwater Designer Orig

Traffic Design Supervisor Title

Michael LaCroix Print or Type Name

19. OWNER / OPERATOR CERTIFICATION: I hereby certify that I have read General Permit 3-9015 and agree to abide by its terms.

20. Original/Signature of Owner or Authorized Representative⁴

Stormwater Management Engineer Title

Jon Armstrong Print or Type Name **Operations Environmental Program Manager** Original Signature of Operator (if any) or Authorized Representative Title Craig DiGiammarino

Print or Type Name

Note: Submission of a Notice of Intent does not confer coverage under General Permit 3-9015. A permit must be deemed technically complete and the applicant must receive a signed authorization to discharge before the discharge of regulated stormwater from impervious surfaces requiring coverage is authorized.

⁴ If the applicant is an individual, but the NOI is being signed by an authorized representative, then a letter indicating that said person is the authorized representative must accompany this NOI. If the applicant is a business (registered with the Secretary of State) then the signature must be provided by one of the following i) the person listed as the registered agent with the Secretary of State; ii) an executive figure such as the president, chairperson or superintendent, or; iii) an individual whose status as an authorized representative is verified in writing by the registered agent or executive figure.

Colchester US Routes 2 & 7 VT Individual Stormwater Discharge Permit Application & Notice of Intent to Discharge Stormwater

Narrative

Project Location:

Beginning at a point, in the town of Colchester, on US Routes 2 & 7 at the Winooski-Colchester town line extending northerly for a distance of 1.05 miles to a point 75 feet north of the US Routes 2 & 7/Sunderland Woods intersection; on I-89 southbound off ramp, beginning at the intersection with US Routes 2 & 7 and extending 273 feet west; on I-89 northbound on ramp, beginning at the intersection with US Routes 2 & 7 and extending 255 feet west; on I-89 southbound on ramp, beginning at the intersection with US Routes 2 & 7 and extending 255 feet west; on I-89 southbound on ramp, beginning at the intersection with US Routes 2 & 7 and extending 188 feet east; on I-89 northbound off ramp, beginning at the intersection with US Routes 2 & 7 and extending 188 feet east; on Mountain View Drive, beginning at the intersection with US Routes 2 & 7 and extending 307 feet west; on Lower Mountain View Drive, beginning at the intersection with US Routes 2 & 7 and extending 365 feet east; on Hercules Drive, beginning at the intersection with US Routes 2 & 7 and extending 194 feet east; on Champlain Drive, beginning at the intersection with US Routes 2 & 7 and extending 247 feet west; on Champlain Drive, beginning at the intersection with US Routes 2 & 7 and extending 147 feet east; and on Sunderland Woods, beginning at the intersection with US Routes 2 & 7 and extending 60 feet west.

Project Description:

Work to be performed under this project includes the construction of a double crossover diamond interchange, widening of existing roadway for new turn lanes, cold planing and resurfacing, new traffic signal equipment, new lighting, new signing and other roadway related work. In addition, traffic signal equipment at the Tigan Street/Main Street intersection in the city of Winooski will be upgraded.

Site Description:

The Colchester US Routes 2 & 7 project consists of a total project area of 18.404 acres of which 11.286 acres is impervious. The project site is bound by linear station limits and construction limits.

The project is located in an urban area with numerous commercial drives and parking lots. The terrain of the site varies. The southern-most section of the project is on a hill that slopes downward toward Winooski with the high point just north of Mountain View Drive. From Mountain View Drive north, the area is fairly flat. A majority of the surrounding topography to the east and west of US Routes 2 & 7 is relatively steep, becoming flatter toward the northern limits of the project. The project site is made up of 5 different soil groups: Hydrologic Soil Group A (16.6%), B (11.1%), C (3.9%), D (59.5%), and some soil that is Not Rated (8.9%). Soil

that is classified as being Not Rated was treated as Hydrologic Group D for all calculations to be conservative. Appendix C contains more detailed soil information.

Jurisdiction

This project involves surfaces totally more than 1 acre of impervious area, it requires permit coverage under the Environmental Protection Rules, Chapter 18, and as such must comply with Vermont Stormwater Treatment Standards.

Existing and Proposed Discharge Points:

There are a total of nine (9) discharge points for this project. The proposed discharge points within the project are in the same location as the existing drainage points. Eight discharge points are located on the Sunnyside Brook, while the ninth is on the Winooski River east of the City of Winooski. In addition to the discharge points, there are nine points of interest, one associated with each discharge point. These POI's are the physical point at which stormwater leaves the project limits prior to the discharge point.

- S/N 001: Stormwater runoff from road surfaces between Sta. 48+94 and Sta. 55+63 is collected in existing closed drainage and leaves the project area from an existing culvert via POI 001 at Sta. 56+30, RT. Stormwater also sheet flows from the project down the roadway side slope on the east side of US Route 7 and into the Sunnyside Brook at S/N 001. There are no proposed stormwater treatment practices that will discharge to S/N 001 via POI 001.
- S/N 002: Stormwater runoff from road surfaces between Sta. 43+69 and Sta. 48+94 is collected in a grass channel designed to treat the Water Quality standard along the west side of US Route 7, north of Rathe Road and leaves the project through a new crossing culvert via POI 002 at Sta. 48+93, RT. Stormwater also sheet flows from the project down the roadway side slope on the east side of US Route 7 and into the Sunnyside Brook at S/N 002.
- S/N 003: Stormwater runoff from road surfaces between Sta. 39+16 and Sta. 43+69 is collected in two grass channels designed to treat the Water Quality standard along the west side of US Route 7, crosses below US Route 7 through an existing culvert and leaves the project from an existing swale on the south side of Champlain Drive via POI 003 at Sta. 43+66, RT. S/N 003 is a point on Sunnyside Brook where an existing pipe that runs beneath Champlain Drive where it makes a 90 degree turn enters the Sunnyside Brook. Stormwater enters this pipe from the end of the roadside swale on the south side of Champlain Drive.
- S/N 004: Stormwater runoff from road surfaces between Sta. 19+75 to 39+16 is collected in grass channels and the existing closed drainage system. There are two grass channels designed to treat the Water Quality standard on the west side of US Route 7. Runoff flows from those channels into an existing closed drainage system which outlets to an existing engineered stormwater ditch and off the project at POI 004. Stormwater runoff also flows to a roadside swale that outlets into a new pipe which crosses US Route 7 that outlets into a new dry pond on the east side of US Route 7 (at Sta. 38+90, RT.) that is designed to treat the Channel Protection standard. The dry pond discharges to the same

existing engineered stormwater ditch via POI 004. S/N 004 is a point on Sunnyside Brook where an existing pipe that runs beneath a large impervious surfaced used for commercial buildings and parking lots outlets. The inlet of this ditch is located at the end of an eastbound engineered stormwater ditch.

- S/N 005: Stormwater runoff from the road surfaces on Hercules Drive is collected in existing roadside swales and leaves the project via POI 005. S/N 005 is at the crossing culvert along Sunnyside Brook at Hercules Drive. There are no proposed stormwater treatment practices that will discharge into S/N 005.
- S/N 006: Stormwater runoff from the road surfaces between Sta. 17+77 and Sta. 19+75 on the east side of US Route 7 and from the road surfaces on Lower Mountain View Drive is collected in an existing roadside swale on the north side of Lower Mountain View Drive, and leaves the project via POI 006. Stormwater runoff also leaves the project area by sheet flowing down the south side of Lower Mountain View Drive. S/N 006 is at the crossing culvert along Sunnyside Brook at Lower Mountain View Drive. There are no proposed stormwater treatment practices that will discharge into S/N 006 via POI 006.
- S/N 007: Stormwater runoff from road surfaces between Sta. 4+08 and Sta. 12+32 is collected in one grass channel (located on the inside of the I-89 off-ramp) designed to treat the Water Quality standard and in a new closed drainage system which leaves the project at a Class III wetland at Sta. 9+29, RT. S/N 007 is at southern end of the crossing culvert along Sunnyside Brook which carries water north under both barrels of Interstate 89 into the Class III wetland.
- S/N 008: Stormwater runoff from road surfaces between Sta. 12+32 and Sta. 19+75 is collected in two grass channels designed to treat the Water Quality standard and in a new closed drainage system. The two grass channels are located along the west side of US Route 7 and Mountain View Drive. Stormwater leaves the project from a new dry pond on the south side of the Exit 16 northbound off-ramp via POI 008. Runoff then crosses to the north side of the Exit 16 northbound off-ramp through an existing culvert (at Sta. D 4+25) and into an existing roadside swale that discharges to S/N 008 on the Sunnyside Brook.
- S/N 009: Stormwater runoff from road surfaces between Sta. 0+00 and Sta. 12+32 is collected in the City of Winooski's closed drainage system and leaves the project area. All impervious area associated with POI 009 is non-jurisdictional resurfacing, therefore no stormwater treatment practices are proposed on this part of the project. S/N 009 is within an existing wetland system directly adjacent to the Winooski River within the river's floodplain in the Casavant Natural Area. A small portion of this sub-catchment area (0.12 acres of jurisdictional impervious area) outside of the Sunnyside Brook watershed is designed to be redirected by the proposed closed drainage system that outlets at POI 007 and discharges at S/N 007. This impervious area will be handled in a manner consistent with the remainder of the project that discharges to the Sunnyside Brook and was included in the impervious area calculations for POI 007.

Existing Stormwater Collection System:

Existing storm water is collected in swales and a closed drainage system and conveyed along the entire corridor of US Routes 2 & 7. Just north of the Winooski-Colchester town line there is a

storm system that collects and conveys water to a stormwater pond (Permit # 3079-9010R) on the west side of US Routes 2 & 7 at approximately Sta. 1+25 LT. This pond will not be impacted by the proposed project; its continuing treatment of surrounding areas including the highway will have a positive impact to runoff treatment. Runoff from this facility then enters the City of Winooski's closed drainage system that outlets at a wetland system directly adjacent to the Winooski River within the river's floodplain. At the Interstate 89 Exit 16 on- and off-ramps, water is collected on both sides US Routes 2 & 7 and conveyed to the east side of US Routes 2 & 7. At approximately Sta. 23+00 there is a storm system that collects water on the west side of US Routes 2 & 7 and conveys it north where it outlets on the east side of US Routes 2 & 7 at approximately Sta. 39+14 RT, Sta. 43+66 RT, Sta. 48+93 RT, and Sta. 56+30 RT indirectly into the Sunnyside Brook.

Proposed Stormwater Collection System:

The proposed design includes curbing along US Routes 2 & 7 south of the Exit 16 Interchange. There are also 6 curbed splitter islands at the I-89 on and off ramps. Catch basins located periodically along the curb and in the grass channels were designed to collect runoff. The closed drainage system and the 8 grass channels with overland flow were designed to convey treated runoff into existing infrastructure and eventually into the Sunnyside Brook.

Site Balancing Approach: The concept of site balancing on a watershed level within the site was used due to several constraints such as excessive land acquisition, large amounts of exposed and buried bedrock, existing topography and prohibitive costs. It was impractical to collect and treat runoff from all expanded impervious surfaces due to these constraints. Sections of existing and redeveloped impervious surfaces will be collected and treated to compensate for the inability to directly treat all of the impervious expansion. These areas are all within the maintenance responsibilities of the Agency of Transportation, including areas owned by the Town of Colchester.

A detailed assessment of site balancing is listed below:

- The proximity of commercial buildings to the roadway from the beginning of the project to the I-89 Exit 16 interchange is the principle restriction for directly treating runoff at the edge of the roadway. Removing the existing roadway curbing to allow for runoff sheet flow to pervious areas is not possible due to the location of the buildings, their parking areas and drive accesses. Furthermore, buried utilities are also of concern here. There are only small amounts of expanded impervious in this area and the expense to relocate buried utilities in this area to accommodate stormwater treat is prohibitive.
- In the interchange area, where the majority of the project's expanded impervious is located, treatment was achieved where physically possible. However, a majority of the surfaces cannot be directly treated as the topography of the interchange on- and off-ramps restrict the use of grass channels due to excessive longitudinal grades and short residence times. Significant amounts of existing ledge located on the west side of US Routes 2 & 7 are present there. Despite large volumes of ledge removal are required to accommodate the widened roadways and ramps, and even greater amount of bedrock would need to be

removed to accommodate direct stormwater treatment. A Class III wetland sits on the southeast corner of the interchange. This point is a low spot and serves as the receiving point of the proposed closed drainage system.

- Along US Routes 2 & 7 north of the interchange to the Mountain View Drive and Lower Mountain View Drive intersection has constraints similar to that south of the interchange near the beginning of the project. Highly developed commercial properties lie on the east side, significant amounts of ledge and the need to acquire greater amounts of rights-of-way on the west side and buried utilities nearby are all factors in restricting the direct treatment of runoff in this project area.
- The portion of the project along US Routes 2 & 7 north of the Mountain View Drive intersection is essentially a repaving operation with improvements to the Hercules Drive and Rathe Road intersection. While there are small amounts of redeveloped and expanded impervious surfaces, there are several locations where direct treatment of stormwater is achievable. Due to the majority of this section being non-jurisdictional redevelopment and the fact that very little direct treatment of stormwater is necessary, it was the prime location to create treatment facilities to compensate for those areas that could not be directly treated. Those facilities are described in greater detail below in this narrative and in Appendices D, E, and F.

Watershed Descriptions: For this project, 8 different discharge points outlet to the Sunnyside Brook (Waterbody ID VT08-02) located within the Sunderland Brook watershed. The watershed area for the Sunnyside Brook was found to be approximately 584 acres. The land cover within the watershed is comprised mostly of impervious area associated with roadways and commercial development, grass, and lightly wooded forest. The confluence with Sunnyside Brook is located downstream of the impaired segment. One discharge point outlets into an existing storm system in the City of Winooski. The discharge of this system is a wetland system directly adjacent to the Winooski River within the Winooski River floodplain. The watershed area at this discharge point is 1,048 square miles.

Watershed maps can be found in Appendix B.

Stormwater Treatment Practices: The amount of impervious area that is required to be collected and treated was calculated using the entire discharge project area. This includes the entire project area inside the project limits of US Routes 2 & 7 and all the side roads. The stormwater treatment will be provided by 8 grass channels and 3 dry ponds:

<u>Treatment</u> <u>Practice</u>	Location	<u>Discharge</u> <u>Point</u>
Grass Channel 1	Sta. A -0+74.9, LT – Sta. AL 1+85.2, LT	S/N 007
Grass Channel 4	Sta. 13+51.6, LT – Sta. 403+07.5, RT	S/N 008
Grass Channel 5	Sta. 18+55.5, LT – Sta. 19+75.0, LT	S/N 008
Grass Channel 6	Sta. 19+75.0, LT – Sta. 22+93.3, LT	S/N 004
Grass Channel 7	Sta. 22+97.8, LT – Sta. 26+28.1, LT	S/N 004

Grass Channel 8	Sta. 39+19.3, LT – Sta. 43+67.4, LT	S/N 003
Grass Channel 9	Sta. 800+43.1, LT – Sta. 802+85.0, LT	S/N 003
Grass Channel 10	Sta. 44+77.2, LT – Sta. 48+92.1, LT	S/N 002
Dry Pond 004	Sta. 36+80, RT – Sta. 38+90, RT	S/N 004
Dry Pond 007	Sta. C 1+31 – Sta. C 2+99, RT	S/N 007
Dry Pond 008	Sta. D 3+84 – Sta. D 5+25, LT	S/N 008

The Grass Channels are designed to treat the entire required Water Quality Volume for the project; Dry Pond 004 is designed to detain the required Channel Protection Volume for the project for a 12-hour period; Dry Ponds 007 and 008 are designed to attenuate the 10-year storm to or below pre-development flows in the receiving water.

Five of the Grass Channels collect and treat off-site area. It should be noted that three of the Grass Channels are located such that off-site areas are not conveyed to them. Pretreatment was not feasible for the proposed Grass Channels on this project as the linear nature of the reconstruction and the elimination of existing roadway curbing will provide continuous inflow over the shoulders and grassed side slopes. Stone check dams are proposed on Grass Channel 4 to prevent scour from flow of the pipe outlets.

Also, two of the three Dry Ponds, are located in small Class III wetlands. The appropriate permitting process for impacting these wetlands has been completed.

Discharge	Expansion	Redevelopment	Resurfacing	Pre-Impervious	Grass
<u>Point</u>	<u>Area (ac.)</u>	<u>Area (ac.)</u>	<u>Area (non-</u>	Area turned	<u>Channel(s)</u>
			<u>jurisdictional</u>	Pervious Area	<u>contributing</u>
			<u>(ac.)</u>	<u>(ac.)</u>	
S/N 001	0.04	0.17	0.56	0.03	None
S/N 002	0.15	0.08	0.84	0.00	#10
S/N 003	0.04	0.10	0.53	0.01	#8, #9
S/N 004	0.09	0.53	2.28	0.08	#6, #7
S/N 005	0.02	0.01	0.17	0.00	None
S/N 006	0.13	0.09	0.40	0.11	None
S/N 007	0.52	1.28	0.38	0.09	#1
S/N 008	0.59	0.95	0.89	0.14	#4, #5
S/N 009	0.00	0.00	0.47	0.00	N/A

Below is a table detailing the jurisdictional areas contributing to each discharge point:

<u>Stormwater</u> <u>Treatment</u>	<u>On-Site</u> Impervious Area	<u>On- Site</u> Pervious Area	Off-site Impervious Area	Off-Site Pervious <u>Area</u>
Practice	<u>contributing</u>	<u>contributing</u>	<u>contributing</u>	<u>contributing</u>
	<u>(ac.)</u>	<u>(ac.)</u>	<u>(ac.)</u>	<u>(ac.)</u>
GC1	0.05	0.15	0.30	0.73
GC4	1.06*	0.41*	12.44	9.67
GC5	0.05	0.06	0.00	0.00
GC6	0.24	0.25	0.00	0.00
GC7	0.48	0.13	0.00	0.00
GC8	0.28	0.23	1.29	2.26
GC9	0.18	0.10	0.20	0.58
GC10	0.28	0.10	1.88	1.11
Dry Pond 004	See Channel Protection Treatment Standard Below & Appendix F			
Dry Pond 007	See Overbank Flood Protection Standard Below & Appendix G			
Dry Pond 008	See Overbank Flood Protection Standard Below & Appendix G			

Below is a table detailing how much jurisdictional areas contribute to each stormwater treatment practice:

*Grass Channel 4 conveys stormwater from area directly contributing to it and from area previously treated by Grass Channel 5. Grass Channel 4 directly treats 1.01 acres of impervious area and 0.30 acres of pervious area.

Proposed Stormwater Management:

Stormwater management practices were designed in compliance with the 2002 Vermont Stormwater Management Manual, Volumes I and II. There is one project site associated with the Colchester HES NH 5600 (14) project, which falls within two separate watersheds. The two watersheds are the Sunnyside Brook and the Winooski River. The five stormwater treatment standards were evaluated on a watershed basis. For the Sunnyside watershed, Water Quality, Groundwater Recharge and Channel Protection were found to be applicable while the Overbank Flood and Extreme Flood Protection standards were waived. For the Winooski River watershed, none of the treatment standards were applied as the runoff within the project limits in this watershed is all derived from non-jurisdictional impervious areas (strictly roadway curb-to-curb resurfacing work only).

Water Quality Treatment Standard:

This treatment standard captures 90 percent of the annual storm events, removes 80 percent of the average annual post development total suspended solids load and 40 percent of the total phosphorus load. To meet the Water Quality Treatment Standard, 100 percent of all expanded impervious area and 20% of all redeveloped area must be treated, a total of 2.217 acres. The project impervious area treated by the 8 grass channels is 2.569 acres. The grass channels are modeled to collect and treat new impervious, jurisdictional redevelopment and resurfacing area. The total Water Quality Volume provided by the grass channels is 60,844 cubic feet.

A more detailed summary of each of the grass channels can be found in Appendix E.

Groundwater Recharge Treatment Standard:

This treatment standard ensures that enough water infiltrates in order to preserve existing water table elevations. The manual states that if grass channels are used for storm water treatment and they meet the Water Quality Treatment Standard, then they also meet the Groundwater Recharge Treatment Standard.

Channel Protection Treatment Standard:

This treatment standard protects stream and river channels from erosion and degradation caused by volume of flow produced by the one-year, 24-hour storm event. The increase in impervious surfaces exceeded the 1-acre threshold, triggering the need to fulfill the CPv requirement. One sub-watershed site within the project, Site #4 (S/N 004), met conditions capable of treating Channel Protection. A Dry Pond was designed to treat the required Channel Protection Volume for 5.67 acres of impervious, including 3.19 acres of off-site impervious and 1.67 acres of on-site impervious. On-site impervious includes 0.09 acres of new impervious, 0.53 acres of redeveloped impervious and 1.05 acres of existing impervious not currently meeting the Channel Protection Standard. A combination of on- and off-site runoff is collected by a closed drainage system in Site #4 which outlets into the proposed dry pond. The location of the pond was the only location viable for any significant amount of storage. The Dry Pond detains a volume exceeding the required to meet the standard.

Site #4 – 0.475 ac-ft meets the 12-hour extended detention period.

- Dry Pond (treats 1.67 acres of on-site impervious area)
 - Sta. 36+80 Sta. 38+90, RT.
 - \circ Pond Berm Width = 10 feet
 - Pond Interior Width = Irregular
 - Pond Interior Length = Irregular
 - CPv Height = 2.02 feet (318.02')

See Appendix F for additional pond and channel protection treatment information.

Overbank Flood Protection Treatment Standard:

This treatment standard ensures that peak flows post-construction do not exceed peak flows preconstruction based on the 10-year, 24-hour storm event. An extensive investigation was conducted and the analysis of that survey showed that the post-development flows in the receiving water, Sunnyside Brook, exceeded the pre-development flows for only one of the eight discharge points, at S/N007, by 4%. Two Dry Ponds were designed to attenuate project flows during the 10-year storm event. One Dry Pond was assigned to each of two on-site subcatchment areas with the highest amount of impervious expansion

Site #7 – Reduction of post-development flow

- Dry Pond 007
 - Sta. C 1+31 Sta. 2+99, RT.
 - Pond Interior Width = Irregular
 - Pond Interior Length = Irregular

Site #8 – Reduction of post-development flow

- Dry Pond 008
 - Sta. D 3+84 Sta. D 5+25, LT.
 - Pond Interior Width = Irregular
 - Pond Interior Length = Irregular

See Appendix G for more the downstream analysis of the Sunnyside Brook and additional information.

Extreme Flood Protection Treatment Standard:

This treatment standard is similar to the Overbank Flood Protection Treatment Standard with the only difference being that it is based on the 100-year 24-hour storm event. This treatment standard can be waived as no Site on the project has more than 10 acres of new impervious area. Furthermore, the sum of all jurisdictional impervious areas for the entire project is less than 10 acres.

Cold Climate Design Considerations:

A couple of different cold climate considerations were used in this storm water design. All proposed pipes were designed to be at least 18 inches in diameter. Also, all Grass Channels, with the exception of Grass Channels 5 and 6 have a longitudinal slope of greater than one percent but do not exceed the four percent maximum.

Chloride Management:

As the Sunnyside Brook has been identified as being stressed, but not impaired, by Chlorides, included in this permit application is a Chloride Management Plan. The Chloride Management Plan summarizes best management practices to control Chloride without decreasing desired levels of service.

See Appendix H for more information.

Schedule A

Fill out one Schedule A for each discharge point. For each Standard Treatment Practice (STP), Credit or Waiver specified, a STP, Credit, and/or Waiver worksheet must also be included.

Line	General Discharge Point Information	1
1	Project name	Colchester HES NH 5600(14)
2	Discharge point serial number (e.g. S/N 001)	S/N 001
3	Name of receiving water	Sunnyside Brook
4	Latitude & Longitude of discharge point (DD, MM, SS.ss)	44° 31' 2", 73° 10' 39"
5	Site area draining to discharge point (acres) = impervious + disturbed pervious	0.767
6	Drainage area of receiving water at discharge point (acres)	584.4
7 8	On-site impervious area included for permit coverage (New Impervious area contributing stormwater runoff to discharge point (acres) Redeveloped impervious area* contributing stormwater runoff to discharge point (acres)	0.039 0.170
9	Existing Impervious area* contributing stormwater runoff to discharge point (acres)	0.558
	*DO NOT include impervious area unless it has met the Vermont Stormwa	ter Treatment Standards 2002

Water Quality (0.9 inches) Treatment Standard (WQ)

10	STP used (e.g. Grass Channel O-3)	None. Site Balancing; see narrative.
11	Voluntary Stormwater Management Credits applied (e.g. Grass Channel Credit 3.5)	n/a

Groundwater Recharge Treatment Standard (Re)

12	Criterion applicable? (Yes or No) If No, indicate waiver applied	None. Site Balancing; see narrative.
13	STP used (e.g. Grass Channel O-3)	N/A
14	Voluntary Stormwater Management Credits applied (e.g. Grass Channel Credit 3.5)	N/A

Channel Protection (1-year) Treatment Standard (CP)

15	Criterion applicable? (Yes or No) If No, indicate waiver applied	No
16	Warm or Cold Fish Habitat Designation (see Vermont Water Quality Standards)	n/a
17	STP used (e.g. Wet Pond P-2)	None. Site Balancing; see narrative.

Overbank (10-year) Flood Protection Treatment Standard (Qp10)

18	Criterion applicable? (Yes or No) If No, indicate waiver applied	Yes; Decrease in post-development flow.
19	STP used (e.g. Dry Detention Pond LA-1)	N/A
20	Pre-development peak discharge rate (cfs)	77.9
21	Pre-routed, post-development peak discharge rate (cfs)	73.2
22	Routed, post-development peak discharge rate (cfs)	72.3

23	Criterion applicable? (Yes or No) If No, indicate waiver applied	No, Site is less than 10 acres
24	STP used (e.g. Dry Detention Pond LA-1)	N/A
25	Pre-development peak discharge rate (cfs)	N/A
26	Pre-routed, post-development peak discharge rate (cfs)	N/A
27	Routed, post-development peak discharge rate (cfs)	N/A

Schedule A

Fill out one Schedule A for each discharge point. For each Standard Treatment Practice (STP), Credit or Waiver specified, a STP, Credit, and/or Waiver worksheet must also be included.

Line	General Discharge Point Information	
1	Project name	Colchester HES NH 5600(14)
2	Discharge point serial number (e.g. S/N 001)	S/N 002
3	Name of receiving water	Sunnyside Brook
4	Latitude & Longitude of discharge point (DD, MM, SS.ss)	44° 30' 57", 73° 10' 44"
5	Site area draining to discharge point (acres) = impervious + disturbed pervious	1.063
6	Drainage area of receiving water at discharge point (acres)	584.4
On-site impervious area included for permit coverage (Round to nearest 0.01 acre)		

7	New Impervious area contributing stormwater runoff to discharge point (acres)	0.149
8	Redeveloped impervious area* contributing stormwater runoff to discharge point (acres)	0.078
9	Existing Impervious area* contributing stormwater runoff to discharge point (acres)	0.836

*DO NOT include impervious area unless it has met the Vermont Stormwater Treatment Standards 2002

Water Quality (0.9 inches) Treatment Standard (WQ)

10	STP used (e.g. Grass Channel O-3)	Grass Channel O-3; Site Balancing; see narrative.
11	Voluntary Stormwater Management Credits applied (e.g. Grass Channel Credit 3.5)	N/A

Groundwater Recharge Treatment Standard (Re)

12	Criterion applicable? (Yes or No) If No, indicate waiver applied	Yes; Site Balancing; see narrative.
13	STP used (e.g. Grass Channel O-3)	Grass Channel O-3
14	Voluntary Stormwater Management Credits applied (e.g. Grass Channel Credit 3.5)	N/A

Channel Protection (1-year) Treatment Standard (CP)

15	Criterion applicable? (Yes or No) If No, indicate waiver applied	No
16	Warm or Cold Fish Habitat Designation (see Vermont Water Quality Standards)	N/A
17	STP used (e.g. Wet Pond P-2)	None. Site Balancing; see narrative.

Overbank (10-year) Flood Protection Treatment Standard (Qp10)

18	Criterion applicable? (Yes or No) If No, indicate waiver applied	No; Site < 5 acres and has capacity for the 10 yr. storm.
19	STP used (e.g. Dry Detention Pond LA-1)	N/A
20	Pre-development peak discharge rate (cfs)	78.4
21	Pre-routed, post-development peak discharge rate (cfs)	73.5
22	Routed, post-development peak discharge rate (cfs)	72.9

23	Criterion applicable? (Yes or No) If No, indicate waiver applied	No; Site is less than 10 acres
24	STP used (e.g. Dry Detention Pond LA-1)	N/A
25	Pre-development peak discharge rate (cfs)	N/A
26	Pre-routed, post-development peak discharge rate (cfs)	N/A
27	Routed, post-development peak discharge rate (cfs)	N/A

Schedule A

Inne General Discharge Point Information 1 Project name 2 Discharge point serial number (e.g. S/N 001) 3 Name of receiving water 4 Latitude & Longitude of discharge point (DD, MM, SS.ss) 5 Site area draining to discharge point (acres) = impervious + disturbed pervious 6 Drainage area of receiving water at discharge point (acres) 7 New Impervious area contributing stormwater runoff to discharge point (acres) 8 Redeveloped impervious area* contributing stormwater runoff to discharge point (acres)	Colchester HES NH 5600(14) S/N 003 Sunnyside Brook 44° 30' 51", 73° 10' 44" 0.670 584.4 Round to nearest 0.01 acre)
2 Discharge point serial number (e.g. S/N 001) 3 Name of receiving water 4 Latitude & Longitude of discharge point (DD, MM, SS.ss) 5 Site area draining to discharge point (acres) = impervious + disturbed pervious 6 Drainage area of receiving water at discharge point (acres) On-site impervious area included for permit coverage (R 7 New Impervious area contributing stormwater runoff to discharge point (acres)	S/N 003 Sunnyside Brook 44° 30' 51", 73° 10' 44" 0.670 584.4 Round to nearest 0.01 acre)
 Latitude & Longitude of discharge point (DD, MM, SS.ss) Site area draining to discharge point (acres) = impervious + disturbed pervious Drainage area of receiving water at discharge point (acres) On-site impervious area included for permit coverage (R New Impervious area contributing stormwater runoff to discharge point (acres) 	44° 30' 51", 73° 10' 44" 0.670 584.4 Round to nearest 0.01 acre)
 Site area draining to discharge point (acres) = impervious + disturbed pervious Drainage area of receiving water at discharge point (acres) On-site impervious area included for permit coverage (R New Impervious area contributing stormwater runoff to discharge point (acres) 	0.670 584.4 Round to nearest 0.01 acre)
On-site impervious area included for permit coverage (R New Impervious area contributing stormwater runoff to discharge point (acres)	584.4 Round to nearest 0.01 acre)
On-site impervious area included for permit coverage (R New Impervious area contributing stormwater runoff to discharge point (acres)	Round to nearest 0.01 acre)
7 New Impervious area contributing stormwater runoff to discharge point (acres)	
New impervious area contributing stormwater ration to discharge point (acres)	0.044
8	0.044
⁸ Redeveloped impervious area* contributing stormwater runoff to discharge point (acres)	0.096
9 Existing Impervious area* contributing stormwater runoff to discharge point (acres)	0.530
*DO NOT include impervious area unless it has met the Vermont Stormwat	ter Treatment Standards 2002
Water Quality (0.9 inches) Treatment Standar	rd (WQ)
	Grass Channel O-3; Site Balancing; see narrative.
11 Voluntary Stormwater Management Credits applied (e.g. Grass Channel Credit 3.5)	N/A
Groundwater Recharge Treatment Standar	rd (Re)
12 Criterion applicable? (Yes or No) If No, indicate waiver applied	Yes; Site Balancing; see narrative.
13 STP used (e.g. Grass Channel O-3)	Grass Channel O-3
14 Voluntary Stormwater Management Credits applied (e.g. Grass Channel Credit 3.5)	N/A
Channel Protection (1-year) Treatment Stand	ard (CP)
15 Criterion applicable? (Yes or No) If No, indicate waiver applied	No
16 Warm or Cold Fish Habitat Designation (see Vermont Water Quality Standards)	N/A
17 STP used (e.g. Wet Pond P-2)	None. Site Balancing; see narrative.
Overbank (10-year) Flood Protection Treatment Sta	andard (Qp10)
	; Site < 5 acres and has capacity for the 10 yr. storm.
19 STP used (e.g. Dry Detention Pond LA-1)	N/A
20 Pre-development peak discharge rate (cfs)	77.5
21 Pre-routed, post-development peak discharge rate (cfs)	72.5
22 Routed, post-development peak discharge rate (cfs)	72.1
Extreme (100-year) Flood Protection Treatment Star	

23	Criterion applicable? (Yes or No) If No, indicate waiver applied	No; Site is less than 10 acres
24	STP used (e.g. Dry Detention Pond LA-1)	N/A
25	Pre-development peak discharge rate (cfs)	N/A
26	Pre-routed, post-development peak discharge rate (cfs)	N/A
27	Routed, post-development peak discharge rate (cfs)	N/A

Schedule A

Fil	l out one Schedule A for each discharge point. For each Standard Treatment Practice (STP), Credit or Waiver spe	cified, a STP, Credit, and/or Waiver worksheet must also be included.
Line	General Discharge Point Inform	ation
1	Project name	Colchester HES NH 5600(14)
2	Discharge point serial number (e.g. S/N 001)	S/N 004
3	Name of receiving water	Sunnyside Brook
4	Latitude & Longitude of discharge point (DD, MM, SS.ss)	44° 30' 47", 73° 10' 44"
5	Site area draining to discharge point (acres) = impervious + disturbed pervious	2.889
6	Drainage area of receiving water at discharge point (acres)	584.4
	On-site impervious area included for permit covera	age (Round to nearest 0.01 acre)
7	New Impervious area contributing stormwater runoff to discharge point (acres)	0.085
8	Redeveloped impervious area* contributing stormwater runoff to discharge point (acres)	0.528
9	Existing Impervious area* contributing stormwater runoff to discharge point (acres)	2.276
	*DO NOT include impervious area unless it has met the Vermont Stor	rmwater Treatment Standards 2002
	Water Quality (0.9 inches) Treatment Sta	andard (WQ)
10	STP used (e.g. Grass Channel O-3)	Grass Channel O-3
11	Voluntary Stormwater Management Credits applied (e.g. Grass Channel Credit 3.5)	None.
	Groundwater Recharge Treatment Sta	ndard (Re)
12	Criterion applicable? (Yes or No) If No, indicate waiver applied	Yes. Site Balancing; see narrative.
13	STP used (e.g. Grass Channel O-3)	Grass Channel O-3
14	Voluntary Stormwater Management Credits applied (e.g. Grass Channel Credit 3.5)	None.
	Channel Protection (1-year) Treatment S	itandard (CP)
15	Criterion applicable? (Yes or No) If No, indicate waiver applied	Yes.
16	Warm or Cold Fish Habitat Designation (see Vermont Water Quality Standards)	Cold Fish Habitat
17	STP used (e.g. Wet Pond P-2)	Dry Pond LA-1
	Overbank (10-year) Flood Protection Treatmer	nt Standard (On10)
18	Criterion applicable? (Yes or No) If No, indicate waiver applied	No; Site < 5 acres and has capacity for the 10 yr. storm.
19	STP used (e.g. Dry Detention Pond LA-1)	Dry Detention Pond #4
		68.6
20	Pre-development peak discharge rate (cfs)	
20 21	Pre-routed, post-development peak discharge rate (cfs)	61.2

23	Criterion applicable? (Yes or No) If No, indicate waiver applied	No; Site is less than 10 acres
24	STP used (e.g. Dry Detention Pond LA-1)	N/A
25	Pre-development peak discharge rate (cfs)	N/A
26	Pre-routed, post-development peak discharge rate (cfs)	N/A
27	Routed, post-development peak discharge rate (cfs)	N/A

Schedule A

Fill out one Schedule A for each discharge point. For each Standard Treatment Practice (STP), Credit or Waiver specified, a STP, Credit, and/or Waiver worksheet must also be included.					
Line	Line General Discharge Point Information				
1	Project name	Colchester HES NH 5600(14)			
2	Discharge point serial number (e.g. S/N 001)	S/N 005			
3	Name of receiving water	Sunnyside Brook			
4	Latitude & Longitude of discharge point (DD, MM, SS.ss)	44° 30' 40", 73° 10' 38"			
5	Site area draining to discharge point (acres) = impervious + disturbed pervious	0.188			
6	Drainage area of receiving water at discharge point (acres)	584.4			
	On-site impervious area included for permit covera	age (Round to nearest 0.01 acre)			
7	New Impervious area contributing stormwater runoff to discharge point (acres)	0.017			
8	Redeveloped impervious area* contributing stormwater runoff to discharge point (acres)	0.006			
9	Existing Impervious area* contributing stormwater runoff to discharge point (acres)	0.165			
	*DO NOT include impervious area unless it has met the Vermont Sto	rmwater Treatment Standards 2002			
10	Water Quality (0.9 inches) Treatment Sta				
10	STP used (e.g. Grass Channel O-3)	None. Site Balancing; see narrative.			
11	Voluntary Stormwater Management Credits applied (e.g. Grass Channel Credit 3.5)	N/A			
	Groundwater Recharge Treatment Sta	ndard (Re)			
12	Criterion applicable? (Yes or No) If No, indicate waiver applied	No. Site Balancing; see narrative.			
13	STP used (e.g. Grass Channel O-3)	N/A			
14	Voluntary Stormwater Management Credits applied (e.g. Grass Channel Credit 3.5)	N/A			
15	Channel Protection (1-year) Treatment S				
16	Criterion applicable? (Yes or No) If No, indicate waiver applied	No.			
17	Warm or Cold Fish Habitat Designation (see Vermont Water Quality Standards)	N/A			
	STP used (e.g. Wet Pond P-2)	None. Site Balancing; see narrative.			
	Overbank (10-year) Flood Protection Treatmer	nt Standard (Qp10)			
18	Criterion applicable? (Yes or No) If No, indicate waiver applied	No; Site < 5 acres and has capacity for the 10 yr. storm.			
19	STP used (e.g. Dry Detention Pond LA-1)	N/A			
20	Pre-development peak discharge rate (cfs)	23.3			
21	Pre-routed, post-development peak discharge rate (cfs)	23.4			
22	Routed, post-development peak discharge rate (cfs)	23.2			

23	Criterion applicable? (Yes or No) If No, indicate waiver applied	No; Site is less than 10 acres
24	STP used (e.g. Dry Detention Pond LA-1)	N/A
25	Pre-development peak discharge rate (cfs)	N/A
26	Pre-routed, post-development peak discharge rate (cfs)	N/A
27	Routed, post-development peak discharge rate (cfs)	N/A

Schedule A

Fill out one Schedule A for each discharge point. For each Standard Treatment Practice (STP), Credit or Waiver specified, a STP, Credit, and/or Waiver worksheet must also be included.

		, , ,
Line	General Discharge Point Informat	ion
1	Project name	Colchester HES NH 5600(14)
2	Discharge point serial number (e.g. S/N 001)	S/N 006
3	Name of receiving water	Sunnyside Brook
4	Latitude & Longitude of discharge point (DD, MM, SS.ss)	44° 30' 24", 73° 10' 41"
5	Site area draining to discharge point (acres) = impervious + disturbed pervious	0.621
6	Drainage area of receiving water at discharge point (acres)	584.4
	On-site impervious area included for permit coverag	e (Round to nearest 0.01 acre)
7	New Impervious area contributing stormwater runoff to discharge point (acres)	0.128
8	Redeveloped impervious area* contributing stormwater runoff to discharge point (acres)	0.092
9	Existing Impervious area* contributing stormwater runoff to discharge point (acres)	0.401
	*DO NOT include impervious area unless it has met the Vermont Storm	water Treatment Standards 2002
	Water Quality (0.9 inches) Treatment Stan	dard (WQ)
10	STP used (e.g. Grass Channel O-3)	None. Site Balancing; see narrative.
11	Voluntary Stormwater Management Credits applied (e.g. Grass Channel Credit 3.5)	N/A
	Groundwater Recharge Treatment Stand	dard (Re)
12	Criterion applicable? (Yes or No) If No, indicate waiver applied	No. Site Balancing; see narrative.
13	STP used (e.g. Grass Channel O-3)	N/A
14	Voluntary Stormwater Management Credits applied (e.g. Grass Channel Credit 3.5)	N/A

Channel Protection (1-year) Treatment Standard (CP)

15	Criterion applicable? (Yes or No) If No, indicate waiver applied	No.
16	Warm or Cold Fish Habitat Designation (see Vermont Water Quality Standards)	N/A
17	STP used (e.g. Wet Pond P-2)	None. Site Balancing; see narrative.

Overbank (10-year) Flood Protection Treatment Standard (Qp10)

18	Criterion applicable? (Yes or No) If No, indicate waiver applied	No; Site < 5 acres and has capacity for the 10 yr. storm.
19	STP used (e.g. Dry Detention Pond LA-1)	N/A
20	Pre-development peak discharge rate (cfs)	76.7
21	Pre-routed, post-development peak discharge rate (cfs)	77.6
22	Routed, post-development peak discharge rate (cfs)	77.3

23	Criterion applicable? (Yes or No) If No, indicate waiver applied	No; Site is less than 10 acres
24	STP used (e.g. Dry Detention Pond LA-1)	N/A
25	Pre-development peak discharge rate (cfs)	N/A
26	Pre-routed, post-development peak discharge rate (cfs)	N/A
27	Routed, post-development peak discharge rate (cfs)	N/A

Schedule A

Fil	l out one Schedule A for each discharge point. For each Standard Treatment Practice (STP), Credit or Waiver sp	ecified, a STP, Credit, and/or Waiver worksheet must also be included.
Line	General Discharge Point Inform	nation
1	Project name	Colchester HES NH 5600(14)
2	Discharge point serial number (e.g. S/N 001)	S/N 007
3	Name of receiving water	Sunnyside Brook
4	Latitude & Longitude of discharge point (DD, MM, SS.ss)	44° 30' 15", 73° 10' 43"
5	Site area draining to discharge point (acres) = impervious + disturbed pervious	2.186
6	Drainage area of receiving water at discharge point (acres)	584.4
	On-site impervious area included for permit cover	cage (Round to nearest 0.01 acre)
7	New Impervious area contributing stormwater runoff to discharge point (acres)	0.520
8	Redeveloped impervious area* contributing stormwater runoff to discharge point (acres)	1.282
9	Existing Impervious area* contributing stormwater runoff to discharge point (acres)	0.384
	*DO NOT include impervious area unless it has met the Vermont St	ormwater Treatment Standards 2002
	Water Quality (0.9 inches) Treatment S	tandard (WO)
10	STP used (e.g. Grass Channel O-3)	Grass Channel O-3
11	Voluntary Stormwater Management Credits applied (e.g. Grass Channel Credit 3.5)	None.
	Groundwater Recharge Treatment St	andard (Re)
12	Criterion applicable? (Yes or No) If No, indicate waiver applied	Yes. Site Balancing; see narrative.
13	STP used (e.g. Grass Channel O-3)	Grass Channel O-3
14	Voluntary Stormwater Management Credits applied (e.g. Grass Channel Credit 3.5)	N/A
	Channel Protection (1-year) Treatment	Standard (CP)
15	Criterion applicable? (Yes or No) If No, indicate waiver applied	No
16	Warm or Cold Fish Habitat Designation (see Vermont Water Quality Standards)	N/A
17	STP used (e.g. Wet Pond P-2)	None. Site Balancing; see narrative.
	Overbank (10-year) Flood Protection Treatme	ent Standard (Qp10)
18	Criterion applicable? (Yes or No) If No, indicate waiver applied	No; Site < 5 acres and has capacity for the 10 yr. storm.
19	STP used (e.g. Dry Detention Pond LA-1)	Dry Detention Pond #7
20	Pre-development peak discharge rate (cfs)	12.1
21	Pre-routed, post-development peak discharge rate (cfs)	16.1
22	Routed, post-development peak discharge rate (cfs)	12.5
	Extreme (100-year) Flood Protection Treatmer	nt Standard (Qp100)
23	Criterion applicable? (Yes or No) If No, indicate waiver applied	No; Site is less than 10 acres
~ .		· ·

23	Criterion applicable? (Yes or No) If No, indicate waiver applied	No; Site is less than 10 acres
24	STP used (e.g. Dry Detention Pond LA-1)	N/A
25	Pre-development peak discharge rate (cfs)	N/A
26	Pre-routed, post-development peak discharge rate (cfs)	N/A
27	Routed, post-development peak discharge rate (cfs)	N/A

Schedule A

Fill	out one Schedule A for each discharge point. For each Standard Treatment Practice (STP), Credit or Waiver spec	ified, a STP, Credit, and/or Waiver worksheet must also be included.
Line	General Discharge Point Informa	ation
1	Project name	Colchester HES NH 5600(14)
2	Discharge point serial number (e.g. S/N 001)	S/N 008
3	Name of receiving water	Sunnyside Brook
4	Latitude & Longitude of discharge point (DD, MM, SS.ss)	44° 30' 15", 73° 10' 39"
5	Site area draining to discharge point (acres) = impervious + disturbed pervious	2.435
6	Drainage area of receiving water at discharge point (acres)	584.4
	On-site impervious area included for permit covera	ge (Round to nearest 0.01 acre)
7	New Impervious area contributing stormwater runoff to discharge point (acres)	0.594
8	Redeveloped impervious area* contributing stormwater runoff to discharge point (acres)	0.951
9	Existing Impervious area* contributing stormwater runoff to discharge point (acres)	0.890
	*DO NOT include impervious area unless it has met the Vermont Stor	mwater Treatment Standards 2002
	Water Quality (0.9 inches) Treatment Sta	indard (WQ)
10	STP used (e.g. Grass Channel O-3)	Grass Channel O-3
11	Voluntary Stormwater Management Credits applied (e.g. Grass Channel Credit 3.5)	None.
	Groundwater Recharge Treatment Sta	ndard (Re)
12	Criterion applicable? (Yes or No) If No, indicate waiver applied	Yes. Site Balancing; see narrative.
13	STP used (e.g. Grass Channel O-3)	Grass Channel O-3
14	Voluntary Stormwater Management Credits applied (e.g. Grass Channel Credit 3.5)	N/A
	Channel Protection (1-year) Treatment S	tandard (CP)
15	Criterion applicable? (Yes or No) If No, indicate waiver applied	No
16	Warm or Cold Fish Habitat Designation (see Vermont Water Quality Standards)	N/A
17	STP used (e.g. Wet Pond P-2)	None. Site Balancing; see narrative.
	Overbank (10-year) Flood Protection Treatmer	at Standard (Qp10)
18	Criterion applicable? (Yes or No) If No, indicate waiver applied	No; Site < 5 acres and has capacity for the 10 yr. storm.
19	STP used (e.g. Dry Detention Pond LA-1)	Dry Detention Pond #8
20	Pre-development peak discharge rate (cfs)	50.5
21	Pre-routed, post-development peak discharge rate (cfs)	51.5
22	Routed, post-development peak discharge rate (cfs)	51.0
	Extreme (100-year) Flood Protection Treatment	Standard (Qp100)
23	Criterion applicable? (Yes or No) If No, indicate waiver applied	No; Site is less than 10 acres
24	STP used (e.g. Dry Detention Pond LA-1)	N/A
	F	

25	Criterion applicable? (Yes or No) If No, indicate waiver applied	No; Site is less than 10 acres
24	STP used (e.g. Dry Detention Pond LA-1)	N/A
25	Pre-development peak discharge rate (cfs)	N/A
26	Pre-routed, post-development peak discharge rate (cfs)	N/A
27	Routed, post-development peak discharge rate (cfs)	N/A

007

Page 1 of 2 Version: 9/06

Located in drainage area for S/N:

WQ Volume and Modified Curve Number Calculation for Water Quality Treatment in <u>Flow-Based Practice</u>

Use this worksheet to calculate your WQv if you need to determine the Peak Q for the WQ storm (i.e. designing a grass channel, flow-splitter or other flow based practice) and you are not using any of the site design credits in section 3 of the 2002 VSWMM. See page 2 for "Calculating Peak WQ Discharge Rate (0.9" storm) using the Modified Curve Number." Please note that in the case of grass channels you must include any off-site area draining to the practice as this will affect the peak discharge rate which will ultimately affect the hydraulics, and thus residence time, in your channel.

		value/calculation	on units
Area draining to practice	A=	1.23	acres
Impervious area		0.35	acres
Percent Impervious Area = [(line 2/line 1) * 100] =	I =	28.46	% (whole #)
Precipitation	P =	0.9	inches
Runoff coefficient calculation = (0.05 + (0.009*I))	Rv =	0.306	
WQ Volume (in watershed inches) Calculation =($P *$	Rv) =	0.275	Qa (watershed inches, a.k.a. inches of rur
Minimum WQ Volume ¹		0.2	watershed inches
Enter the greater of line 6 or line 7	WQv =	0.275	watershed inches
WQ Volume Calculation = (line 8 *A)/12 =	WQv =	0.028	ac. ft.
WQ Volume Calculation = (line 9 * 43560) =	WQv =	1230	cu. ft.

Notes:

1: Sites with low impervious cover (~19%) but that do not employ a **significant** use of the stormwater design credits in Section 3 of the VSWMM are required to treat the minimum water quality volume of 0.2 watershed inches. Sites that have a **significant** portion of their impervious cover addressed via the stormwater credits (section 3 of the VSWMM) will be able to reduce this WQv and will only be required to treat the volume calculated on the "WQ Volume (with credit reduction)" worksheet which will be less than the 0.2 watershed inches.

Page 2 of 2 Version: 9/06

For the area draining to*: Grass Channel 1 (O-3) Located in drainage area for S/N:

007

Calculating Peak WQ Peak Discharge Rate (0.9" storm) using the Modified Curve Number

Because NRCS methods underestimate the peak discharge for rainfall events of less than 2", simply plugging in 0.9" of rainfall into your hydrologic model with the standard curve numbers will not produce the correct peak discharge during the WQv storm, nor will it produce a volume of runoff equivalent to that which you have calculated using the WQv formula (WQv = P*Rv*A/12). In order to calculate the peak discharge for the 0.9" storm, a modified curve number must be calculated. This modified curve number is based on the runoff (in inches) calculated using the short cut method formula (WQv = P*Rv) that is also the basis of the familiar WQv calculations provided in the 2002 VSWMM (and on the WQv calculation worksheets). Essentially, the curve number that is calculated using the methods below is the curve number that will generate the volume of runoff calculated using the WQv formula.

Above, you should have calculated the WQv in watershed inches draining to the facility/practice for which you need to calculate the WQpeak discharge. As provided in the guidance listed on the grass channel worksheet, please remember that the WQv calculation should include runoff from on-site as well as off-site area draining to the grass channel since this will have an impact on the channel hydraulics and thus the velocity and residence time.

Steps:

2.

1. Transfer information from WQv calculation worksheets.

Enter the Qa (line 8 from WQv sheet)				
	Qa	=	0.275	inches
Enter the area (site +off-site draining to practice) used in calculating the p	ercent	impervio	us (I)	
	А	=	1.2	acres
Use the following equation to calculate a corresponding curve number				
where	Р	=	0.9	inches
$\mathrm{CN} = 1000 / (10 + (5^*\mathrm{P}) + (10^*\mathrm{Qa}) - (10^*(\mathrm{Qa^{2}} + (1.25^*\mathrm{Qa^*P}))^{\circ}0.5))$				
	CN	=	90.6	

3. If you are using hand hydrologic runoff calculations, use the computed CN above along with your calculated time of concentration and the drainage area (A) to calculate the peak discharge (Qwq) for the water quality storm using the TR-55 Graphical Peak Discharge Method.

OR

3. If you are using a computer aided hydrologic model, simply revise the curve number for your subwatershed(s) draining to the practice using the curve number calculated above; the computed curve number should be applied to the total area (A) used in the WQv calcuation. As a check, you should note that now when you run the 0.9" storm, your runoff depth should be roughly equal to Qa (WQ runoff in inches) and your total runoff volume roughly equal to your WQv (in ac. ft.). If this is not the case, make sure that the time span for your modelling run is long enough to capture the entire storm. Small variations are likely due to having to round your computed CN to a whole number. Remember that for storms larger than 2", you do not need to use the modified curve number and you should calculate your composite curve number based on the accepted values for different types of land-use (see TR-55).

Page 1 of 2 Version: 9/06

For the area draining to*: Grass Channel 4 (O-3) from On-site Area Located in drainage area for S/N: 008

WQ Volume and Modified Curve Number Calculation for Water Quality Treatment in Flow-Based Practice

Use this worksheet to calculate your WQv if you need to determine the Peak Q for the WQ storm (i.e. designing a grass channel, flow-splitter or other flow based practice) and you are not using any of the site design credits in section 3 of the 2002 VSWMM. See page 2 for "Calculating Peak WQ Discharge Rate (0.9" storm) using the Modified Curve Number." Please note that in the case of grass channels you must include any off-site area draining to the practice as this will affect the peak discharge rate which will ultimately affect the hydraulics, and thus residence time, in your channel.

e		value/calculation	on units
Area draining to practice	A=	1.36	acres
Impervious area		1.00	acres
Percent Impervious Area = [(line 2/line 1) * 100] =	I =	73.53	% (whole #)
Precipitation	P =	0.9	inches
Runoff coefficient calculation = (0.05 + (0.009*I))	Rv =	0.712	
WQ Volume (in watershed inches) Calculation =($P *$	Rv) =	0.641	Qa (watershed inches, a.k.a. inches of run
Minimum WQ Volume ¹		0.2	watershed inches
Enter the greater of line 6 or line 7	WQv =	0.641	watershed inches
WQ Volume Calculation = (line 8 *A)/12 =	WQv =	0.073	ac. ft.
WQ Volume Calculation = (line 9 * 43560) =	WQv =	3162	cu. ft.

Notes:

1: Sites with low impervious cover (~19%) but that do not employ a significant use of the stormwater design credits in Section 3 of the VSWMM are required to treat the minimum water quality volume of 0.2 watershed inches. Sites that have a significant portion of their impervious cover addressed via the stormwater credits (section 3 of the VSWMM) will be able to reduce this WQv and will only be required to treat the volume calculated on the "WQ Volume (with credit reduction)" worksheet which will be less than the 0.2 watershed inches.

Page 2 of 2 Version: 9/06

For the area draining to*: Grass Channel 4 (O-3) from On-site Area

Located in drainage area for S/N:

008

Calculating Peak WQ Peak Discharge Rate (0.9" storm) using the Modified Curve Number

Because NRCS methods underestimate the peak discharge for rainfall events of less than 2", simply plugging in 0.9" of rainfall into your hydrologic model with the standard curve numbers will not produce the correct peak discharge during the WQv storm, nor will it produce a volume of runoff equivalent to that which you have calculated using the WQv formula (WQv = $P^*Rv^*A/12$). In order to calculate the peak discharge for the 0.9" storm, a modified curve number must be calculated. This modified curve number is based on the runoff (in inches) calculated using the short cut method formula (WQv = P^*Rv) that is also the basis of the familiar WQv calculations provided in the 2002 VSWMM (and on the WQv calculation worksheets). Essentially, the curve number that is calculated using the methods below is the curve number that will generate the volume of runoff calculated using the WQv formula.

Above, you should have calculated the **WQv in watershed inches draining to the facility/practice** for which you need to calculate the WQpeak discharge. As provided in the guidance listed on the grass channel worksheet, please remember that the WQv calculation should include runoff from on-site as well as **off-site area** draining to the grass channel since this will have an impact on the channel hydraulics and thus the velocity and residence time.

Steps:

2.

1. Transfer information from WQv calculation worksheets.

Enter the Qa (line 8 from WQv sheet)					
	Qa	=		0.641	inches
Enter the area (site +off-site draining to practice) used in calculating the	percer	nt imp	erviou	s (I)	
	А	=		1.4	acres
Use the following equation to calculate a corresponding curve number					
where	e P	=		0.9	inches
CN = 1000/(10 +(5*P)+(10*Qa) - (10*(Qa^2 + (1.25*Qa*P))^0.5))					
	CN	1 =		97.4	

3. If you are using **hand hydrologic runoff calculations**, use the computed CN above along with your calculated time of concentration and the drainage area (A) to calculate the peak discharge (Qwq) for the water quality storm using the TR-55 Graphical Peak Discharge Method.

OR

3. If you are using a computer aided hydrologic model, simply revise the curve number for your subwatershed(s) draining to the practice using the curve number calculated above; the computed curve number should be applied to the total area (A) used in the WQv calcuation. As a check, you should note that now when you run the 0.9" storm, your runoff depth should be roughly equal to Qa (WQ runoff in inches) and your total runoff volume roughly equal to your WQv (in ac. ft.). If this is not the case, make sure that the time span for your modelling run is long enough to capture the entire storm. Small variations are likely due to having to round your computed CN to a whole number. Remember that for storms larger than 2", you do not need to use the modified curve number and you should calculate your composite curve number based on the accepted values for different types of land-use (see TR-55).

008

Page 1 of 2 Version: 9/06

For the area draining to*: Grass Channel 4 (O-3) from GC5

Located in drainage area for S/N:

WQ Volume and Modified Curve Number Calculation for Water Quality Treatment in <u>Flow-Based Practice</u>

Use this worksheet to calculate your WQv if you need to determine the Peak Q for the WQ storm (i.e. designing a grass channel, flow-splitter or other flow based practice) and you are not using any of the site design credits in section 3 of the 2002 VSWMM. See page 2 for "Calculating Peak WQ Discharge Rate (0.9" storm) using the Modified Curve Number." Please note that in the case of grass channels you must include any off-site area draining to the practice as this will affect the peak discharge rate which will ultimately affect the hydraulics, and thus residence time, in your channel.

e		value/calculatio	on units
Area draining to practice	A=	0.12	acres
Impervious area		0.05	acres
Percent Impervious Area = [(line 2/line 1) * 100] =	I =	43.48	% (whole #)
Precipitation	P =	0.9	inches
Runoff coefficient calculation = (0.05 + (0.009*I))	Rv =	0.441	
WQ Volume (in watershed inches) Calculation =($P *$	Rv) =	0.397	Qa (watershed inches, a.k.a. inches of rur
Minimum WQ Volume ¹		0.2	watershed inches
Enter the greater of line 6 or line 7	WQv =	0.397	watershed inches
WQ Volume Calculation = (line 8 *A)/12 =	WQv =	0.004	ac. ft.
WQ Volume Calculation = (line 9 * 43560) =	WQv =	166	cu. ft.

Notes:

1: Sites with low impervious cover (~19%) but that do not employ a **significant** use of the stormwater design credits in Section 3 of the VSWMM are required to treat the minimum water quality volume of 0.2 watershed inches. Sites that have a **significant** portion of their impervious cover addressed via the stormwater credits (section 3 of the VSWMM) will be able to reduce this WQv and will only be required to treat the volume calculated on the "WQ Volume (with credit reduction)" worksheet which will be less than the 0.2 watershed inches.

For the area draining to*: Grass Channel 4 (O-3) from GC5

Located in drainage area for S/N:

008

Calculating Peak WQ Peak Discharge Rate (0.9" storm) using the Modified Curve Number

Because NRCS methods underestimate the peak discharge for rainfall events of less than 2", simply plugging in 0.9" of rainfall into your hydrologic model with the standard curve numbers will not produce the correct peak discharge during the WQv storm, nor will it produce a volume of runoff equivalent to that which you have calculated using the WQv formula (WQv = P*Rv*A/12). In order to calculate the peak discharge for the 0.9" storm, a modified curve number must be calculated. This modified curve number is based on the runoff (in inches) calculated using the short cut method formula (WQv = P*Rv) that is also the basis of the familiar WQv calculations provided in the 2002 VSWMM (and on the WQv calculation worksheets). Essentially, the curve number that is calculated using the methods below is the curve number that will generate the volume of runoff calculated using the WQv formula.

Above, you should have calculated the **WQv in watershed inches draining to the facility/practice** for which you need to calculate the WQpeak discharge. As provided in the guidance listed on the grass channel worksheet, please remember that the WQv calculation should include runoff from on-site as well as **off-site area** draining to the grass channel since this will have an impact on the channel hydraulics and thus the velocity and residence time.

Steps:

2.

Page 2 of 2

Version: 9/06

1. Transfer information from WQv calculation worksheets.

Enter the Qa (line 8 from WQv sheet)				_
	Qa	=	0.397	inches
Enter the area (site +off-site draining to practice) used in calculating the pe	ercent i	mpervious	s (I)	
	А	=	0.1	acres
Use the following equation to calculate a corresponding curve number				_
where	Р	=	0.9	inches
$\label{eq:cn} \text{CN} = 1000/(10 + (5^{*}\text{P}) + (10^{*}\text{Qa}) - (10^{*}(\text{Qa}^{2} + (1.25^{*}\text{Qa}^{*}\text{P}))^{\circ}0.5))$				
	CN =		93.5]

3. If you are using **hand hydrologic runoff calculations**, use the computed CN above along with your calculated time of concentration and the drainage area (A) to calculate the peak discharge (Qwq) for the water quality storm using the TR-55 Graphical Peak Discharge Method.

OR

3. If you are using a computer aided hydrologic model, simply revise the curve number for your subwatershed(s) draining to the practice using the curve number calculated above; the computed curve number should be applied to the total area (A) used in the WQv calcuation. As a check, you should note that now when you run the 0.9" storm, your runoff depth should be roughly equal to Qa (WQ runoff in inches) and your total runoff volume roughly equal to your WQv (in ac. ft.). If this is not the case, make sure that the time span for your modelling run is long enough to capture the entire storm. Small variations are likely due to having to round your computed CN to a whole number. Remember that for storms larger than 2", you do not need to use the modified curve number and you should calculate your composite curve number based on the accepted values for different types of land-use (see TR-55).

Page 1 of 2 Version: 9/06

For the area draining to*: Grass Channel 4 (O-3) from OS8a 008

Located in drainage area for S/N:

WQ Volume and Modified Curve Number Calculation for Water Quality Treatment in Flow-Based Practice

Use this worksheet to calculate your WQv if you need to determine the Peak Q for the WQ storm (i.e. designing a grass channel, flow-splitter or other flow based practice) and you are not using any of the site design credits in section 3 of the 2002 VSWMM. See page 2 for "Calculating Peak WQ Discharge Rate (0.9" storm) using the Modified Curve Number." Please note that in the case of grass channels you must include any off-site area draining to the practice as this will affect the peak discharge rate which will ultimately affect the hydraulics, and thus residence time, in your channel.

e		value/calculatio	on units
Area draining to practice	A=	2.56	acres
Impervious area		1.22	acres
Percent Impervious Area = [(line 2/line 1) * 100] =	I =	47.66	% (whole #)
Precipitation	P =	0.9	inches
Runoff coefficient calculation = (0.05 + (0.009*I))	Rv =	0.479	
WQ Volume (in watershed inches) Calculation =($P *$	Rv) =	0.431	Qa (watershed inches, a.k.a. inches of run
Minimum WQ Volume ¹		0.2	watershed inches
Enter the greater of line 6 or line 7	WQv =	0.431	watershed inches
WQ Volume Calculation = (line 8 *A)/12 =	WQv =	0.092	ac. ft.
WQ Volume Calculation = (line 9 * 43560) =	WQv =	4005	cu. ft.

Notes:

1: Sites with low impervious cover (~19%) but that do not employ a significant use of the stormwater design credits in Section 3 of the VSWMM are required to treat the minimum water quality volume of 0.2 watershed inches. Sites that have a significant portion of their impervious cover addressed via the stormwater credits (section 3 of the VSWMM) will be able to reduce this WQv and will only be required to treat the volume calculated on the "WQ Volume (with credit reduction)" worksheet which will be less than the 0.2 watershed inches.

For the area draining to*: Grass Channel 4 (O-3) from OS8a

Located in drainage area for S/N:

008

Calculating Peak WQ Peak Discharge Rate (0.9" storm) using the Modified Curve Number

Because NRCS methods underestimate the peak discharge for rainfall events of less than 2", simply plugging in 0.9" of rainfall into your hydrologic model with the standard curve numbers will not produce the correct peak discharge during the WQv storm, nor will it produce a volume of runoff equivalent to that which you have calculated using the WQv formula (WQv = $P^*Rv^*A/12$). In order to calculate the peak discharge for the 0.9" storm, a modified curve number must be calculated. This modified curve number is based on the runoff (in inches) calculated using the short cut method formula (WQv = P^*Rv) that is also the basis of the familiar WQv calculations provided in the 2002 VSWMM (and on the WQv calculation worksheets). Essentially, the curve number that is calculated using the methods below is the curve number that will generate the volume of runoff calculated using the WQv formula.

Above, you should have calculated the **WQv in watershed inches draining to the facility/practice** for which you need to calculate the WQpeak discharge. As provided in the guidance listed on the grass channel worksheet, please remember that the WQv calculation should include runoff from on-site as well as **off-site area** draining to the grass channel since this will have an impact on the channel hydraulics and thus the velocity and residence time.

Steps:

2.

Page 2 of 2

Version: 9/06

1. Transfer information from WQv calculation worksheets.

Enter the Qa (line 8 from WQv sheet)				
	Qa	=	0.431	inches
Enter the area (site +off-site draining to practice) used in calculating the p	ercent	impervious	s (I)	
	А	=	2.6	acres
Use the following equation to calculate a corresponding curve number				_
where	Р	=	0.9	inches
$CN = 1000/(10 + (5^{*}P) + (10^{*}Qa) - (10^{*}(Qa^{2} + (1.25^{*}Qa^{*}P))^{0.5}))$				
	CN =		94.2]

3. If you are using **hand hydrologic runoff calculations**, use the computed CN above along with your calculated time of concentration and the drainage area (A) to calculate the peak discharge (Qwq) for the water quality storm using the TR-55 Graphical Peak Discharge Method.

OR

3. If you are using a computer aided hydrologic model, simply revise the curve number for your subwatershed(s) draining to the practice using the curve number calculated above; the computed curve number should be applied to the total area (A) used in the WQv calcuation. As a check, you should note that now when you run the 0.9" storm, your runoff depth should be roughly equal to Qa (WQ runoff in inches) and your total runoff volume roughly equal to your WQv (in ac. ft.). If this is not the case, make sure that the time span for your modelling run is long enough to capture the entire storm. Small variations are likely due to having to round your computed CN to a whole number. Remember that for storms larger than 2", you do not need to use the modified curve number and you should calculate your composite curve number based on the accepted values for different types of land-use (see TR-55).

Page 1 of 2 Version: 9/06

For the area draining to*: Grass Channel 4 (O-3) from OS8c 008

Located in drainage area for S/N:

WQ Volume and Modified Curve Number Calculation for Water Quality Treatment in Flow-Based Practice

Use this worksheet to calculate your WQv if you need to determine the Peak Q for the WQ storm (i.e. designing a grass channel, flow-splitter or other flow based practice) and you are not using any of the site design credits in section 3 of the 2002 VSWMM. See page 2 for "Calculating Peak WQ Discharge Rate (0.9" storm) using the Modified Curve Number." Please note that in the case of grass channels you must include any off-site area draining to the practice as this will affect the peak discharge rate which will ultimately affect the hydraulics, and thus residence time, in your channel.

2		value/calculation	units
Area draining to practice	A=	0.30	acres
Impervious area		0.02	acres
Percent Impervious Area = [(line 2/line 1) * 100] =	I =	6.67	% (whole #)
Precipitation	P =	0.9	inches
Runoff coefficient calculation = (0.05 + (0.009*I))	Rv =	0.110	1
WQ Volume (in watershed inches) Calculation =($P *$	Rv) =	0.099	Qa (watershed inches, a.k.a. inches of run
Minimum WQ Volume ¹		0.2	watershed inches
Enter the greater of line 6 or line 7	WQv =	0.200	watershed inches
WQ Volume Calculation = (line 8 *A)/12 =	WQv =	0.005	ac. ft.
WQ Volume Calculation = (line 9 * 43560) =	WQv =	218	cu. ft.

Notes:

1: Sites with low impervious cover (~19%) but that do not employ a significant use of the stormwater design credits in Section 3 of the VSWMM are required to treat the minimum water quality volume of 0.2 watershed inches. Sites that have a significant portion of their impervious cover addressed via the stormwater credits (section 3 of the VSWMM) will be able to reduce this WQv and will only be required to treat the volume calculated on the "WQ Volume (with credit reduction)" worksheet which will be less than the 0.2 watershed inches.

For the area draining to*: Grass Channel 4 (O-3) from OS8c

Located in drainage area for S/N:

008

Calculating Peak WQ Peak Discharge Rate (0.9" storm) using the Modified Curve Number

Because NRCS methods underestimate the peak discharge for rainfall events of less than 2", simply plugging in 0.9" of rainfall into your hydrologic model with the standard curve numbers will not produce the correct peak discharge during the WQv storm, nor will it produce a volume of runoff equivalent to that which you have calculated using the WQv formula (WQv = $P^*Rv^*A/12$). In order to calculate the peak discharge for the 0.9" storm, a modified curve number must be calculated. This modified curve number is based on the runoff (in inches) calculated using the short cut method formula (WQv = P^*Rv) that is also the basis of the familiar WQv calculations provided in the 2002 VSWMM (and on the WQv calculation worksheets). Essentially, the curve number that is calculated using the methods below is the curve number that will generate the volume of runoff calculated using the WQv formula.

Above, you should have calculated the **WQv in watershed inches draining to the facility/practice** for which you need to calculate the WQpeak discharge. As provided in the guidance listed on the grass channel worksheet, please remember that the WQv calculation should include runoff from on-site as well as **off-site area** draining to the grass channel since this will have an impact on the channel hydraulics and thus the velocity and residence time.

Steps:

2.

Page 2 of 2

Version: 9/06

1. Transfer information from WQv calculation worksheets.

Enter the Qa (line 8 from WQv sheet)				_
	Qa	=	0.200	inches
Enter the area (site +off-site draining to practice) used in calculating the pe	ercent i	mpervious	5 (I)	
	А	=	0.3	acres
Use the following equation to calculate a corresponding curve number				_
where	Р	=	0.9	inches
$\label{eq:cn} \text{CN} = 1000/(10 + (5^*\text{P}) + (10^*\text{Qa}) - (10^*(\text{Qa}^2 + (1.25^*\text{Qa}^*\text{P}))^{\circ}0.5))$				
	CN =		88.1]

3. If you are using **hand hydrologic runoff calculations**, use the computed CN above along with your calculated time of concentration and the drainage area (A) to calculate the peak discharge (Qwq) for the water quality storm using the TR-55 Graphical Peak Discharge Method.

OR

3. If you are using a computer aided hydrologic model, simply revise the curve number for your subwatershed(s) draining to the practice using the curve number calculated above; the computed curve number should be applied to the total area (A) used in the WQv calcuation. As a check, you should note that now when you run the 0.9" storm, your runoff depth should be roughly equal to Qa (WQ runoff in inches) and your total runoff volume roughly equal to your WQv (in ac. ft.). If this is not the case, make sure that the time span for your modelling run is long enough to capture the entire storm. Small variations are likely due to having to round your computed CN to a whole number. Remember that for storms larger than 2", you do not need to use the modified curve number and you should calculate your composite curve number based on the accepted values for different types of land-use (see TR-55).

Page 1 of 2 Version: 9/06

For the area draining to*: Grass Channel 4 (O-3) from OS8d 008

Located in drainage area for S/N:

WQ Volume and Modified Curve Number Calculation for Water Quality Treatment in Flow-Based Practice

Use this worksheet to calculate your WQv if you need to determine the Peak Q for the WQ storm (i.e. designing a grass channel, flow-splitter or other flow based practice) and you are not using any of the site design credits in section 3 of the 2002 VSWMM. See page 2 for "Calculating Peak WQ Discharge Rate (0.9" storm) using the Modified Curve Number." Please note that in the case of grass channels you must include any off-site area draining to the practice as this will affect the peak discharge rate which will ultimately affect the hydraulics, and thus residence time, in your channel.

2		value/calculation	n units
Area draining to practice	A=	2.19	acres
Impervious area		0.56	acres
Percent Impervious Area = [(line 2/line 1) * 100] =	I =	25.57	% (whole #)
Precipitation	P =	0.9	inches
Runoff coefficient calculation = (0.05 + (0.009*I))	Rv =	0.280	1
WQ Volume (in watershed inches) Calculation =(P *	⁻ Rv) =	0.252	Qa (watershed inches, a.k.a. inches of ru
Minimum WQ Volume ¹		0.2	watershed inches
Enter the greater of line 6 or line 7	WQv =	0.252	watershed inches
WQ Volume Calculation = (line 8 *A)/12 =	WQv =	0.046	ac. ft.
WQ Volume Calculation = (line 9 * 43560) =	WQv =	2004	cu. ft.

Notes:

1: Sites with low impervious cover (~19%) but that do not employ a significant use of the stormwater design credits in Section 3 of the VSWMM are required to treat the minimum water quality volume of 0.2 watershed inches. Sites that have a significant portion of their impervious cover addressed via the stormwater credits (section 3 of the VSWMM) will be able to reduce this WQv and will only be required to treat the volume calculated on the "WQ Volume (with credit reduction)" worksheet which will be less than the 0.2 watershed inches.

For the area draining to*: Grass Channel 4 (O-3) from OS8d

Located in drainage area for S/N:

008

Calculating Peak WQ Peak Discharge Rate (0.9" storm) using the Modified Curve Number

Because NRCS methods underestimate the peak discharge for rainfall events of less than 2", simply plugging in 0.9" of rainfall into your hydrologic model with the standard curve numbers will not produce the correct peak discharge during the WQv storm, nor will it produce a volume of runoff equivalent to that which you have calculated using the WQv formula (WQv = $P^*Rv^*A/12$). In order to calculate the peak discharge for the 0.9" storm, a modified curve number must be calculated. This modified curve number is based on the runoff (in inches) calculated using the short cut method formula (WQv = P^*Rv) that is also the basis of the familiar WQv calculations provided in the 2002 VSWMM (and on the WQv calculation worksheets). Essentially, the curve number that is calculated using the methods below is the curve number that will generate the volume of runoff calculated using the WQv formula.

Above, you should have calculated the **WQv in watershed inches draining to the facility/practice** for which you need to calculate the WQpeak discharge. As provided in the guidance listed on the grass channel worksheet, please remember that the WQv calculation should include runoff from on-site as well as **off-site area** draining to the grass channel since this will have an impact on the channel hydraulics and thus the velocity and residence time.

Steps:

2.

1. Transfer information from WQv calculation worksheets.

Enter the Qa (line 8 from WQv sheet)				
	Qa	=	0.252	inches
Enter the area (site +off-site draining to practice) used in calculating the pe	ercent i	mpervious	s (I)	
	А	=	2.2	acres
Use the following equation to calculate a corresponding curve number				_
where	Р	=	0.9	inches
$\label{eq:cn} \text{CN} = 1000/(10 + (5^*\text{P}) + (10^*\text{Qa}) - (10^*(\text{Qa}^2 + (1.25^*\text{Qa}^*\text{P}))^{\diamond}0.5))$				
	CN =		89.9]

3. If you are using **hand hydrologic runoff calculations**, use the computed CN above along with your calculated time of concentration and the drainage area (A) to calculate the peak discharge (Qwq) for the water quality storm using the TR-55 Graphical Peak Discharge Method.

OR

3. If you are using a computer aided hydrologic model, simply revise the curve number for your subwatershed(s) draining to the practice using the curve number calculated above; the computed curve number should be applied to the total area (A) used in the WQv calcuation. As a check, you should note that now when you run the 0.9" storm, your runoff depth should be roughly equal to Qa (WQ runoff in inches) and your total runoff volume roughly equal to your WQv (in ac. ft.). If this is not the case, make sure that the time span for your modelling run is long enough to capture the entire storm. Small variations are likely due to having to round your computed CN to a whole number. Remember that for storms larger than 2", you do not need to use the modified curve number and you should calculate your composite curve number based on the accepted values for different types of land-use (see TR-55).

008

Page 1 of 2 Version: 9/06

For the area draining to*: Grass Channel 4 (O-3) from OS8_5

Located in drainage area for S/N:

WQ Volume and Modified Curve Number Calculation for Water Quality Treatment in <u>Flow-Based Practice</u>

Use this worksheet to calculate your WQv if you need to determine the Peak Q for the WQ storm (i.e. designing a grass channel, flow-splitter or other flow based practice) and you are not using any of the site design credits in section 3 of the 2002 VSWMM. See page 2 for "Calculating Peak WQ Discharge Rate (0.9" storm) using the Modified Curve Number." Please note that in the case of grass channels you must include any off-site area draining to the practice as this will affect the peak discharge rate which will ultimately affect the hydraulics, and thus residence time, in your channel.

		value/calculatior	n units
Area draining to practice	A=	17.07	acres
Impervious area		10.65	acres
Percent Impervious Area = [(line 2/line 1) * 100] =	I =	62.39	% (whole #)
Precipitation	P =	0.9	inches
Runoff coefficient calculation = (0.05 + (0.009*I))	Rv =	0.612	1
WQ Volume (in watershed inches) Calculation =($P *$	Rv) =	0.550	Qa (watershed inches, a.k.a. inches of ru
Minimum WQ Volume ¹		0.2	watershed inches
Enter the greater of line 6 or line 7	WQv =	0.550	watershed inches
WQ Volume Calculation = (line 8 *A)/12 =	WQv =	0.783	ac. ft.
WQ Volume Calculation = (line 9 * 43560) =	WQv =	34103	cu. ft.

Notes:

1: Sites with low impervious cover (~19%) but that do not employ a **significant** use of the stormwater design credits in Section 3 of the VSWMM are required to treat the minimum water quality volume of 0.2 watershed inches. Sites that have a **significant** portion of their impervious cover addressed via the stormwater credits (section 3 of the VSWMM) will be able to reduce this WQv and will only be required to treat the volume calculated on the "WQ Volume (with credit reduction)" worksheet which will be less than the 0.2 watershed inches.

For the area draining to*: Grass Channel 4 (O-3) from OS8_5

Located in drainage area for S/N:

008

Calculating Peak WQ Peak Discharge Rate (0.9" storm) using the Modified Curve Number

Because NRCS methods underestimate the peak discharge for rainfall events of less than 2", simply plugging in 0.9" of rainfall into your hydrologic model with the standard curve numbers will not produce the correct peak discharge during the WQv storm, nor will it produce a volume of runoff equivalent to that which you have calculated using the WQv formula (WQv = P*Rv*A/12). In order to calculate the peak discharge for the 0.9" storm, a modified curve number must be calculated. This modified curve number is based on the runoff (in inches) calculated using the short cut method formula (WQv = P*Rv) that is also the basis of the familiar WQv calculations provided in the 2002 VSWMM (and on the WQv calculation worksheets). Essentially, the curve number that is calculated using the methods below is the curve number that will generate the volume of runoff calculated using the WQv formula.

Above, you should have calculated the **WQv in watershed inches draining to the facility/practice** for which you need to calculate the WQpeak discharge. As provided in the guidance listed on the grass channel worksheet, please remember that the WQv calculation should include runoff from on-site as well as **off-site area** draining to the grass channel since this will have an impact on the channel hydraulics and thus the velocity and residence time.

Steps:

2.

Page 2 of 2

Version: 9/06

1. Transfer information from WQv calculation worksheets.

Enter the Qa (line 8 from WQv sheet)				
	Qa	=	0.550	inches
Enter the area (site +off-site draining to practice) used in calculating the pe	ercent	impervious	s (I)	
	А	=	17.1	acres
Use the following equation to calculate a corresponding curve number			_	_
where	Р	=	0.9	inches
$\label{eq:CN} CN = 1000/(10 + (5^*P) + (10^*Qa) - (10^*(Qa^2 + (1.25^*Qa^*P))^{0.5}))$				
	CN =		96.1]

3. If you are using **hand hydrologic runoff calculations**, use the computed CN above along with your calculated time of concentration and the drainage area (A) to calculate the peak discharge (Qwq) for the water quality storm using the TR-55 Graphical Peak Discharge Method.

OR

3. If you are using a computer aided hydrologic model, simply revise the curve number for your subwatershed(s) draining to the practice using the curve number calculated above; the computed curve number should be applied to the total area (A) used in the WQv calcuation. As a check, you should note that now when you run the 0.9" storm, your runoff depth should be roughly equal to Qa (WQ runoff in inches) and your total runoff volume roughly equal to your WQv (in ac. ft.). If this is not the case, make sure that the time span for your modelling run is long enough to capture the entire storm. Small variations are likely due to having to round your computed CN to a whole number. Remember that for storms larger than 2", you do not need to use the modified curve number and you should calculate your composite curve number based on the accepted values for different types of land-use (see TR-55).

008

Page 1 of 2 Version: 9/06

Located in drainage area for S/N:

WQ Volume and Modified Curve Number Calculation for Water Quality Treatment in Flow-Based Practice

Use this worksheet to calculate your WQv if you need to determine the Peak Q for the WQ storm (i.e. designing a grass channel, flow-splitter or other flow based practice) and you are not using any of the site design credits in section 3 of the 2002 VSWMM. See page 2 for "Calculating Peak WQ Discharge Rate (0.9" storm) using the Modified Curve Number." Please note that in the case of grass channels you must include any off-site area draining to the practice as this will affect the peak discharge rate which will ultimately affect the hydraulics, and thus residence time, in your channel.

e		value/calculation	on units
Area draining to practice	A=	0.12	acres
Impervious area		0.05	acres
Percent Impervious Area = [(line 2/line 1) * 100] =	I =	46.47	% (whole #)
Precipitation	P =	0.9	inches
Runoff coefficient calculation = (0.05 + (0.009*I))	Rv =	0.468	
WQ Volume (in watershed inches) Calculation =(P * 1	Rv) =	0.421	Qa (watershed inches, a.k.a. inches of rui
Minimum WQ Volume ¹		0.2	watershed inches
Enter the greater of line 6 or line 7	WQv =	0.421	watershed inches
WQ Volume Calculation = (line 8 *A)/12 =	WQv =	0.004	ac. ft.
WQ Volume Calculation = (line 9 * 43560) =	WQv =	177	cu. ft.

Notes:

1: Sites with low impervious cover (~19%) but that do not employ a **significant** use of the stormwater design credits in Section 3 of the VSWMM are required to treat the minimum water quality volume of 0.2 watershed inches. Sites that have a **significant** portion of their impervious cover addressed via the stormwater credits (section 3 of the VSWMM) will be able to reduce this WQv and will only be required to treat the volume calculated on the "WQ Volume (with credit reduction)" worksheet which will be less than the 0.2 watershed inches.

Page 2 of 2 For the area draining to*: Grass Channel 5 (O-3) Version: 9/06

Located in drainage area for S/N:

008

Calculating Peak WQ Peak Discharge Rate (0.9" storm) using the Modified Curve Number

Because NRCS methods underestimate the peak discharge for rainfall events of less than 2", simply plugging in 0.9" of rainfall into your hydrologic model with the standard curve numbers will not produce the correct peak discharge during the WQv storm, nor will it produce a volume of runoff equivalent to that which you have calculated using the WQv formula (WQv = P*Rv*A/12). In order to calculate the peak discharge for the 0.9" storm, a modified curve number must be calculated. This modified curve number is based on the runoff (in inches) calculated using the short cut method formula (WQv = P*Rv) that is also the basis of the familiar WQv calculations provided in the 2002 VSWMM (and on the WQv calculation worksheets). Essentially, the curve number that is calculated using the methods below is the curve number that will generate the volume of runoff calculated using the WQv formula.

Above, you should have calculated the WQv in watershed inches draining to the facility/practice for which you need to calculate the WQpeak discharge. As provided in the guidance listed on the grass channel worksheet, please remember that the WQv calculation should include runoff from on-site as well as off-site area draining to the grass channel since this will have an impact on the channel hydraulics and thus the velocity and residence time.

Steps:

2.

1. Transfer information from WQv calculation worksheets.

Enter the Qa (line 8 from WQv sheet)			
	Qa	=	0.421 inches
Enter the area (site +off-site draining to practice) used in calculating the p	ercen	t imperv	rious (I)
	А	=	0.1 acres
Use the following equation to calculate a corresponding curve number			
where	P	=	0.9 inches
$\label{eq:CN} CN = 1000/(10 + (5^*P) + (10^*Qa) - (10^*(Qa^2 + (1.25^*Qa^*P))^{0.5}))$			
	CN	=	94.0

3. If you are using hand hydrologic runoff calculations, use the computed CN above along with your calculated time of concentration and the drainage area (A) to calculate the peak discharge (Qwq) for the water quality storm using the TR-55 Graphical Peak Discharge Method.

OR

3. If you are using a computer aided hydrologic model, simply revise the curve number for your subwatershed(s) draining to the practice using the curve number calculated above; the computed curve number should be applied to the total area (A) used in the WQv calcuation. As a check, you should note that now when you run the 0.9" storm, your runoff depth should be roughly equal to Qa (WQ runoff in inches) and your total runoff volume roughly equal to your WQv (in ac. ft.). If this is not the case, make sure that the time span for your modelling run is long enough to capture the entire storm. Small variations are likely due to having to round your computed CN to a whole number. Remember that for storms larger than 2", you do not need to use the modified curve number and you should calculate your composite curve number based on the accepted values for different types of land-use (see TR-55).

004

Page 1 of 2 Version: 9/06

Located in drainage area for S/N:

WQ Volume and Modified Curve Number Calculation for Water Quality Treatment in <u>Flow-Based Practice</u>

Use this worksheet to calculate your WQv if you need to determine the Peak Q for the WQ storm (i.e. designing a grass channel, flow-splitter or other flow based practice) and you are not using any of the site design credits in section 3 of the 2002 VSWMM. See page 2 for "Calculating Peak WQ Discharge Rate (0.9" storm) using the Modified Curve Number." Please note that in the case of grass channels you must include any off-site area draining to the practice as this will affect the peak discharge rate which will ultimately affect the hydraulics, and thus residence time, in your channel.

2		value/calculation	on units
Area draining to practice	A=	0.49	acres
Impervious area		0.24	acres
Percent Impervious Area = [(line 2/line 1) * 100] =	I =	48.68	% (whole #)
Precipitation	P =	0.9	inches
Runoff coefficient calculation = (0.05 + (0.009*I))	Rv =	0.488	
WQ Volume (in watershed inches) Calculation =($P *$	Rv) =	0.439	Qa (watershed inches, a.k.a. inches of ru:
Minimum WQ Volume ¹		0.2	watershed inches
Enter the greater of line 6 or line 7	WQv =	0.439	watershed inches
WQ Volume Calculation = (line 8 *A)/12 =	WQv =	0.018	ac. ft.
WQ Volume Calculation = (line 9 * 43560) =	WQv =	783	cu. ft.

Notes:

1: Sites with low impervious cover (~19%) but that do not employ a **significant** use of the stormwater design credits in Section 3 of the VSWMM are required to treat the minimum water quality volume of 0.2 watershed inches. Sites that have a **significant** portion of their impervious cover addressed via the stormwater credits (section 3 of the VSWMM) will be able to reduce this WQv and will only be required to treat the volume calculated on the "WQ Volume (with credit reduction)" worksheet which will be less than the 0.2 watershed inches.

Page 2 of 2 Version: 9/06 For the area draining to*: Grass Channel 6 (O-3) Located in drainage area for S/N: 004

Calculating Peak WQ Peak Discharge Rate (0.9" storm) using the Modified Curve Number

Because NRCS methods underestimate the peak discharge for rainfall events of less than 2", simply plugging in 0.9" of rainfall into your hydrologic model with the standard curve numbers will not produce the correct peak discharge during the WQv storm, nor will it produce a volume of runoff equivalent to that which you have calculated using the WQv formula ($WQv = P^*Rv^*A/12$). In order to calculate the peak discharge for the 0.9" storm, a modified curve number must be calculated. This modified curve number is based on the runoff (in inches) calculated using the short cut method formula ($WQv = P^*Rv$) that is also the basis of the familiar WQv calculations provided in the 2002 VSWMM (and on the WQv calculation worksheets). Essentially, the curve number that is calculated using the methods below is the curve number that will generate the volume of runoff calculated using the WQv formula.

Above, you should have calculated the **WQv in watershed inches draining to the facility/practice** for which you need to calculate the WQpeak discharge. As provided in the guidance listed on the grass channel worksheet, please remember that the WQv calculation should include runoff from on-site as well as **off-site area** draining to the grass channel since this will have an impact on the channel hydraulics and thus the velocity and residence time.

Steps:

1. Transfer information from WQv calculation worksheets.

Enter the Qa (line 8 from WQv sheet) Qa = 0.439 inchesEnter the area (site +off-site draining to practice) used in calculating the percent impervious (I) A = 0.5 acres 2. Use the following equation to calculate a corresponding curve number where P = 0.9 inches $CN = 1000/(10 + (5*P) + (10*Qa) - (10*(Qa^2 + (1.25*Qa*P))^{\circ}0.5))$ CN = 94.3

3. If you are using **hand hydrologic runoff calculations**, use the computed CN above along with your calculated time of concentration and the drainage area (A) to calculate the peak discharge (Qwq) for the water quality storm using the TR-55 Graphical Peak Discharge Method.

OR

3. If you are using a computer aided hydrologic model, simply revise the curve number for your subwatershed(s) draining to the practice using the curve number calculated above; the computed curve number should be applied to the total area (A) used in the WQv calcuation. As a check, you should note that now when you run the 0.9" storm, your runoff depth should be roughly equal to Qa (WQ runoff in inches) and your total runoff volume roughly equal to your WQv (in ac. ft.). If this is not the case, make sure that the time span for your modelling run is long enough to capture the entire storm. Small variations are likely due to having to round your computed CN to a whole number. Remember that for storms larger than 2", you do not need to use the modified curve number and you should calculate your composite curve number based on the accepted values for different types of land-use (see TR-55).

004

Page 1 of 2 Version: 9/06

Located in drainage area for S/N:

WQ Volume and Modified Curve Number Calculation for Water Quality Treatment in <u>Flow-Based Practice</u>

Use this worksheet to calculate your WQv if you need to determine the Peak Q for the WQ storm (i.e. designing a grass channel, flow-splitter or other flow based practice) and you are not using any of the site design credits in section 3 of the 2002 VSWMM. See page 2 for "Calculating Peak WQ Discharge Rate (0.9" storm) using the Modified Curve Number." Please note that in the case of grass channels you must include any off-site area draining to the practice as this will affect the peak discharge rate which will ultimately affect the hydraulics, and thus residence time, in your channel.

2		value/calculatio	n units
Area draining to practice	A=	0.62	acres
Impervious area		0.48	acres
Percent Impervious Area = [(line 2/line 1) * 100] =	I =	77.74	% (whole #)
Precipitation	P =	0.9	inches
Runoff coefficient calculation = (0.05 + (0.009*I))	Rv =	0.750	
WQ Volume (in watershed inches) Calculation =($P *$	Rv) =	0.675	Qa (watershed inches, a.k.a. inches of run
Minimum WQ Volume ¹		0.2	watershed inches
Enter the greater of line 6 or line 7	WQv =	0.675	watershed inches
WQ Volume Calculation = (line 8 *A)/12 =	WQv =	0.035	ac. ft.
WQ Volume Calculation = (line 9 * 43560) =	WQv =	1519	cu. ft.

Notes:

1: Sites with low impervious cover (~19%) but that do not employ a **significant** use of the stormwater design credits in Section 3 of the VSWMM are required to treat the minimum water quality volume of 0.2 watershed inches. Sites that have a **significant** portion of their impervious cover addressed via the stormwater credits (section 3 of the VSWMM) will be able to reduce this WQv and will only be required to treat the volume calculated on the "WQ Volume (with credit reduction)" worksheet which will be less than the 0.2 watershed inches.

Page 2 of 2 Version: 9/06 For the area draining to*: Grass Channel 7 (O-3) Located in drainage area for S/N: 004

Calculating Peak WQ Peak Discharge Rate (0.9" storm) using the Modified Curve Number

Because NRCS methods underestimate the peak discharge for rainfall events of less than 2", simply plugging in 0.9" of rainfall into your hydrologic model with the standard curve numbers will not produce the correct peak discharge during the WQv storm, nor will it produce a volume of runoff equivalent to that which you have calculated using the WQv formula (WQv = P*Rv*A/12). In order to calculate the peak discharge for the 0.9" storm, a modified curve number must be calculated. This modified curve number is based on the runoff (in inches) calculated using the short cut method formula (WQv = P*Rv) that is also the basis of the familiar WQv calculations provided in the 2002 VSWMM (and on the WQv calculation worksheets). Essentially, the curve number that is calculated using the methods below is the curve number that will generate the volume of runoff calculated using the WQv formula.

Above, you should have calculated the **WQv in watershed inches draining to the facility/practice** for which you need to calculate the WQpeak discharge. As provided in the guidance listed on the grass channel worksheet, please remember that the WQv calculation should include runoff from on-site as well as **off-site area** draining to the grass channel since this will have an impact on the channel hydraulics and thus the velocity and residence time.

Steps:

2.

1. Transfer information from WQv calculation worksheets.

Enter the Qa (line 8 from WQv sheet)				
	Qa	=	0.675	inches
Enter the area (site +off-site draining to practice) used in calculating the pa	ercent i	impervious	s (I)	
	А	=	0.6	acres
Use the following equation to calculate a corresponding curve number				_
where	Р	=	0.9	inches
$\label{eq:CN} CN = 1000/(10 + (5^*P) + (10^*Qa) - (10^*(Qa^2 + (1.25^*Qa^*P))^{0.5}))$				
	CN =		97.8]

3. If you are using **hand hydrologic runoff calculations**, use the computed CN above along with your calculated time of concentration and the drainage area (A) to calculate the peak discharge (Qwq) for the water quality storm using the TR-55 Graphical Peak Discharge Method.

OR

3. If you are using a computer aided hydrologic model, simply revise the curve number for your subwatershed(s) draining to the practice using the curve number calculated above; the computed curve number should be applied to the total area (A) used in the WQv calcuation. As a check, you should note that now when you run the 0.9" storm, your runoff depth should be roughly equal to Qa (WQ runoff in inches) and your total runoff volume roughly equal to your WQv (in ac. ft.). If this is not the case, make sure that the time span for your modelling run is long enough to capture the entire storm. Small variations are likely due to having to round your computed CN to a whole number. Remember that for storms larger than 2", you do not need to use the modified curve number and you should calculate your composite curve number based on the accepted values for different types of land-use (see TR-55).

003

Page 1 of 2 Version: 9/06

Located in drainage area for S/N:

WQ Volume and Modified Curve Number Calculation for Water Quality Treatment in Flow-Based Practice

Use this worksheet to calculate your WQv if you need to determine the Peak Q for the WQ storm (i.e. designing a grass channel, flow-splitter or other flow based practice) and you are not using any of the site design credits in section 3 of the 2002 VSWMM. See page 2 for "Calculating Peak WQ Discharge Rate (0.9" storm) using the Modified Curve Number." Please note that in the case of grass channels you must include any off-site area draining to the practice as this will affect the peak discharge rate which will ultimately affect the hydraulics, and thus residence time, in your channel.

2		value/calculation	on units
Area draining to practice	A=	4.06	acres
Impervious area		1.57	acres
Percent Impervious Area = [(line 2/line 1) * 100] =	I =	38.67	% (whole #)
Precipitation	P =	0.9	inches
Runoff coefficient calculation = (0.05 + (0.009*I))	Rv =	0.398	
WQ Volume (in watershed inches) Calculation =($P *$	Rv) =	0.358	Qa (watershed inches, a.k.a. inches of rur
Minimum WQ Volume ¹		0.2	watershed inches
Enter the greater of line 6 or line 7	WQv =	0.358	watershed inches
WQ Volume Calculation = (line 8 *A)/12 =	WQv =	0.121	ac. ft.
WQ Volume Calculation = (line 9 * 43560) =	WQv =	5279	cu. ft.

Notes:

1: Sites with low impervious cover (~19%) but that do not employ a **significant** use of the stormwater design credits in Section 3 of the VSWMM are required to treat the minimum water quality volume of 0.2 watershed inches. Sites that have a **significant** portion of their impervious cover addressed via the stormwater credits (section 3 of the VSWMM) will be able to reduce this WQv and will only be required to treat the volume calculated on the "WQ Volume (with credit reduction)" worksheet which will be less than the 0.2 watershed inches.

Page 2 of 2 Version: 9/06 For the area draining to*: Grass Channel 8 (O-3) Located in drainage area for S/N: 003

Calculating Peak WQ Peak Discharge Rate (0.9" storm) using the Modified Curve Number

Because NRCS methods underestimate the peak discharge for rainfall events of less than 2", simply plugging in 0.9" of rainfall into your hydrologic model with the standard curve numbers will not produce the correct peak discharge during the WQv storm, nor will it produce a volume of runoff equivalent to that which you have calculated using the WQv formula (WQv = P*Rv*A/12). In order to calculate the peak discharge for the 0.9" storm, a modified curve number must be calculated. This modified curve number is based on the runoff (in inches) calculated using the short cut method formula (WQv = P*Rv) that is also the basis of the familiar WQv calculations provided in the 2002 VSWMM (and on the WQv calculation worksheets). Essentially, the curve number that is calculated using the methods below is the curve number that will generate the volume of runoff calculated using the WQv formula.

Above, you should have calculated the **WQv in watershed inches draining to the facility/practice** for which you need to calculate the WQpeak discharge. As provided in the guidance listed on the grass channel worksheet, please remember that the WQv calculation should include runoff from on-site as well as **off-site area** draining to the grass channel since this will have an impact on the channel hydraulics and thus the velocity and residence time.

Steps:

1. Transfer information from WQv calculation worksheets.

Enter the Qa (line 8 from WQv sheet) Qa = 0.358 inches Enter the area (site +off-site draining to practice) used in calculating the percent impervious (I) A = 4.1 acres 2. Use the following equation to calculate a corresponding curve number where P = 0.9 inches $CN = 1000/(10 + (5*P) + (10*Qa) - (10*(Qa^2 + (1.25*Qa*P))^0.5))$ CN = 92.7

3. If you are using **hand hydrologic runoff calculations**, use the computed CN above along with your calculated time of concentration and the drainage area (A) to calculate the peak discharge (Qwq) for the water quality storm using the TR-55 Graphical Peak Discharge Method.

OR

3. If you are using a computer aided hydrologic model, simply revise the curve number for your subwatershed(s) draining to the practice using the curve number calculated above; the computed curve number should be applied to the total area (A) used in the WQv calcuation. As a check, you should note that now when you run the 0.9" storm, your runoff depth should be roughly equal to Qa (WQ runoff in inches) and your total runoff volume roughly equal to your WQv (in ac. ft.). If this is not the case, make sure that the time span for your modelling run is long enough to capture the entire storm. Small variations are likely due to having to round your computed CN to a whole number. Remember that for storms larger than 2", you do not need to use the modified curve number and you should calculate your composite curve number based on the accepted values for different types of land-use (see TR-55).

003

Page 1 of 2 Version: 9/06

Located in drainage area for S/N:

WQ Volume and Modified Curve Number Calculation for Water Quality Treatment in Flow-Based Practice

Use this worksheet to calculate your WQv if you need to determine the Peak Q for the WQ storm (i.e. designing a grass channel, flow-splitter or other flow based practice) and you are not using any of the site design credits in section 3 of the 2002 VSWMM. See page 2 for "Calculating Peak WQ Discharge Rate (0.9" storm) using the Modified Curve Number." Please note that in the case of grass channels you must include any off-site area draining to the practice as this will affect the peak discharge rate which will ultimately affect the hydraulics, and thus residence time, in your channel.

2		value/calculatio	on units
Area draining to practice	A=	1.06	acres
Impervious area		0.38	acres
Percent Impervious Area = [(line 2/line 1) * 100] =	I =	36.14	% (whole #)
Precipitation	P =	0.9	inches
Runoff coefficient calculation = (0.05 + (0.009*I))	Rv =	0.375	
WQ Volume (in watershed inches) Calculation =($P *$	Rv) =	0.338	Qa (watershed inches, a.k.a. inches of rur
Minimum WQ Volume ¹		0.2	watershed inches
Enter the greater of line 6 or line 7	WQv =	0.338	watershed inches
WQ Volume Calculation = (line 8 *A)/12 =	WQv =	0.030	ac. ft.
WQ Volume Calculation = (line 9 * 43560) =	WQv =	1296	cu. ft.

Notes:

1: Sites with low impervious cover (~19%) but that do not employ a **significant** use of the stormwater design credits in Section 3 of the VSWMM are required to treat the minimum water quality volume of 0.2 watershed inches. Sites that have a **significant** portion of their impervious cover addressed via the stormwater credits (section 3 of the VSWMM) will be able to reduce this WQv and will only be required to treat the volume calculated on the "WQ Volume (with credit reduction)" worksheet which will be less than the 0.2 watershed inches.

19 WOV-VBP-Channel 09 xls	09	WOV-VBP-Channel	09. xls
---------------------------	----	-----------------	---------

Page 2 of 2 Version: 9/06

For the area draining to*:	Grass Channel 9 (O-3)
Located in drainage	area for S/N: 003

Located in drainage area for S/N:

00

Calculating Peak WQ Peak Discharge Rate (0.9" storm) using the Modified Curve Number

Because NRCS methods underestimate the peak discharge for rainfall events of less than 2", simply plugging in 0.9" of rainfall into your hydrologic model with the standard curve numbers will not produce the correct peak discharge during the WQv storm, nor will it produce a volume of runoff equivalent to that which you have calculated using the WQv formula (WQv = P*Rv*A/12). In order to calculate the peak discharge for the 0.9" storm, a modified curve number must be calculated. This modified curve number is based on the runoff (in inches) calculated using the short cut method formula (WQv = P*Rv) that is also the basis of the familiar WQv calculations provided in the 2002 VSWMM (and on the WQv calculation worksheets). Essentially, the curve number that is calculated using the methods below is the curve number that will generate the volume of runoff calculated using the WQv formula.

Above, you should have calculated the **WQv in watershed inches draining to the facility/practice** for which you need to calculate the WQpeak discharge. As provided in the guidance listed on the grass channel worksheet, please remember that the WQv calculation should include runoff from on-site as well as **off-site area** draining to the grass channel since this will have an impact on the channel hydraulics and thus the velocity and residence time.

Steps:

2.

1. Transfer information from WQv calculation worksheets.

Enter the Qa (line 8 from WQv sheet)				
	Qa	=	0.338	inches
Enter the area (site +off-site draining to practice) used in calculating the p	ercent i	imperviou	s (I)	
	А	=	1.1	acres
Use the following equation to calculate a corresponding curve number				
where	Р	=	0.9	inches
$\mathrm{CN} = 1000 / (10 + (5^*\mathrm{P}) + (10^*\mathrm{Qa}) - (10^*(\mathrm{Qa^{+}2} + (1.25^*\mathrm{Qa^{+}P}))^{\circ}0.5))$				
	CN =		92.2]

3. If you are using **hand hydrologic runoff calculations**, use the computed CN above along with your calculated time of concentration and the drainage area (A) to calculate the peak discharge (Qwq) for the water quality storm using the TR-55 Graphical Peak Discharge Method.

OR

3. If you are using a computer aided hydrologic model, simply revise the curve number for your subwatershed(s) draining to the practice using the curve number calculated above; the computed curve number should be applied to the total area (A) used in the WQv calcuation. As a check, you should note that now when you run the 0.9" storm, your runoff depth should be roughly equal to Qa (WQ runoff in inches) and your total runoff volume roughly equal to your WQv (in ac. ft.). If this is not the case, make sure that the time span for your modelling run is long enough to capture the entire storm. Small variations are likely due to having to round your computed CN to a whole number. Remember that for storms larger than 2", you do not need to use the modified curve number and you should calculate your composite curve number based on the accepted values for different types of land-use (see TR-55).

002

Page 1 of 2 Version: 9/06

Located in drainage area for S/N:

WQ Volume and Modified Curve Number Calculation for Water Quality Treatment in <u>Flow-Based Practice</u>

Use this worksheet to calculate your WQv if you need to determine the Peak Q for the WQ storm (i.e. designing a grass channel, flow-splitter or other flow based practice) and you are not using any of the site design credits in section 3 of the 2002 VSWMM. See page 2 for "Calculating Peak WQ Discharge Rate (0.9" storm) using the Modified Curve Number." Please note that in the case of grass channels you must include any off-site area draining to the practice as this will affect the peak discharge rate which will ultimately affect the hydraulics, and thus residence time, in your channel.

2		value/calculation	on units
Area draining to practice	A=	3.37	acres
Impervious area		2.16	acres
Percent Impervious Area = [(line 2/line 1) * 100] =	I =	64.09	% (whole #)
Precipitation	P =	0.9	inches
Runoff coefficient calculation = (0.05 + (0.009*I))	Rv =	0.627	
WQ Volume (in watershed inches) Calculation =($P *$	Rv) =	0.564	Qa (watershed inches, a.k.a. inches of rur
Minimum WQ Volume ¹		0.2	watershed inches
Enter the greater of line 6 or line 7	WQv =	0.564	watershed inches
WQ Volume Calculation = (line 8 *A)/12 =	WQv =	0.158	ac. ft.
WQ Volume Calculation = (line 9 * 43560) =	WQv =	6902	cu. ft.

Notes:

1: Sites with low impervious cover (~19%) but that do not employ a **significant** use of the stormwater design credits in Section 3 of the VSWMM are required to treat the minimum water quality volume of 0.2 watershed inches. Sites that have a **significant** portion of their impervious cover addressed via the stormwater credits (section 3 of the VSWMM) will be able to reduce this WQv and will only be required to treat the volume calculated on the "WQ Volume (with credit reduction)" worksheet which will be less than the 0.2 watershed inches.

Page 2 of 2 Version: 9/06

For the area draining to*:	Gra	ass Channel 10 (O-3)
Terris dia during a		002

Located in drainage area for S/N:

002

Calculating Peak WQ Peak Discharge Rate (0.9" storm) using the Modified Curve Number

Because NRCS methods underestimate the peak discharge for rainfall events of less than 2", simply plugging in 0.9" of rainfall into your hydrologic model with the standard curve numbers will not produce the correct peak discharge during the WQv storm, nor will it produce a volume of runoff equivalent to that which you have calculated using the WQv formula (WQv = $P^*Rv^*A/12$). In order to calculate the peak discharge for the 0.9" storm, a modified curve number must be calculated. This modified curve number is based on the runoff (in inches) calculated using the short cut method formula (WQv = P^*Rv) that is also the basis of the familiar WQv calculations provided in the 2002 VSWMM (and on the WQv calculation worksheets). Essentially, the curve number that is calculated using the methods below is the curve number that will generate the volume of runoff calculated using the WQv formula.

Above, you should have calculated the **WQv in watershed inches draining to the facility/practice** for which you need to calculate the WQpeak discharge. As provided in the guidance listed on the grass channel worksheet, please remember that the WQv calculation should include runoff from on-site as well as **off-site area** draining to the grass channel since this will have an impact on the channel hydraulics and thus the velocity and residence time.

Steps:

2.

1. Transfer information from WQv calculation worksheets.

Enter the Qa (line 8 from WQv sheet)				
	Qa	=	0.564	inches
Enter the area (site +off-site draining to practice) used in calculating the pa	ercent	imperviou	s (I)	
	А	=	3.4	acres
Use the following equation to calculate a corresponding curve number				
where	Р	=	0.9	inches
$\label{eq:cn} \text{CN} = 1000/(10 + (5^{*}\text{P}) + (10^{*}\text{Qa}) - (10^{*}(\text{Qa}^{2} + (1.25^{*}\text{Qa}^{*}\text{P}))^{\circ}0.5))$				
	CN =		96.3]

3. If you are using **hand hydrologic runoff calculations**, use the computed CN above along with your calculated time of concentration and the drainage area (A) to calculate the peak discharge (Qwq) for the water quality storm using the TR-55 Graphical Peak Discharge Method.

OR

3. If you are using a computer aided hydrologic model, simply revise the curve number for your subwatershed(s) draining to the practice using the curve number calculated above; the computed curve number should be applied to the total area (A) used in the WQv calcuation. As a check, you should note that now when you run the 0.9" storm, your runoff depth should be roughly equal to Qa (WQ runoff in inches) and your total runoff volume roughly equal to your WQv (in ac. ft.). If this is not the case, make sure that the time span for your modelling run is long enough to capture the entire storm. Small variations are likely due to having to round your computed CN to a whole number. Remember that for storms larger than 2", you do not need to use the modified curve number and you should calculate your composite curve number based on the accepted values for different types of land-use (see TR-55).

Grass Treatment Channel	#	<u> </u>
--------------------------------	---	----------

Line Treatment Standards

Indicate the treatment standards met for the site area draining to this practice:

- 1 WQv 🗵
- Rev 🗵 2 This practice automatically meets Rev if you have met the WQv treatment standards
- Cpv □ { Qp10 □ 4
- 5 Qp100 □

3

	Modified Curve Number	Modified CN*	
6	What is the modified curve number (CN) for both on and off-site areas draining to this facility?	91	
	Water Quality Volume (WQv)		WQv (Cubic Feet)
7	Provide the WQv for both on and off-site area draining to this facility (from WQv worksheets)?		1230
			WQ Peak (Cfs)
8	What is the peak discharge rate associated with the WQ storm?		0.341
-	Feasibility (2.7.5.A)	Response	Attachment location
9	Is the maximum longitudinal slope of the channel 4% or less?	Yes	See Appendix E
	Conveyance (2.7.5.B)	Yes	Attachment location
10	Is the peak velocity for the 1-year storm non-erosive?	Yes	See Appendix E, Mathcad Calcs
11	Are the channel slopes less than or equal to the 2:1 maximum?	Yes	See Appendix E
12	Does the channel safely convey the 10-year storm with a minimum of 6 inches of freeboard?	Yes	See Appendix E
13	Was the Manning's n value adjusted for the depth of water in the channel for larger storm events?	Yes	See Appendix E
-	Pretreatment (2.7.5.C)	Response	Attachment location
14	Has pre-treatment been provided for non-rooftop runoff?	No	n/a
	Treatment (2.7.5.D)		Channel Width (Feet)
15	What is the bottom width of the channel? (no greater than 8 feet, but no less than 2 feet)		4
		Response	Attachment location
16	Is the average residence time of the WQv peak discharge at least 10 minutes?	Yes	See Appendix E
17	Is the velocity of the WQv peak discharge less than 1 foot/second?	Yes	See Appendix E
18	Is the depth of the WQv peak discharge 4 inches or less?	Yes	See Appendix E
19	Were check dams used to meet the requisite treatment design criteria?	No	See Appendix E
-	Cold Climate Design Considerations (2.7.5.G)	Response	Attachment location
20	Have the potential impacts of Vermont's severe winter climate been addressed in your design?	Yes	See Narrative

Channel Protection Treatment Standard (Cpv)		Response	
21 Check which detention time standard must be used, based on the fisheries designation of the receiving water:	I 12 hours	■ 12 hours for cold water	
	□ 24 hours	for warm water	
	Response	Attachment location	
22 Did you use the Storage Volume Estimation Method? If yes, skip to Line 25.*	No	Practice not used for CPv	
*Please review the guidance sheet "Channel Protection Storage Volume Estimation" and attach the specified information. This meth drains to the practice. Using the center of mass detention time calculated by a hydrologic model that accounts for pond routing is t	11 1		

What storage volume (cubic feet) necessary to meet the Channel Protection Standard?		n/a
What is the calculated average release rate (cfs)?		n/a
What is the controlled peak release rate (cfs) during the 1-year storm as indicated by the model?		n/a
Overbank Flood Protection Treatment Standard (Qp10)	Response	Attachment location
Have you demonstrated that Qp10 post is less than or equal to Qp10 pre at the discharge point?* *Please include runoff and routing calculations of the 10-year storm event.	No	Practice not used for QP10
Extreme Flood Protection Treatment Standard (Qp100)	Response	Attachment location
Have you demonstrated that Qp100 post is less than or equal to Qp100 pre at the discharge point?* *Please include runoff and routing calculations of the 100-year storm event.	No	Waived. See Appendix G

*Grass channels provide rate-based treatment and must be designed to provide 10 minutes of residence time for the peak WQ discharge (a 0.9 inch storm). Traditional methods underestimate the volume and rate of runoff for storms of less than 2 inches. Modified curve numbers must be used. Because this practice is rate-based, both on and off-site water reaching the grass channel must be included in the calculations. This additional water will affect the velocity and residence time of the water in the channel. The average residence time for the peak discharge corresponds to the residence time calculated at the peak/maximum velocity, which is reported as the minimum residence time. Attachment location: Please indicate the specific location (i.e. appendix, page, plan sheet) where the requisite support documentation has been provided within the application.

Grass Treatment Channel	#	4
--------------------------------	---	---

{

Line Treatment Standards

Indicate the treatment standards met for the site area draining to this practice:

- 1 WQv 🗵
- Rev 🗵 2 This practice automatically meets Rev if you have met the WQv treatment standards
- Cpv □ Qp10 □ 4
- 5 Qp100 □

3

Modified Curve Number	Modified CN*	
6 What is the modified curve number (CN) for both on and off-site areas draining to this facility?	88-96	
Water Quality Volume (WQv)		WQv (Cubic Feet)
7 Provide the WQv for both on and off-site area draining to this facility (from WQv worksheets)?		43658
		WQ Peak (Cfs)
8 What is the peak discharge rate associated with the WQ storm?		2.12
Feasibility (2.7.5.A)	Response	Attachment location
9 Is the maximum longitudinal slope of the channel 4% or less?	Yes	See Appendix E
Conveyance (2.7.5.B)	Yes	Attachment location
10 Is the peak velocity for the 1-year storm non-erosive?	Yes	See Appendix E, Mathcad Calcs
11 Are the channel slopes less than or equal to the 2:1 maximum?	Yes	See Appendix E
12 Does the channel safely convey the 10-year storm with a minimum of 6 inches of freeboard?	Yes	See Appendix E
13 Was the Manning's n value adjusted for the depth of water in the channel for larger storm events?	Yes	See Appendix E
Pretreatment (2.7.5.C)	Response	Attachment location
14 Has pre-treatment been provided for non-rooftop runoff?	No	n/a
Treatment (2.7.5.D)		Channel Width (Feet)
15 What is the bottom width of the channel? (no greater than 8 feet, but no less than 2 feet)		5
	Response	Attachment location
16 Is the average residence time of the WQv peak discharge at least 10 minutes?	Yes	See Appendix E
17 Is the velocity of the WQv peak discharge less than 1 foot/second?	Yes	See Appendix E
18 Is the depth of the WQv peak discharge 4 inches or less?	No	See Appendix E
19 Were check dams used to meet the requisite treatment design criteria?	Yes	See Appendix E
Cold Climate Design Considerations (2.7.5.G)	Response	Attachment location
20 Have the potential impacts of Vermont's severe winter climate been addressed in your design?	Yes	See Narrative

Channel Protection Treatment Standard (Cpv)		Response
Check which detention time standard must be used, based on the fisheries designation of the receiving water:	12 hours	for cold water
	□ 24 hours f	or warm water
	Response	Attachment location
Did you use the Storage Volume Estimation Method? If yes, skip to Line 25.*	No	Practice not used for CPv
*Please review the guidance sheet "Channel Protection Storage Volume Estimation" and attach the specified information. This drains to the practice. Using the center of mass detention time calculated by a hydrologic model that accounts for pond routir	11 1	
What storage volume (cubic feet) necessary to meet the Channel Protection Standard?		n/a
What is the calculated average release rate (cfs)?		n/a
What is the controlled peak release rate (cfs) during the 1-year storm as indicated by the model?		n/a
	Response	Attachment location
Overbank Flood Protection Treatment Standard (Qp10)	1	
Overbank Flood Protection Treatment Standard (Qp10) Have you demonstrated that Qp10 post is less than or equal to Qp10 pre at the discharge point?*	No	Practice not used for Qp10
- Have you demonstrated that Qp10 post is less than or equal to Qp10 pre at the discharge point?*		Practice not used for Qp10
		Practice not used for Qp10 Attachment location

*Grass channels provide rate-based treatment and must be designed to provide 10 minutes of residence time for the peak WQ discharge (a 0.9 inch storm). Traditional methods underestimate the volume and rate of runoff for storms of less than 2 inches. Modified curve numbers must be used. Because this practice is rate-based, both on and off-site water reaching the grass channel must be included in the calculations. This additional water will affect the velocity and residence time of the water in the channel. The average residence time for the peak discharge corresponds to the residence time calculated at the peak/maximum velocity, which is reported as the minimum residence time. Attachment location: Please indicate the specific location (i.e. appendix, page, plan sheet) where the requisite support documentation has been provided within the application.

Grass Treatment Channel	#	_5
--------------------------------	---	----

{

Line Treatment Standards

Indicate the treatment standards met for the site area draining to this practice:

- 1 WQv 🗵
- Rev 🗵 2 This practice automatically meets Rev if you have met the WQv treatment standards
- Cpv □ Qp10 □ 4
- 5 Qp100 □

3

Modified Curve Number	Modified CN*	
6 What is the modified curve number (CN) for both on and off-site areas draining to this facility?	94	
Water Quality Volume (WQv)		WQv (Cubic Feet)
7 Provide the WQv for both on and off-site area draining to this facility (from WQv worksheets)?		177
		WQ Peak (Cfs)
8 What is the peak discharge rate associated with the WQ storm?		0.076
Feasibility (2.7.5.A)	Response	Attachment location
9 Is the maximum longitudinal slope of the channel 4% or less?	Yes	See Appendix E
Conveyance (2.7.5.B)	Yes	Attachment location
10 Is the peak velocity for the 1-year storm non-erosive?	Yes	See Appendix E, Mathcad Calcs
11 Are the channel slopes less than or equal to the 2:1 maximum?	Yes	See Appendix E
12 Does the channel safely convey the 10-year storm with a minimum of 6 inches of freeboard?	Yes	See Appendix E
13 Was the Manning's n value adjusted for the depth of water in the channel for larger storm events?	Yes	See Appendix E
Pretreatment (2.7.5.C)	Response	Attachment location
14 Has pre-treatment been provided for non-rooftop runoff?	No	n/a
Treatment (2.7.5.D)		Channel Width (Feet)
15 What is the bottom width of the channel? (no greater than 8 feet, but no less than 2 feet)		4
	Response	Attachment location
16 Is the average residence time of the WQv peak discharge at least 10 minutes?	Yes	See Appendix E
17 Is the velocity of the WQv peak discharge less than 1 foot/second?	Yes	See Appendix E
18 Is the depth of the WQv peak discharge 4 inches or less?	Yes	See Appendix E
19 Were check dams used to meet the requisite treatment design criteria?	No	See Appendix E
Cold Climate Design Considerations (2.7.5.G)	Response	Attachment location
20 Have the potential impacts of Vermont's severe winter climate been addressed in your design?	Yes	See Narrative

Channel Protection Treatment Standard (Cpv)		Response
Check which detention time standard must be used, based on the fisheries designation of the receiving water:	12 hours	for cold water
	□ 24 hours f	or warm water
	Response	Attachment location
Did you use the Storage Volume Estimation Method? If yes, skip to Line 25.*	No	Practice not used for CPv
*Please review the guidance sheet "Channel Protection Storage Volume Estimation" and attach the specified information. This drains to the practice. Using the center of mass detention time calculated by a hydrologic model that accounts for pond routir	11 1	
What storage volume (cubic feet) necessary to meet the Channel Protection Standard?		n/a
What is the calculated average release rate (cfs)?		n/a
What is the controlled peak release rate (cfs) during the 1-year storm as indicated by the model?		n/a
	Response	Attachment location
Overbank Flood Protection Treatment Standard (Qp10)	1	
Overbank Flood Protection Treatment Standard (Qp10) Have you demonstrated that Qp10 post is less than or equal to Qp10 pre at the discharge point?*	No	Practice not used for Qp10
- Have you demonstrated that Qp10 post is less than or equal to Qp10 pre at the discharge point?*		Practice not used for Qp10
		Practice not used for Qp10 Attachment location

*Grass channels provide rate-based treatment and must be designed to provide 10 minutes of residence time for the peak WQ discharge (a 0.9 inch storm). Traditional methods underestimate the volume and rate of runoff for storms of less than 2 inches. Modified curve numbers must be used. Because this practice is rate-based, both on and off-site water reaching the grass channel must be included in the calculations. This additional water will affect the velocity and residence time of the water in the channel. The average residence time for the peak discharge corresponds to the residence time calculated at the peak/maximum velocity, which is reported as the minimum residence time. Attachment location: Please indicate the specific location (i.e. appendix, page, plan sheet) where the requisite support documentation has been provided within the application.

Grass Treatment Channel	#_	6
--------------------------------	----	---

{

Line Treatment Standards

Indicate the treatment standards met for the site area draining to this practice:

- 1 WQv 🗵
- Rev 🗵 2 This practice automatically meets Rev if you have met the WQv treatment standards
- Cpv □ Qp10 □ 4
- 5 Qp100 □

3

Modified Curve Number	Modified CN*	
6 What is the modified curve number (CN) for both on and off-site areas draining to this facility?	94	
Water Quality Volume (WQv)		WQv (Cubic Feet)
7 Provide the WQv for both on and off-site area draining to this facility (from WQv worksheets)?		783
		WQ Peak (Cfs)
8 What is the peak discharge rate associated with the WQ storm?		0.336
Feasibility (2.7.5.A)	Response	Attachment location
9 Is the maximum longitudinal slope of the channel 4% or less?	Yes	See Appendix E
Conveyance (2.7.5.B)	Yes	Attachment location
10 Is the peak velocity for the 1-year storm non-erosive?	Yes	See Appendix E, Mathcad Calcs
11 Are the channel slopes less than or equal to the 2:1 maximum?	Yes	See Appendix E
12 Does the channel safely convey the 10-year storm with a minimum of 6 inches of freeboard?	Yes	See Appendix E
13 Was the Manning's n value adjusted for the depth of water in the channel for larger storm events?	Yes	See Appendix E
Pretreatment (2.7.5.C)	Response	Attachment location
14 Has pre-treatment been provided for non-rooftop runoff?	No	n/a
Treatment (2.7.5.D)		Channel Width (Feet)
15 What is the bottom width of the channel? (no greater than 8 feet, but no less than 2 feet)		4
	Response	Attachment location
16 Is the average residence time of the WQv peak discharge at least 10 minutes?	Yes	See Appendix E
17 Is the velocity of the WQv peak discharge less than 1 foot/second?	Yes	See Appendix E
18 Is the depth of the WQv peak discharge 4 inches or less?	Yes	See Appendix E
19 Were check dams used to meet the requisite treatment design criteria?	No	See Appendix E
Cold Climate Design Considerations (2.7.5.G)	Response	Attachment location
20 Have the potential impacts of Vermont's severe winter climate been addressed in your design?	Yes	See Narrative

Channel Protection Treatment Standard (Cpv)		Response
Check which detention time standard must be used, based on the fisheries designation of the receiving water:	12 hours	for cold water
	□ 24 hours f	or warm water
	Response	Attachment location
Did you use the Storage Volume Estimation Method? If yes, skip to Line 25.*	No	Practice not used for CPv
*Please review the guidance sheet "Channel Protection Storage Volume Estimation" and attach the specified information. This drains to the practice. Using the center of mass detention time calculated by a hydrologic model that accounts for pond routir	11 1	
What storage volume (cubic feet) necessary to meet the Channel Protection Standard?		n/a
What is the calculated average release rate (cfs)?		n/a
What is the controlled peak release rate (cfs) during the 1-year storm as indicated by the model?		n/a
	Response	Attachment location
Overbank Flood Protection Treatment Standard (Qp10)	1	
Overbank Flood Protection Treatment Standard (Qp10) Have you demonstrated that Qp10 post is less than or equal to Qp10 pre at the discharge point?*	No	Practice not used for Qp10
- Have you demonstrated that Qp10 post is less than or equal to Qp10 pre at the discharge point?*		Practice not used for Qp10
		Practice not used for Qp10 Attachment location

*Grass channels provide rate-based treatment and must be designed to provide 10 minutes of residence time for the peak WQ discharge (a 0.9 inch storm). Traditional methods underestimate the volume and rate of runoff for storms of less than 2 inches. Modified curve numbers must be used. Because this practice is rate-based, both on and off-site water reaching the grass channel must be included in the calculations. This additional water will affect the velocity and residence time of the water in the channel. The average residence time for the peak discharge corresponds to the residence time calculated at the peak/maximum velocity, which is reported as the minimum residence time. Attachment location: Please indicate the specific location (i.e. appendix, page, plan sheet) where the requisite support documentation has been provided within the application.

Grass Treatment Channel #____7

Line Treatment Standards

Indicate the treatment standards met for the site area draining to this practice:

- 1 WQv 🗵
- Rev 🗵 2 This practice automatically meets Rev if you have met the WQv treatment standards
- Cpv □ { Qp10 □ 4
- 5 Qp100 □

3

Modified Curve Number	Modified CN*	
6 What is the modified curve number (CN) for both on and off-site areas draining to this facility?	98	
Water Quality Volume (WQv)		WQv (Cubic Feet)
7 Provide the WQv for both on and off-site area draining to this facility (from WQv worksheets)?		1,519
		WQ Peak (Cfs)
8 What is the peak discharge rate associated with the WQ storm?		0.653
Feasibility (2.7.5.A)	Response	Attachment location
9 Is the maximum longitudinal slope of the channel 4% or less?	Yes	See Appendix E
Conveyance (2.7.5.B)	Yes	Attachment location
10 Is the peak velocity for the 1-year storm non-erosive?	Yes	See Appendix E, Mathcad Calcs
11 Are the channel slopes less than or equal to the 2:1 maximum?	Yes	See Appendix E
12 Does the channel safely convey the 10-year storm with a minimum of 6 inches of freeboard?	Yes	See Appendix E
13 Was the Manning's n value adjusted for the depth of water in the channel for larger storm events?	Yes	See Appendix E
Pretreatment (2.7.5.C)	Response	Attachment location
14 Has pre-treatment been provided for non-rooftop runoff?	No	n/a
Treatment (2.7.5.D)		Channel Width (Feet)
15 What is the bottom width of the channel? (no greater than 8 feet, but no less than 2 feet)		4
	Response	Attachment location
16 Is the average residence time of the WQv peak discharge at least 10 minutes?	Yes	See Appendix E
17 Is the velocity of the WQv peak discharge less than 1 foot/second?	Yes	See Appendix E
18 Is the depth of the WQv peak discharge 4 inches or less?	Yes	See Appendix E
19 Were check dams used to meet the requisite treatment design criteria?	No	See Appendix E
Cold Climate Design Considerations (2.7.5.G)	Response	Attachment location
20 Have the potential impacts of Vermont's severe winter climate been addressed in your design?	Yes	See Narrative

Channel Protection Treatment Standard (Cpv)		Response
Check which detention time standard must be used, based on the fisheries designation of the receiving water:	12 hours	for cold water
	□ 24 hours f	or warm water
	Response	Attachment location
Did you use the Storage Volume Estimation Method? If yes, skip to Line 25.*	No	Practice not used for CPv
*Please review the guidance sheet "Channel Protection Storage Volume Estimation" and attach the specified information. This drains to the practice. Using the center of mass detention time calculated by a hydrologic model that accounts for pond routir	11 1	
What storage volume (cubic feet) necessary to meet the Channel Protection Standard?		n/a
What is the calculated average release rate (cfs)?		n/a
What is the controlled peak release rate (cfs) during the 1-year storm as indicated by the model?		n/a
	Response	Attachment location
Overbank Flood Protection Treatment Standard (Qp10)	1	
Overbank Flood Protection Treatment Standard (Qp10) Have you demonstrated that Qp10 post is less than or equal to Qp10 pre at the discharge point?*	No	Practice not used for Qp10
- Have you demonstrated that Qp10 post is less than or equal to Qp10 pre at the discharge point?*		Practice not used for Qp10
		Practice not used for Qp10 Attachment location

*Grass channels provide rate-based treatment and must be designed to provide 10 minutes of residence time for the peak WQ discharge (a 0.9 inch storm). Traditional methods underestimate the volume and rate of runoff for storms of less than 2 inches. Modified curve numbers must be used. Because this practice is rate-based, both on and off-site water reaching the grass channel must be included in the calculations. This additional water will affect the velocity and residence time of the water in the channel. The average residence time for the peak discharge corresponds to the residence time calculated at the peak/maximum velocity, which is reported as the minimum residence time. Attachment location: Please indicate the specific location (i.e. appendix, page, plan sheet) where the requisite support documentation has been provided within the application.

Grass Treatment Channel	#_	8
--------------------------------	----	---

{

Line Treatment Standards

Indicate the treatment standards met for the site area draining to this practice:

- 1 WQv 🗵
- Rev 🗵 2 This practice automatically meets Rev if you have met the WQv treatment standards
- Cpv □ Qp10 □ 4
- 5 Qp100 □

3

Modified Curve Number	Modified CN*	
6 What is the modified curve number (CN) for both on and off-site areas draining to this facility?	93	
Water Quality Volume (WQv)		WQv (Cubic Feet)
7 Provide the WQv for both on and off-site area draining to this facility (from WQv worksheets)?		5,279
		WQ Peak (Cfs)
8 What is the peak discharge rate associated with the WQ storm?		1.477
Feasibility (2.7.5.A)	Response	Attachment location
9 Is the maximum longitudinal slope of the channel 4% or less?	Yes	See Appendix E
Conveyance (2.7.5.B)	Yes	Attachment location
10 Is the peak velocity for the 1-year storm non-erosive?	Yes	See Appendix E, Mathcad Calcs
11 Are the channel slopes less than or equal to the 2:1 maximum?	Yes	See Appendix E
12 Does the channel safely convey the 10-year storm with a minimum of 6 inches of freeboard?	No	See Appendix E
13 Was the Manning's n value adjusted for the depth of water in the channel for larger storm events?	Yes	See Appendix E
Pretreatment (2.7.5.C)	Response	Attachment location
14 Has pre-treatment been provided for non-rooftop runoff?	No	n/a
Treatment (2.7.5.D)		Channel Width (Feet)
15 What is the bottom width of the channel? (no greater than 8 feet, but no less than 2 feet)		6
	Response	Attachment location
16 Is the average residence time of the WQv peak discharge at least 10 minutes?	Yes	See Appendix E
17 Is the velocity of the WQv peak discharge less than 1 foot/second?	Yes	See Appendix E
18 Is the depth of the WQv peak discharge 4 inches or less?	No	See Appendix E
19 Were check dams used to meet the requisite treatment design criteria?	No	See Appendix E
Cold Climate Design Considerations (2.7.5.G)	Response	Attachment location
20 Have the potential impacts of Vermont's severe winter climate been addressed in your design?	Yes	See Narrative

25 What is the controlled peak release rate (cfs) during the 1-year storm as indicated by the model?

	Channel Protection Treatment Standard (Cpv)		Response
21	Check which detention time standard must be used, based on the fisheries designation of the receiving water:	🛛 12 hour	s for cold water
		□ 24 hour	s for warm water
		Response	Attachment location
22	Did you use the Storage Volume Estimation Method? If yes, skip to Line 25.*	No	Practice not used for CPv
	*Please review the guidance sheet "Channel Protection Storage Volume Estimation" and attach the specified information. This metho drains to the practice. Using the center of mass detention time calculated by a hydrologic model that accounts for pond routing is the	11 1	
23	What storage volume (cubic feet) necessary to meet the Channel Protection Standard?		n/a
24	What is the calculated average release rate (cfs)?		n/a

Overbank Flood Protection Treatment Standard (Qp10)	Response	Attachment location
Have you demonstrated that Qp10 post is less than or equal to Qp10 pre at the discharge point?*	No	Practice not used for Qp10

	Extreme Flood Protection Treatment Standard (Qp100)	Response	Attachment location
26	Have you demonstrated that Qp100 post is less than or equal to Qp100 pre at the discharge point?*	No	Waived. See Appendix G
	*Please include runoff and routing calculations of the 100-year storm event.		

*Grass channels provide rate-based treatment and must be designed to provide 10 minutes of residence time for the peak WQ discharge (a 0.9 inch storm). Traditional methods underestimate the volume and rate of runoff for storms of less than 2 inches. Modified curve numbers must be used. Because this practice is rate-based, both on and off-site water reaching the grass channel must be included in the calculations. This additional water will affect the velocity and residence time of the water in the channel. The average residence time for the peak discharge corresponds to the residence time calculated at the peak/maximum velocity, which is reported as the minimum residence time. Attachment location: Please indicate the specific location (i.e. appendix, page, plan sheet) where the requisite support documentation has been provided within the application.

n/a

Grass Treatment Channel	#_	_9
--------------------------------	----	----

{

Line Treatment Standards

Indicate the treatment standards met for the site area draining to this practice:

- 1 WQv 🗵
- Rev 🗵 2 This practice automatically meets Rev if you have met the WQv treatment standards
- Cpv □ Qp10 □ 4
- 5 Qp100 □

3

Modified Curve Number	Modified CN*	
6 What is the modified curve number (CN) for both on and off-site areas draining to this facility?	92	
Water Quality Volume (WQv)		WQv (Cubic Feet)
7 Provide the WQv for both on and off-site area draining to this facility (from WQv worksheets)?		1,296
		WQ Peak (Cfs)
8 What is the peak discharge rate associated with the WQ storm?		0.307
Feasibility (2.7.5.A)	Response	Attachment location
9 Is the maximum longitudinal slope of the channel 4% or less?	Yes	See Appendix E
Conveyance (2.7.5.B)	Yes	Attachment location
10 Is the peak velocity for the 1-year storm non-erosive?	Yes	See Appendix E, Mathcad Calcs
11 Are the channel slopes less than or equal to the 2:1 maximum?	Yes	See Appendix E
12 Does the channel safely convey the 10-year storm with a minimum of 6 inches of freeboard?	Yes	See Appendix E
13 Was the Manning's n value adjusted for the depth of water in the channel for larger storm events?	Yes	See Appendix E
Pretreatment (2.7.5.C)	Response	Attachment location
14 Has pre-treatment been provided for non-rooftop runoff?	No	n/a
Treatment (2.7.5.D)		Channel Width (Feet)
15 What is the bottom width of the channel? (no greater than 8 feet, but no less than 2 feet)		4
	Response	Attachment location
16 Is the average residence time of the WQv peak discharge at least 10 minutes?	Yes	See Appendix E
17 Is the velocity of the WQv peak discharge less than 1 foot/second?	Yes	See Appendix E
18 Is the depth of the WQv peak discharge 4 inches or less?	Yes	See Appendix E
19 Were check dams used to meet the requisite treatment design criteria?	No	See Appendix E
Cold Climate Design Considerations (2.7.5.G)	Response	Attachment location
20 Have the potential impacts of Vermont's severe winter climate been addressed in your design?	Yes	See Narrative

Channel Protection Treatment Standard (Cpv)		Response
Check which detention time standard must be used, based on the fisheries designation of the receiving water:	I2 hours	for cold water
	□ 24 hours	for warm water
	Response	Attachment location
Did you use the Storage Volume Estimation Method? If yes, skip to Line 25.*	No	n/a
*Please review the guidance sheet "Channel Protection Storage Volume Estimation" and attach the specified information. Th drains to the practice. Using the center of mass detention time calculated by a hydrologic model that accounts for pond routi	11 1	
What storage volume (cubic feet) necessary to meet the Channel Protection Standard?		n/a
What is the calculated average release rate (cfs)?		n/a
What is the calculated average release rate (cfs)? What is the controlled peak release rate (cfs) during the 1-year storm as indicated by the model?		n/a n/a
	Response	, -
What is the controlled peak release rate (cfs) during the 1-year storm as indicated by the model?	Response	n/a
What is the controlled peak release rate (cfs) during the 1-year storm as indicated by the model? Overbank Flood Protection Treatment Standard (Qp10)		n/a Attachment location
What is the controlled peak release rate (cfs) during the 1-year storm as indicated by the model? Overbank Flood Protection Treatment Standard (Qp10) Have you demonstrated that Qp10 post is less than or equal to Qp10 pre at the discharge point?*		n/a Attachment location

*Grass channels provide rate-based treatment and must be designed to provide 10 minutes of residence time for the peak WQ discharge (a 0.9 inch storm). Traditional methods underestimate the volume and rate of runoff for storms of less than 2 inches. Modified curve numbers must be used. Because this practice is rate-based, both on and off-site water reaching the grass channel must be included in the calculations. This additional water will affect the velocity and residence time of the water in the channel. The average residence time for the peak discharge corresponds to the residence time calculated at the peak/maximum velocity, which is reported as the minimum residence time. Attachment location: Please indicate the specific location (i.e. appendix, page, plan sheet) where the requisite support documentation has been provided within the application.

Grass Treatment Channel #___10___

{

Line Treatment Standards

Indicate the treatment standards met for the site area draining to this practice:

- 1 WQv 🗵
- Rev 🗵 2 This practice automatically meets Rev if you have met the WQv treatment standards
- Cpv □ Qp10 □ 4
- 5 Qp100 □

3

Modified Curve Number	Modified CN*	
6 What is the modified curve number (CN) for both on and off-site areas draining to this facility?	96	
Water Quality Volume (WQv)		WQv (Cubic Feet)
7 Provide the WQv for both on and off-site area draining to this facility (from WQv worksheets)?		6,902
		WQ Peak (Cfs)
8 What is the peak discharge rate associated with the WQ storm?		1.635
Feasibility (2.7.5.A)	Response	Attachment location
9 Is the maximum longitudinal slope of the channel 4% or less?	Yes	See Appendix E
Conveyance (2.7.5.B)	Yes	Attachment location
10 Is the peak velocity for the 1-year storm non-erosive?	Yes	See Appendix E, Mathcad Calcs
11 Are the channel slopes less than or equal to the 2:1 maximum?	Yes	See Appendix E
12 Does the channel safely convey the 10-year storm with a minimum of 6 inches of freeboard?	Yes	See Appendix E
13 Was the Manning's n value adjusted for the depth of water in the channel for larger storm events?	Yes	See Appendix E
Pretreatment (2.7.5.C)	Response	Attachment location
14 Has pre-treatment been provided for non-rooftop runoff?	No	n/a
Treatment (2.7.5.D)		Channel Width (Feet)
15 What is the bottom width of the channel? (no greater than 8 feet, but no less than 2 feet)		5
	Response	Attachment location
16 Is the average residence time of the WQv peak discharge at least 10 minutes?	Yes	See Appendix E
17 Is the velocity of the WQv peak discharge less than 1 foot/second?	Yes	See Appendix E
18 Is the depth of the WQv peak discharge 4 inches or less?	No	See Appendix E
19 Were check dams used to meet the requisite treatment design criteria?	No	See Appendix E
Cold Climate Design Considerations (2.7.5.G)	Response	Attachment location
20 Have the potential impacts of Vermont's severe winter climate been addressed in your design?	Yes	See Narrative

Channel Protection Treatment Standard (Cpv)

	Response	Attachment location
Did you use the Storage Volume Estimation Method? If yes, skip to Line 25.*	No	n/a
*Please review the guidance sheet "Channel Protection Storage Volume Estimation" and attach the specified information. Th drains to the practice. Using the center of mass detention time calculated by a hydrologic model that accounts for pond rout	11 1	
What storage volume (cubic feet) necessary to meet the Channel Protection Standard?		n/a
What is the calculated average release rate (cfs)?		n/a
What is the controlled peak release rate (cfs) during the 1-year storm as indicated by the model?		n/a
Overbank Flood Protection Treatment Standard (Qp10)	Response	Attachment location
Have you demonstrated that Qp10 post is less than or equal to Qp10 pre at the discharge point?*	No	Practice not used for Qp10
*Please include runoff and routing calculations of the 10-year storm event.		
Extreme Flood Protection Treatment Standard (Qp100)	Response	Attachment location
Have you demonstrated that Qp100 post is less than or equal to Qp100 pre at the discharge point?* *Place include runoff and routing calculations of the 100-year storm event.	No	Waived. See Appendix G.

*Please include runoff and routing calculations of the 100-year storm event.

*Grass channels provide rate-based treatment and must be designed to provide 10 minutes of residence time for the peak WQ discharge (a 0.9 inch storm). Traditional methods underestimate the volume and rate of runoff for storms of less than 2 inches. Modified curve numbers must be used. Because this practice is rate-based, both on and off-site water reaching the grass channel must be included in the calculations. This additional water will affect the velocity and residence time of the water in the channel. The average residence time for the peak discharge corresponds to the residence time calculated at the peak/maximum velocity, which is reported as the minimum residence time. Attachment location: Please indicate the specific location (i.e. appendix, page, plan sheet) where the requisite support documentation has been provided within the application.

Project Name: Colchester HES NH 5600(14) Discharge Point: S/N 004

24 hours for warm water

Dry Detention Pond (LA-1)

Dry Detention Pond #4

Line Indicate the treatment standards met for the site area draining to this practice:

- 1 Cpv X
- 2 Qp10 □
- 3 Qp100 □

		Response	Attachment location
4	Have you performed a site evaluation to establish the Hazard Classification of the pond?	Yes	See Appendix F.
5	Have you determined depth to bedrock and soil properties using geotechnical investigations?	Yes	See Appendix F.
6	Have the outfalls been designed/protected to avoid erosive velocities?	Yes	See Appendix F and plan.
8	Is the principal spillway accessible from land and equipped with a removable trash rack?	Yes	See Plan.
9	Have all low flow orifices been designed or sized to ensure no clogging occurs?	Yes	See Detail.
10	Have the potential impacts of frozen culverts and deicers on vegetation been addressed in the design?	Yes	See Narrative.
11	Does the application include oultet elevation and size information for the basin?.	Yes	See Appendix F.
12	Has the peak storage volume and elevation information for the 1, 10 and 100-year storms been included?	Yes	See Appendix F.
	Channel Protection Treatment Standard (Cpv)		Records
	Chamer Forection Freatment Stanuaru (Cpv)		Response
13	Check which detention time must be used, based on the fisheries designation of the receiving water:	12 hours	s for cold water

	Response	Attachment location
14 Did you use the Storage Volume Estimation Method? If yes, skip to Line 19.*	No	

*Please review the guidance sheet "Channel Protection Storage Volume Estimation" and attach the specified information. This method is not appropriate if more than a one subwatershed drains to the practice. Using the center of mass detention time calculated by a hydrologic model that accounts for pond routing is the preferred method.

15	What storage volume (cubic feet) necessary to meet the Channel Protection Standard?	38028
16	What orifice size (inches) is necessary to meet the required detention time?	3
17	What is the calculated average release rate (cfs)? (Divide the Vs by detention time)	0.88
18	What is the controlled peak release rate (cfs) during the 1-year storm as indicated by the model?	0.33
•		

	Overbank Flood Protection Treatment Standard (Qp10)	Response	Attachment location
19	Have you demonstrated that Qp10 post is less than or equal to Qp10 pre at the discharge point?*	Yes	Waived. See Narrative & Appendix G
	*Please include runoff and routing calculations of the 10-year storm event		

Extreme Flood Protection Treatment Standard (Qp100)	Response	Attachment location
20 Have you demonstrated that Qp100 post is less than or equal to Qp100 pre at the discharge point?*	No	Waived. See Narrative.
*Please include runoff and routing calculations of the 100-year storm event.		

Please see VSMM-Vol. II, Appendix D7 for guidance about maintaining non-erosive conditions. Ensure that appropriate overflow outlets are designed to safely release all off-site water that may also be entering the pond. Visit VSMM-Vol.II, Appendix B for dam safety design specifications.

Attachment location: Indicate the specific location (i.e. appendices, pages, plan sheets) where the requisite support documentation has been provided within the application.

Project Name: Colchester HES NH 5600(14) Discharge Point: S/N 007

Dry Detention Pond (LA-1)

Dry Detention Pond #7

Line Indicate the treatment standards met for the site area draining to this practice:

- 1 Cpv □
- 2 Qp10 X
- 3 Qp100 □

		Response	Attachment location
4 Have you pe	rformed a site evaluation to establish the Hazard Classification of the pond?	No	See Appendix G.
5 Have you de	termined depth to bedrock and soil properties using geotechnical investigations?	Yes	See Appendix G.
6 Have the out	tfalls been designed/protected to avoid erosive velocities?	Yes	See Appendix G.
8 Is the princip	pal spillway accessible from land and equipped with a removable trash rack?	Yes	See Plan.
9 Have all low	flow orifices been designed or sized to ensure no clogging occurs?	Yes	See Detail.
10 Have the pot	tential impacts of frozen culverts and deicers on vegetation been addressed in the design?	Yes	See Narrative.
11 Does the app	plication include oultet elevation and size information for the basin?.	Yes	See Appendix G.
12 Has the peak	s storage volume and elevation information for the 1, 10 and 100-year storms been included?	Yes	See Appendix G.
Channel P	Protection Treatment Standard (Cpv)		Response
13 Check which	detention time must be used, based on the fisheries designation of the receiving water:	● 12 hour	s for cold water

24 hours for warm water

	Response	Attachment location
14 Did you use the Storage Volume Estimation Method? If yes, skip to Line 19.*	No	

*Please review the guidance sheet "Channel Protection Storage Volume Estimation" and attach the specified information. This method is not appropriate if more than a one subwatershed drains to the practice. Using the center of mass detention time calculated by a hydrologic model that accounts for pond routing is the preferred method.

15	What storage volume (cubic feet) necessary to meet the Channel Protection Standard?	n/a
16	What orifice size (inches) is necessary to meet the required detention time?	n/a
17	What is the calculated average release rate (cfs)? (Divide the Vs by detention time)	n/a
18	What is the controlled peak release rate (cfs) during the 1-year storm as indicated by the model?	n/a

	Overbank Flood Protection Treatment Standard (Qp10)	Response	Attachment location
19	Have you demonstrated that Qp10 post is less than or equal to Qp10 pre at the discharge point?*	No	Waived. See Narrative & Appendix G
	*Please include runoff and routing calculations of the 10-year storm event		

]	Extreme Flood Protection Treatment Standard (Qp100)	Response	Attachment location
	Have you demonstrated that Qp100 post is less than or equal to Qp100 pre at the discharge point?* Please include runoff and routing calculations of the 100-year storm event.	No	Waived. See Narrative.

Please see VSMM-Vol. II, Appendix D7 for guidance about maintaining non-erosive conditions. Ensure that appropriate overflow outlets are designed to safely release all off-site water that may also be entering the pond. Visit VSMM-Vol.II, Appendix B for dam safety design specifications.

Attachment location: Indicate the specific location (i.e. appendices, pages, plan sheets) where the requisite support documentation has been provided within the application.

Project Name: Colchester HES NH 5600(14) Discharge Point: S/N 008

Dry Detention Pond (LA-1)

Dry Detention Pond #8

Line Indicate the treatment standards met for the site area draining to this practice:

- 1 Cpv □
- 2 Qp10 X
- 3 Qp100 □

		Response	Attachment location
4 Have you pe	rformed a site evaluation to establish the Hazard Classification of the pond?	No	See Appendix G.
5 Have you de	termined depth to bedrock and soil properties using geotechnical investigations?	Yes	See Appendix G.
6 Have the out	tfalls been designed/protected to avoid erosive velocities?	Yes	See Appendix G.
8 Is the princip	pal spillway accessible from land and equipped with a removable trash rack?	Yes	See Plan.
9 Have all low	flow orifices been designed or sized to ensure no clogging occurs?	Yes	See Detail.
10 Have the pot	tential impacts of frozen culverts and deicers on vegetation been addressed in the design?	Yes	See Narrative.
11 Does the app	plication include oultet elevation and size information for the basin?.	Yes	See Appendix G.
12 Has the peak	s storage volume and elevation information for the 1, 10 and 100-year storms been included?	Yes	See Appendix G.
Channel P	Protection Treatment Standard (Cpv)		Response
13 Check which	detention time must be used, based on the fisheries designation of the receiving water:	● 12 hour	s for cold water

24 hours for warm water

	Response	Attachment location
14 Did you use the Storage Volume Estimation Method? If yes, skip to Line 19.*	No	

*Please review the guidance sheet "Channel Protection Storage Volume Estimation" and attach the specified information. This method is not appropriate if more than a one subwatershed drains to the practice. Using the center of mass detention time calculated by a hydrologic model that accounts for pond routing is the preferred method.

15	What storage volume (cubic feet) necessary to meet the Channel Protection Standard?	n/a
16	What orifice size (inches) is necessary to meet the required detention time?	n/a
17	What is the calculated average release rate (cfs)? (Divide the Vs by detention time)	n/a
18	What is the controlled peak release rate (cfs) during the 1-year storm as indicated by the model?	n/a

	Overbank Flood Protection Treatment Standard (Qp10)	Response	Attachment location
19	Have you demonstrated that Qp10 post is less than or equal to Qp10 pre at the discharge point?*	No	Waived. See Narrative & Appendix G
	*Please include runoff and routing calculations of the 10-year storm event		

]	Extreme Flood Protection Treatment Standard (Qp100)	Response	Attachment location
	Have you demonstrated that Qp100 post is less than or equal to Qp100 pre at the discharge point?* Please include runoff and routing calculations of the 100-year storm event.	No	Waived. See Narrative.

Please see VSMM-Vol. II, Appendix D7 for guidance about maintaining non-erosive conditions. Ensure that appropriate overflow outlets are designed to safely release all off-site water that may also be entering the pond. Visit VSMM-Vol.II, Appendix B for dam safety design specifications.

Attachment location: Indicate the specific location (i.e. appendices, pages, plan sheets) where the requisite support documentation has been provided within the application.

Overbank Flood Protection Standard Treatment Standard Waiver Worksheet

Fill out this worksheet for each discharge point in which use of this waiver is sought.

Overbank Flood Protection Standard Treatment Standard (Qp10) Waiver (check only one):

 The site directly discharges to a large reservoir, lake or stream with a drainage area greater square miles. 	r than or than 10
Name of Receiving Water at Discharge Point:	
Drainage Area of Receiving Water at Discharge Point (square miles):	
<u>uidance</u> : "Directly discharges" means that the runoff from the project does not reach any water of the Stat the waterbody with a equal or greater than 10 square mile watershed. If the discharge point definition is	

Schedule A document and/or contact the Stormwater Program.

 2. The site is smaller than 5 acres and the channel has adequate capacity to convey the pos discharge downstream to the point of the 10% rule; and downstream conveyances have convey the 10 year storm. 	•	
Is the site area less than five (5) acres?	• Yes	🗌 No
Has adequate conveyance from the site to the discharge point been verified?	• Yes	🗌 No
Has supporting information (e.g. narrative description, calculations, modeling) been included?	• Yes	🗌 No

These waivers are applied per receiving water. For example, if discharge point S/N 001 drains directly to the Winooski River (greater than 10 square miles), but discharge point S/N 002 drains to a small tributary of the Winooski River, then S/N 001 could be waived from the Overbank Flood Protection Standard Treatment Standard using waiver 1, but S/N 002 could not. However, *S/N002 may be eligible for the other waiver.*

Overbank Flood Protection Standard Treatment Standard Waiver Worksheet

Fill out this worksheet for each discharge point in which use of this waiver is sought.

Overbank Flood Protection Standard Treatment Standard (Qp10) Waiver (check only one):

 The site directly discharges to a large reservoir, lake or stream with a drainage area greater than or than 10 square miles.
Name of Receiving Water at Discharge Point:
Drainage Area of Receiving Water at Discharge Point (square miles):
<u>idance</u> : "Directly discharges" means that the runoff from the project does not reach any water of the State before discharging the waterbody with a equal or greater than 10 square mile watershed. If the discharge point definition is unclear, refer to the

Schedule A document and/or contact the Stormwater Program.

 2. The site is smaller than 5 acres and the channel has adequate capacity to convey the pos discharge downstream to the point of the 10% rule; and downstream conveyances have convey the 10 year storm. 	•	
Is the site area less than five (5) acres?	• Yes	🗌 No
Has adequate conveyance from the site to the discharge point been verified?	• Yes	🗌 No
Has supporting information (e.g. narrative description, calculations, modeling) been included?	• Yes	🗌 No

These waivers are applied per receiving water. For example, if discharge point S/N 001 drains directly to the Winooski River (greater than 10 square miles), but discharge point S/N 002 drains to a small tributary of the Winooski River, then S/N 001 could be waived from the Overbank Flood Protection Standard Treatment Standard using waiver 1, but S/N 002 could not. However, *S/N002 may be eligible for the other waiver.*

Overbank Flood Protection Standard Treatment Standard Waiver Worksheet

Fill out this worksheet for each discharge point in which use of this waiver is sought.

Overbank Flood Protection Standard Treatment Standard (Qp10) Waiver (check only one):

 The site directly discharges to a large reservoir, lake or stream with a drainage area greater than or than 10 square miles.
Name of Receiving Water at Discharge Point:
Drainage Area of Receiving Water at Discharge Point (square miles):
<u>idance</u> : "Directly discharges" means that the runoff from the project does not reach any water of the State before discharging the waterbody with a equal or greater than 10 square mile watershed. If the discharge point definition is unclear, refer to the

Schedule A document and/or contact the Stormwater Program.

2. The site is smaller than 5 acres and the channel has adequate capacity to convey the post-development 10-year discharge downstream to the point of the 10% rule; and downstream conveyances have adequate capacity to convey the 10 year storm.		
Is the site area less than five (5) acres?	• Yes	🗌 No
Has adequate conveyance from the site to the discharge point been verified?	• Yes	🗌 No
Has supporting information (e.g. narrative description, calculations, modeling) been included?	• Yes	🗌 No

These waivers are applied per receiving water. For example, if discharge point S/N 001 drains directly to the Winooski River (greater than 10 square miles), but discharge point S/N 002 drains to a small tributary of the Winooski River, then S/N 001 could be waived from the Overbank Flood Protection Standard Treatment Standard using waiver 1, but S/N 002 could not. However, S/N002 may be eligible for the other waiver.

Overbank Flood Protection Standard Treatment Standard Waiver Worksheet

Fill out this worksheet for each discharge point in which use of this waiver is sought.

Overbank Flood Protection Standard Treatment Standard (Qp10) Waiver (check only one):

 The site directly discharges to a large reservoir, lake or stream with a drainage area greater than or than 10 square miles. 	
Name of Receiving Water at Discharge Point:	
Drainage Area of Receiving Water at Discharge Point (square miles):	
 <u>dance</u> : "Directly discharges" means that the runoff from the project does not reach any water of the State before discharging he waterbody with a equal or greater than 10 square mile watershed. If the discharge point definition is unclear, refer to the	

Schedule A document and/or contact the Stormwater Program.

 2. The site is smaller than 5 acres and the channel has adequate capacity to convey the pos discharge downstream to the point of the 10% rule; and downstream conveyances have convey the 10 year storm. 	
Is the site area less than five (5) acres?	• Yes No
Has adequate conveyance from the site to the discharge point been verified?	• Yes No
Has supporting information (e.g. narrative description, calculations, modeling) been included?	• Yes No

These waivers are applied per receiving water. For example, if discharge point S/N 001 drains directly to the Winooski River (greater than 10 square miles), but discharge point S/N 002 drains to a small tributary of the Winooski River, then S/N 001 could be waived from the Overbank Flood Protection Standard Treatment Standard using waiver 1, but S/N 002 could not. However, *S/N002 may be eligible for the other waiver.*

Overbank Flood Protection Standard Treatment Standard Waiver Worksheet

Fill out this worksheet for each discharge point in which use of this waiver is sought.

Overbank Flood Protection Standard Treatment Standard (Qp10) Waiver (check only one):

 The site directly discharges to a large reservoir, lake or stream with a drainage area greater than or than 10 square miles. 	
Name of Receiving Water at Discharge Point:	
Drainage Area of Receiving Water at Discharge Point (square miles):	
dance: "Directly discharges" means that the runoff from the project does not reach any water of the State before discharging	

to the waterbody with a equal or greater than 10 square mile watershed. If the discharge point definition is unclear, refer to the Schedule A document and/or contact the Stormwater Program.

 2. The site is smaller than 5 acres and the channel has adequate capacity to convey the positive discharge downstream to the point of the 10% rule; and downstream conveyances have convey the 10 year storm. 	•	
Is the site area less than five (5) acres?	• Yes	🗌 No
Has adequate conveyance from the site to the discharge point been verified?	• Yes	🗌 No
Has supporting information (e.g. narrative description, calculations, modeling) been included?	• Yes	🗌 No

These waivers are applied per receiving water. For example, if discharge point S/N 001 drains directly to the Winooski River (greater than 10 square miles), but discharge point S/N 002 drains to a small tributary of the Winooski River, then S/N 001 could be waived from the Overbank Flood Protection Standard Treatment Standard using waiver 1, but S/N 002 could not. However, S/N002 may be eligible for the other waiver.

Overbank Flood Protection Standard Treatment Standard Waiver Worksheet

Fill out this worksheet for each discharge point in which use of this waiver is sought.

Overbank Flood Protection Standard Treatment Standard (Qp10) Waiver (check only one):

 The site directly discharges to a large reservoir, lake or stream with a drainage area greater than or than 10 square miles. 	
Name of Receiving Water at Discharge Point:	
Drainage Area of Receiving Water at Discharge Point (square miles):	
 <u>dance</u> : "Directly discharges" means that the runoff from the project does not reach any water of the State before discharging he waterbody with a equal or greater than 10 square mile watershed. If the discharge point definition is unclear, refer to the	

Schedule A document and/or contact the Stormwater Program.

 2. The site is smaller than 5 acres and the channel has adequate capacity to convey the positive discharge downstream to the point of the 10% rule; and downstream conveyances have convey the 10 year storm. 	•	
Is the site area less than five (5) acres?	• Yes	🗌 No
Has adequate conveyance from the site to the discharge point been verified?	• Yes	🗌 No
Has supporting information (e.g. narrative description, calculations, modeling) been included?	• Yes	🗌 No

These waivers are applied per receiving water. For example, if discharge point S/N 001 drains directly to the Winooski River (greater than 10 square miles), but discharge point S/N 002 drains to a small tributary of the Winooski River, then S/N 001 could be waived from the Overbank Flood Protection Standard Treatment Standard using waiver 1, but S/N 002 could not. However, S/N002 may be eligible for the other waiver.

Overbank Flood Protection Standard Treatment Standard Waiver Worksheet

Fill out this worksheet for each discharge point in which use of this waiver is sought.

Overbank Flood Protection Standard Treatment Standard (Qp10) Waiver (check only one):

 The site directly discharges to a large reservoir, lake or stream with a drainage area greater than or than 10 square miles. 	
Name of Receiving Water at Discharge Point:	
Drainage Area of Receiving Water at Discharge Point (square miles):	
 <u>dance</u> : "Directly discharges" means that the runoff from the project does not reach any water of the State before discharging he waterbody with a equal or greater than 10 square mile watershed. If the discharge point definition is unclear, refer to the	

Schedule A document and/or contact the Stormwater Program.

 2. The site is smaller than 5 acres and the channel has adequate capacity to convey the pos discharge downstream to the point of the 10% rule; and downstream conveyances have convey the 10 year storm. 	
Is the site area less than five (5) acres?	• Yes 🗌 No
Has adequate conveyance from the site to the discharge point been verified?	• Yes 🗌 No
Has supporting information (e.g. narrative description, calculations, modeling) been included?	• Yes 🗌 No

These waivers are applied per receiving water. For example, if discharge point S/N 001 drains directly to the Winooski River (greater than 10 square miles), but discharge point S/N 002 drains to a small tributary of the Winooski River, then S/N 001 could be waived from the Overbank Flood Protection Standard Treatment Standard using waiver 1, but S/N 002 could not. However, *S/N002 may be eligible for the other waiver.*

Extreme Flood Protection Standard Treatment Standard Waiver Worksheet

Fill out this worksheet for each discharge point in which use of this waiver is sought.

Extreme Flood Protection Standard Treatment Standard (Qp100) Waiver (check only one):

1. The site directly discharges to a large reservoir, lake or stream with a drainage area greater than or than ten (10) square miles.

Name of Receiving Water at Discharge Point:

Drainage Area of Receiving Water at Discharge Point (square miles):

<u>Guidance</u>: "Directly discharges" means that the runoff from the project does not reach any water of the State before discharging to the waterbody with a equal or greater than 10 square mile watershed. If the discharge point definition is unclear, refer to the Schedule A document and/or contact the Stormwater Program.

2. The impervious area is less than or equal to ten (10) acres.
 Enter the new/expanded impervious area (acres):
 0.039
 <u>Guidance</u>: The ten (10) acre treatment requirement applies to only new impervious – created since July 4, 2005.

 3. A downstream analysis is conducted that indicates extreme flood control is not necessary for the site.

 Has adequate conveyance from the site to the discharge point been verified?

 Yes

 No

 Has supporting information (e.g. narrative description, calculations, modeling) been included?

Extreme Flood Protection Standard Treatment Standard Waiver Worksheet

Fill out this worksheet for each discharge point in which use of this waiver is sought.

Extreme Flood Protection Standard Treatment Standard (Qp100) Waiver (check only one):

1. The site directly discharges to a large reservoir, lake or stream with a drainage area greater than or than ten (10) square miles.

Name of Receiving Water at Discharge Point:

Drainage Area of Receiving Water at Discharge Point (square miles):

<u>Guidance</u>: "Directly discharges" means that the runoff from the project does not reach any water of the State before discharging to the waterbody with a equal or greater than 10 square mile watershed. If the discharge point definition is unclear, refer to the Schedule A document and/or contact the Stormwater Program.

2. The impervious area is less than or equal to ten (10) acres.
 Enter the new/expanded impervious area (acres):
 0.149
 <u>Guidance</u>: The ten (10) acre treatment requirement applies to only new impervious – created since July 4, 2005.

 3. A downstream analysis is conducted that indicates extreme flood control is not necessary for the site.

 Has adequate conveyance from the site to the discharge point been verified?

 Yes

 No

 Has supporting information (e.g. narrative description, calculations, modeling) been included?

Extreme Flood Protection Standard Treatment Standard Waiver Worksheet

Fill out this worksheet for each discharge point in which use of this waiver is sought.

Extreme Flood Protection Standard Treatment Standard (Qp100) Waiver (check only one):

1. The site directly discharges to a large reservoir, lake or stream with a drainage area greater than or than ten (10) square miles.

Name of Receiving Water at Discharge Point:

Drainage Area of Receiving Water at Discharge Point (square miles):

<u>Guidance</u>: "Directly discharges" means that the runoff from the project does not reach any water of the State before discharging to the waterbody with a equal or greater than 10 square mile watershed. If the discharge point definition is unclear, refer to the Schedule A document and/or contact the Stormwater Program.

✓ 2. The impervious area is less than or equal to ten (10) acres.
 Enter the new/expanded impervious area (acres): 0.044
 <u>Guidance</u>: The ten (10) acre treatment requirement applies to only new impervious – created since July 4, 2005.

 $\underline{autumee}$, the ten [10] use treatment requirement upplies to only new impervious – created since July 4, 2003.

3. A downstream analysis is conducted that indicates extreme flood control is not necessary for the site.		
Has adequate conveyance from the site to the discharge point been verified?	Yes	🗌 No
Has supporting information (e.g. narrative description, calculations, modeling) been included?	Yes	🗌 No

Extreme Flood Protection Standard Treatment Standard Waiver Worksheet

Fill out this worksheet for each discharge point in which use of this waiver is sought.

Extreme Flood Protection Standard Treatment Standard (Qp100) Waiver (check only one):

1. The site directly discharges to a large reservoir, lake or stream with a drainage area greater than or than ten (10) square miles.

Name of Receiving Water at Discharge Point:

Drainage Area of Receiving Water at Discharge Point (square miles):

Guidance: "Directly discharges" means that the runoff from the project does not reach any water of the State before discharging to the waterbody with a equal or greater than 10 square mile watershed. If the discharge point definition is unclear, refer to the Schedule A document and/or contact the Stormwater Program.

 \checkmark 2. The impervious area is less than or equal to ten (10) acres. Enter the new/expanded impervious area (acres): 0.085

Guidance: The ten (10) acre treatment requirement applies to only new impervious - created since July 4, 2005.

3. A downstream analysis is conducted that indicates extreme flood control is not necessary for the site.			
Has adequate conveyance from the site to the discharge point been verified?	Yes	🗌 No	
Has supporting information (e.g. narrative description, calculations, modeling) been included?	Yes	🗌 No	

Yes

No

Extreme Flood Protection Standard Treatment Standard Waiver Worksheet

Fill out this worksheet for each discharge point in which use of this waiver is sought.

Extreme Flood Protection Standard Treatment Standard (Qp100) Waiver (check only one):

 The site directly discharges to a large reservoir, lake or stream with a drainage area greater than or than ten (10) square miles.

Name of Receiving Water at Discharge Point:

Drainage Area of Receiving Water at Discharge Point (square miles):

<u>Guidance</u>: "Directly discharges" means that the runoff from the project does not reach any water of the State before discharging to the waterbody with a equal or greater than 10 square mile watershed. If the discharge point definition is unclear, refer to the Schedule A document and/or contact the Stormwater Program.

✓ 2. The impervious area is less than or equal to ten (10) acres.
 Enter the new/expanded impervious area (acres):
 0.017
 <u>Guidance</u>: The ten (10) acre treatment requirement applies to only new impervious – created since July 4, 2005.

3. A downstream analysis is conducted that indicates extreme flood control is not necessary for the site.
 Has adequate conveyance from the site to the discharge point been verified? Yes No

Has supporting information (e.g. narrative description, calculations, modeling) been included?

Extreme Flood Protection Standard Treatment Standard Waiver Worksheet

Fill out this worksheet for each discharge point in which use of this waiver is sought.

Extreme Flood Protection Standard Treatment Standard (Qp100) Waiver (check only one):

1. The site directly discharges	to a large reservoir, lake or stream with a drainage area greater than or than ten (10)
square miles.	

Name of Receiving Water at Discharge Point:

Drainage Area of Receiving Water at Discharge Point (square miles):

<u>Guidance</u>: "Directly discharges" means that the runoff from the project does not reach any water of the State before discharging to the waterbody with a equal or greater than 10 square mile watershed. If the discharge point definition is unclear, refer to the Schedule A document and/or contact the Stormwater Program.

✓ 2. The impervious area is less than or equal to ten (10) acres.
 Enter the new/expanded impervious area (acres): 0.128
 <u>Guidance</u>: The ten (10) acre treatment requirement applies to only new impervious – created since July 4, 2005.

3. A downstream analysis is conducted that indicates extreme flood control is not necessary for the site.			
Has adequate conveyance from the site to the discharge point been verified?	Yes	🗌 No	
Has supporting information (e.g. narrative description, calculations, modeling) been included?	Yes	🗌 No	

Extreme Flood Protection Standard Treatment Standard Waiver Worksheet

Fill out this worksheet for each discharge point in which use of this waiver is sought.

Extreme Flood Protection Standard Treatment Standard (Qp100) Waiver (check only one):

1. The site directly discharges to a large reservoir, lake or stream with a drainage area greater than or than ten (10) square miles.

Name of Receiving Water at Discharge Point:

Drainage Area of Receiving Water at Discharge Point (square miles):

<u>Guidance</u>: "Directly discharges" means that the runoff from the project does not reach any water of the State before discharging to the waterbody with a equal or greater than 10 square mile watershed. If the discharge point definition is unclear, refer to the Schedule A document and/or contact the Stormwater Program.

✓ 2. The impervious area is less than or equal to ten (10) acres.
 Enter the new/expanded impervious area (acres):
 0.520
 <u>Guidance</u>: The ten (10) acre treatment requirement applies to only new impervious – created since July 4, 2005.

 3. A downstream analysis is conducted that indicates extreme flood control is not necessary for the site.

 Has adequate conveyance from the site to the discharge point been verified?

 Yes
 No

 Has supporting information (e.g. narrative description, calculations, modeling) been included?
 Yes
 No

Extreme Flood Protection Standard Treatment Standard Waiver Worksheet

Fill out this worksheet for each discharge point in which use of this waiver is sought.

Extreme Flood Protection Standard Treatment Standard (Qp100) Waiver (check only one):

1. The site directly discharges to a large res	servoir, lake or stream with a drainage area greater than or than ten (10)
square miles.	

Name of Receiving Water at Discharge Point:

Drainage Area of Receiving Water at Discharge Point (square miles):

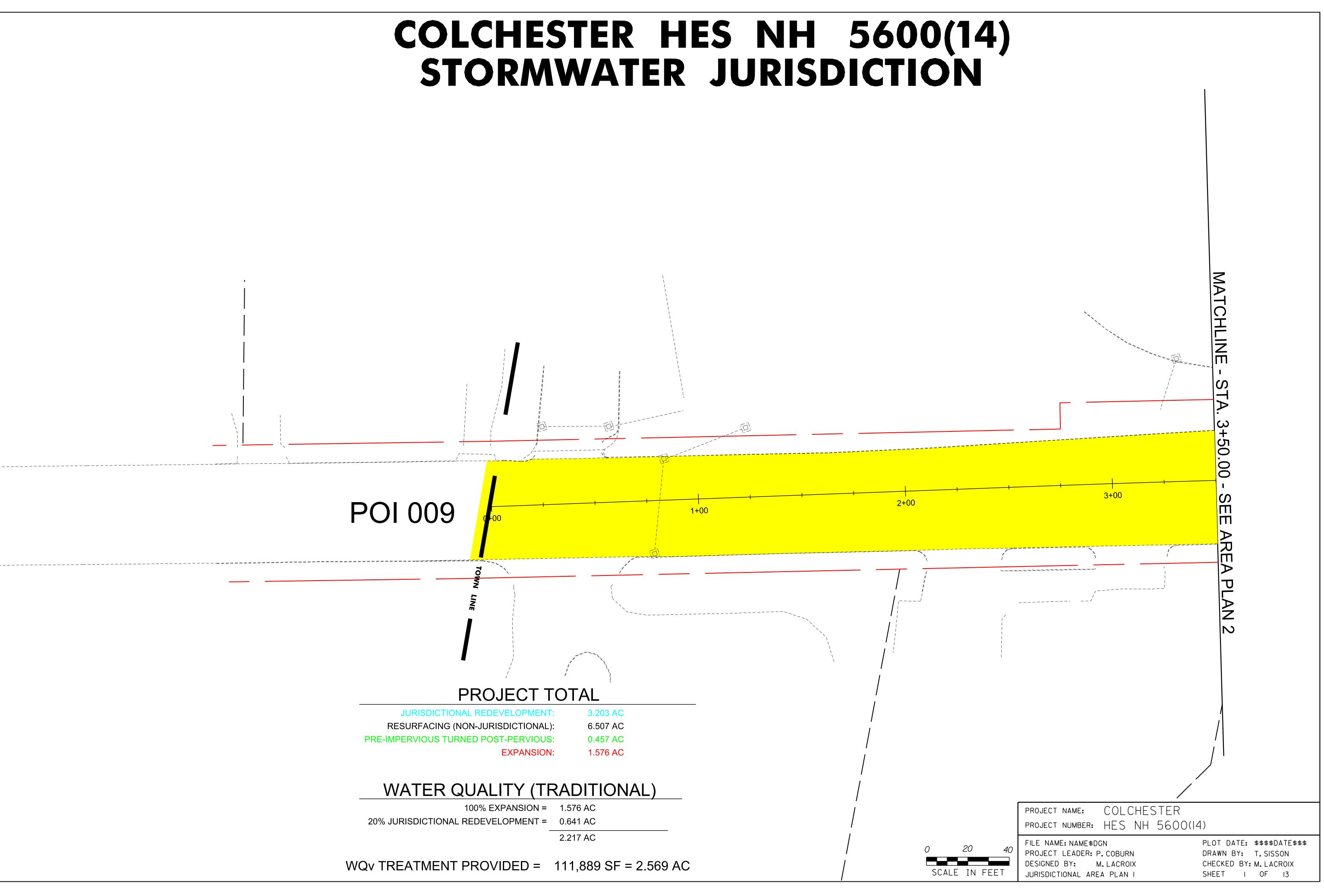
<u>Guidance</u>: "Directly discharges" means that the runoff from the project does not reach any water of the State before discharging to the waterbody with a equal or greater than 10 square mile watershed. If the discharge point definition is unclear, refer to the Schedule A document and/or contact the Stormwater Program.

✓ 2. The impervious area is less than or equal to ten (10) acres.
 Enter the new/expanded impervious area (acres): 0.594
 <u>Guidance</u>: The ten (10) acre treatment requirement applies to only new impervious – created since July 4, 2005.

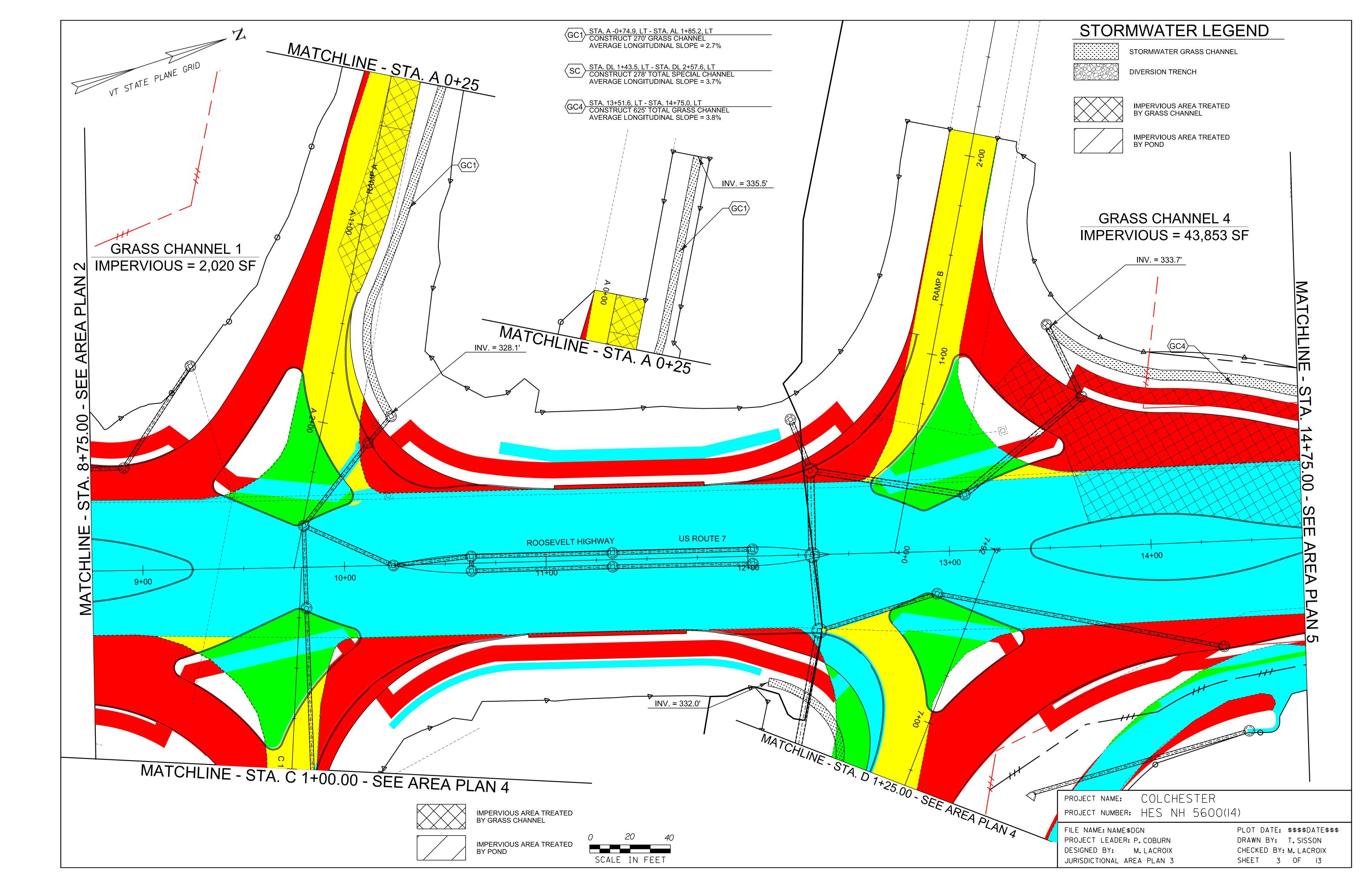
 3. A downstream analysis is conducted that indicates extreme flood control is not necessary for the site.

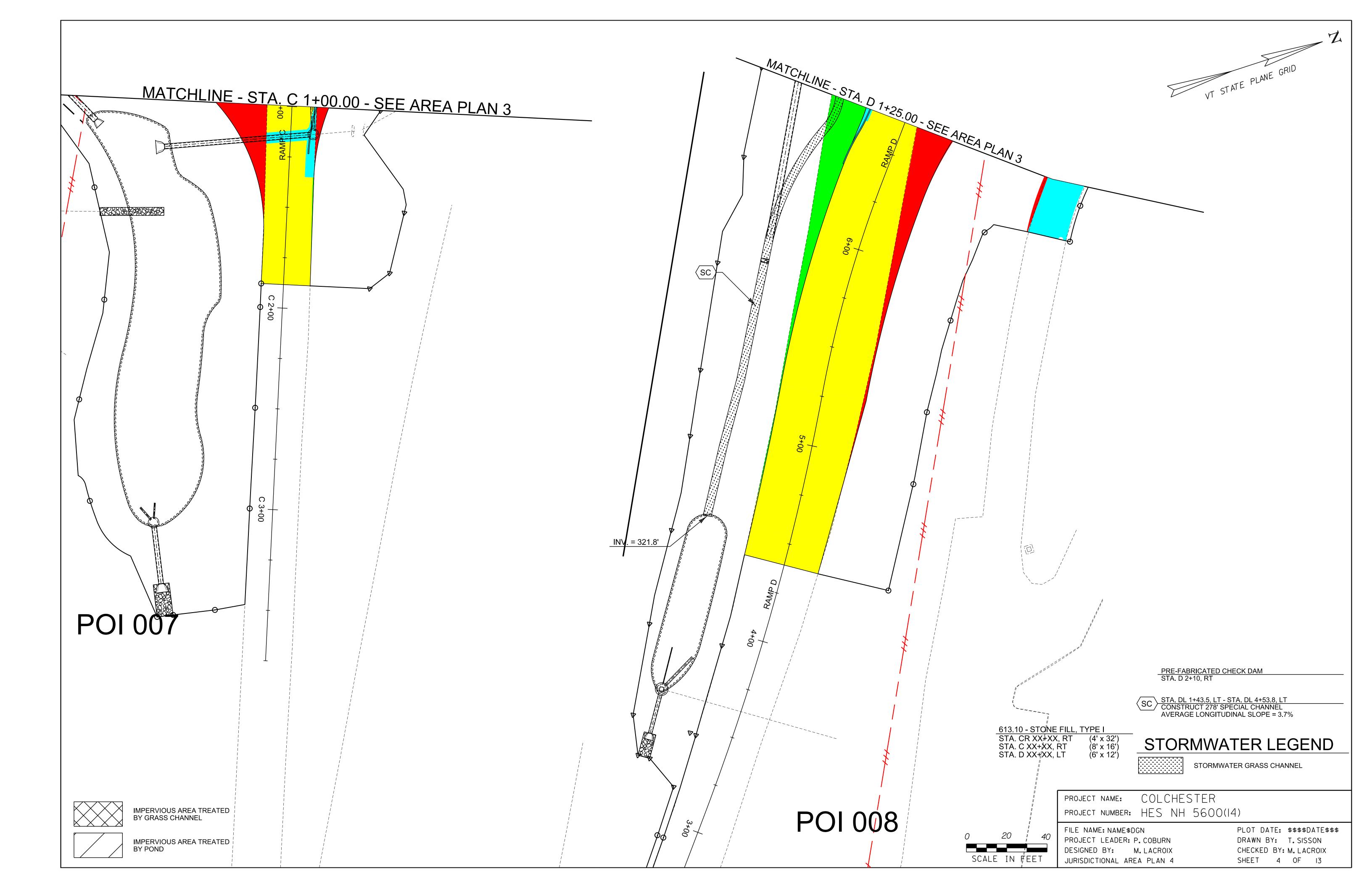
 Has adequate conveyance from the site to the discharge point been verified?

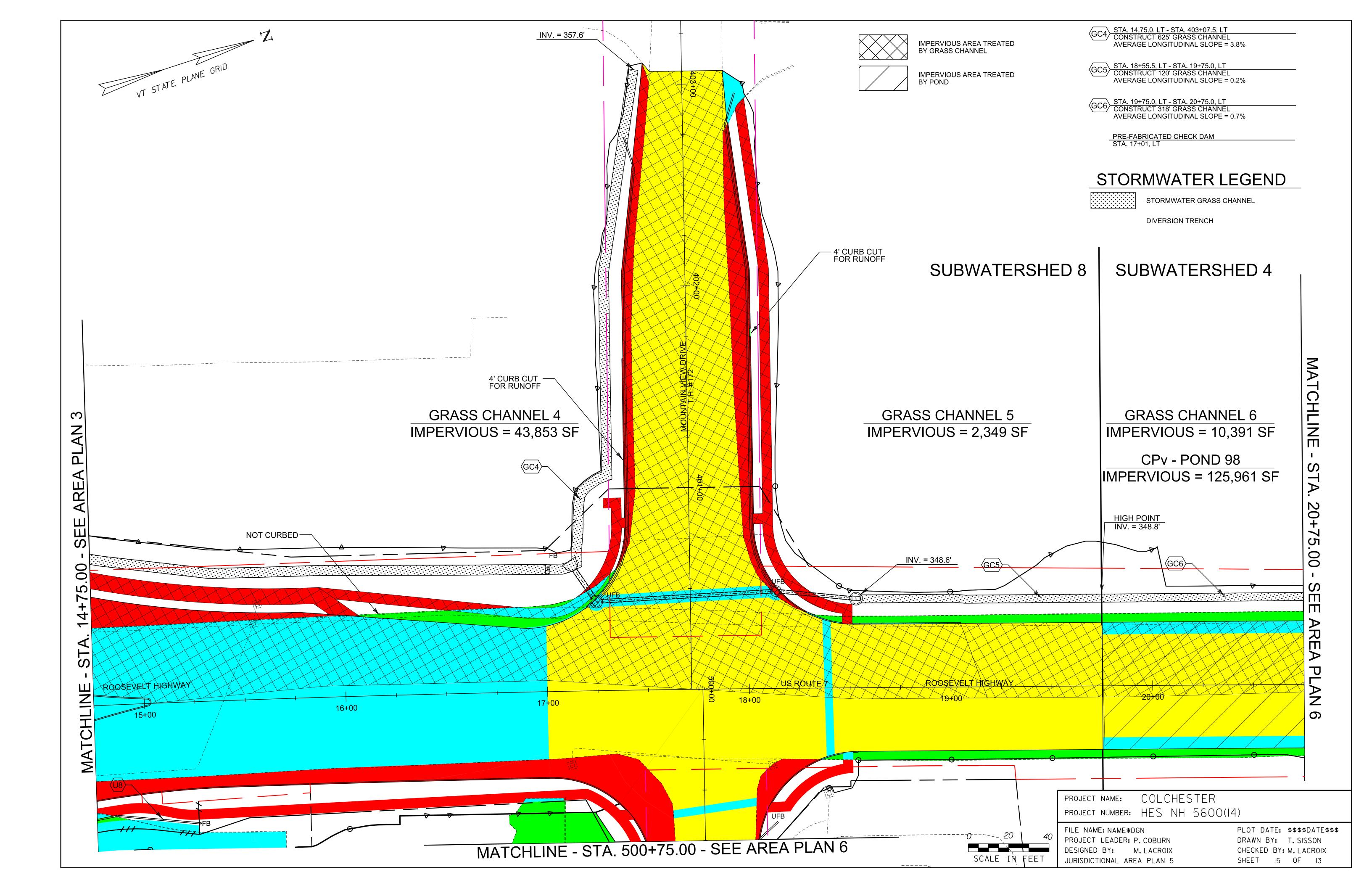
 Yes

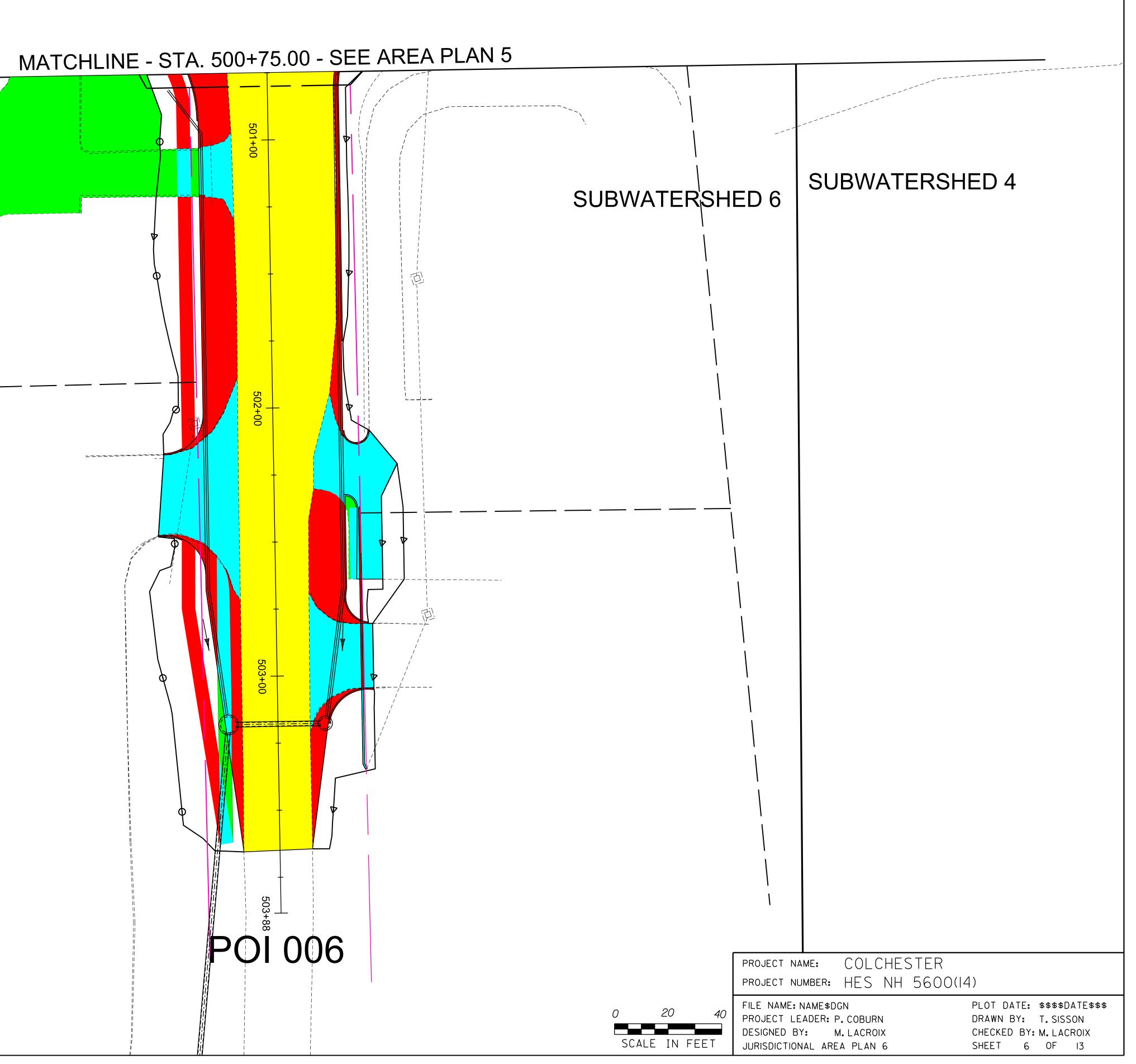

 No

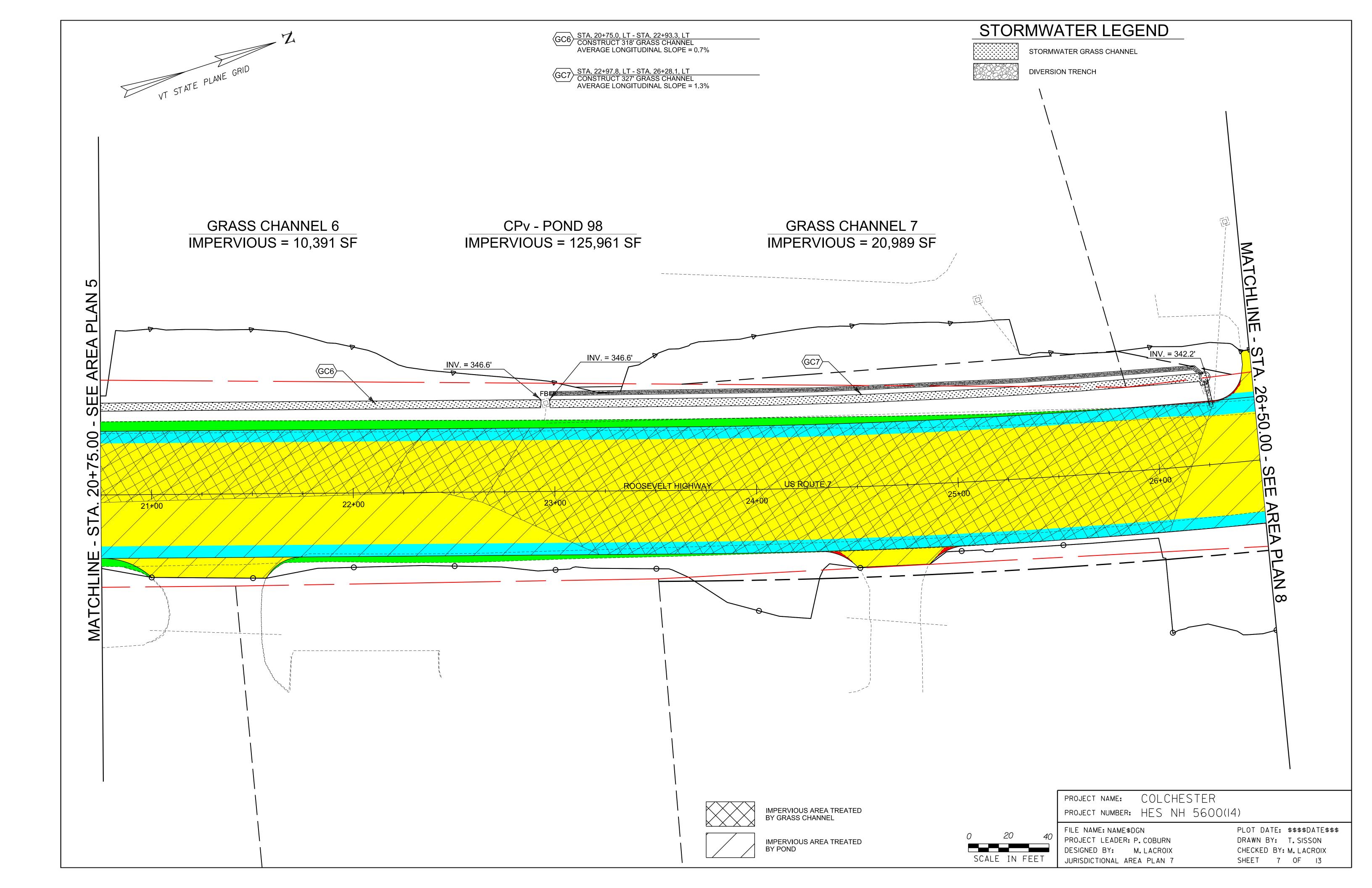
 Has supporting information (e.g. narrative description, calculations, modeling) been included?

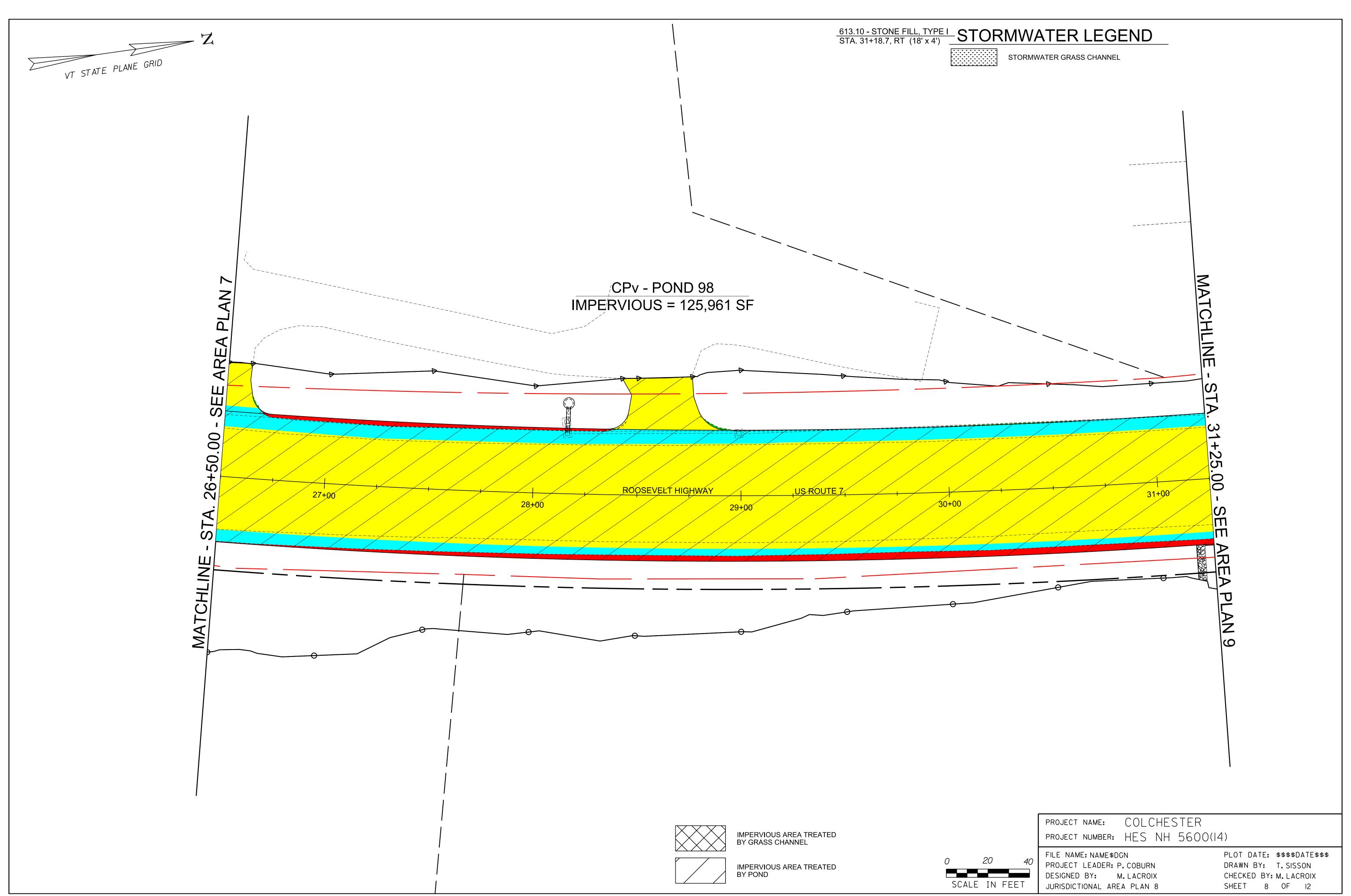

POI 009

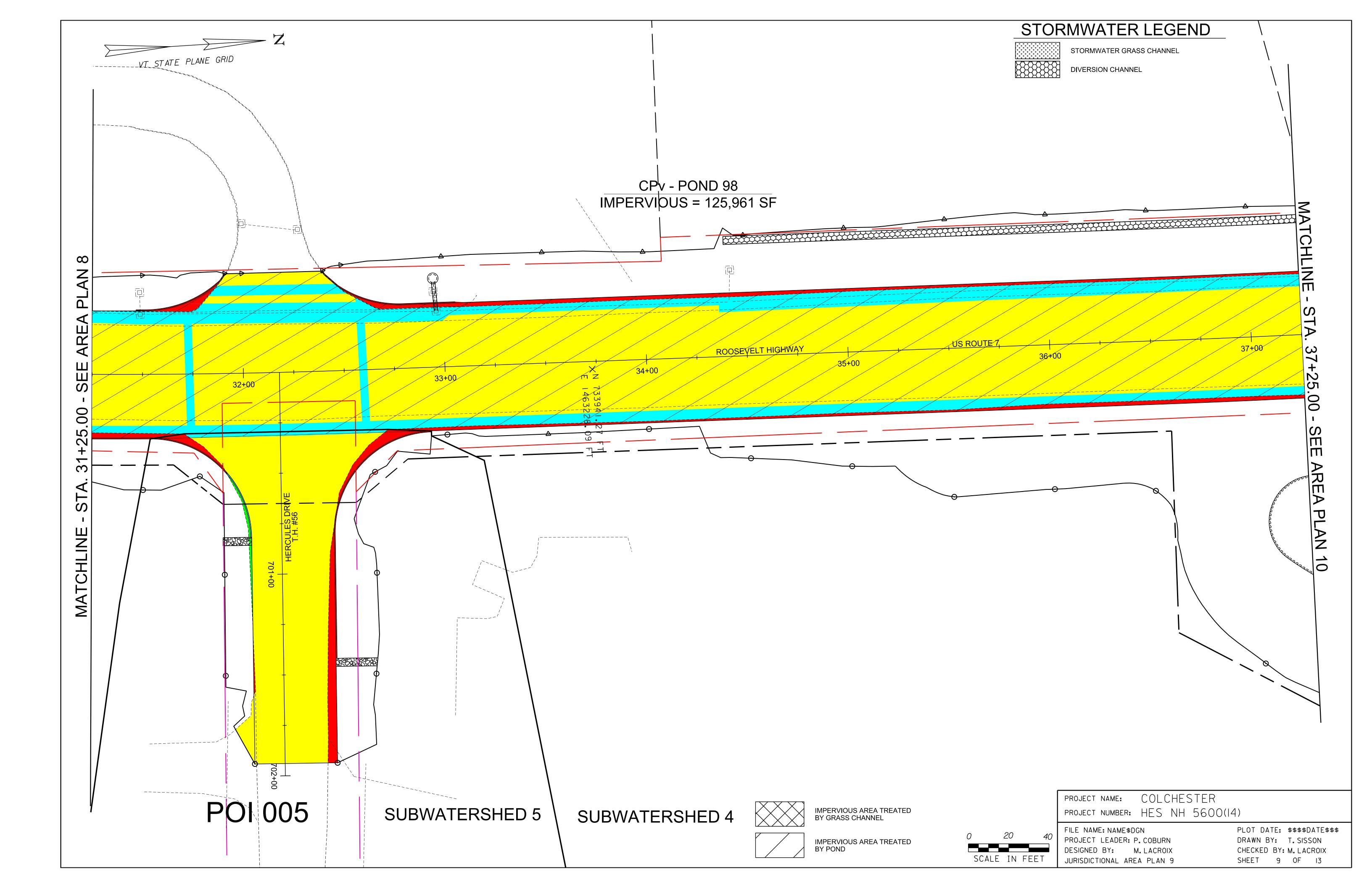


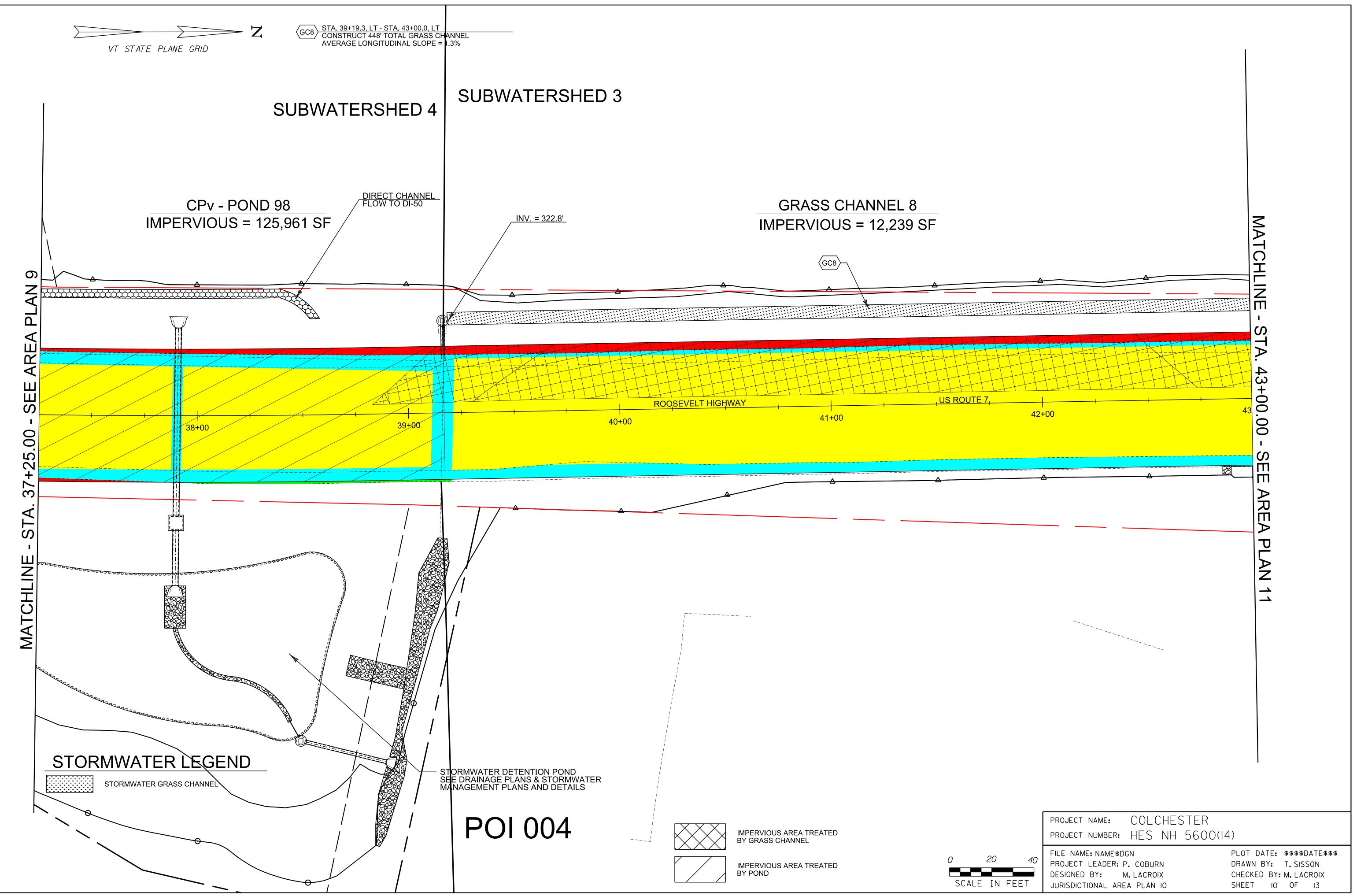

_ _ _____

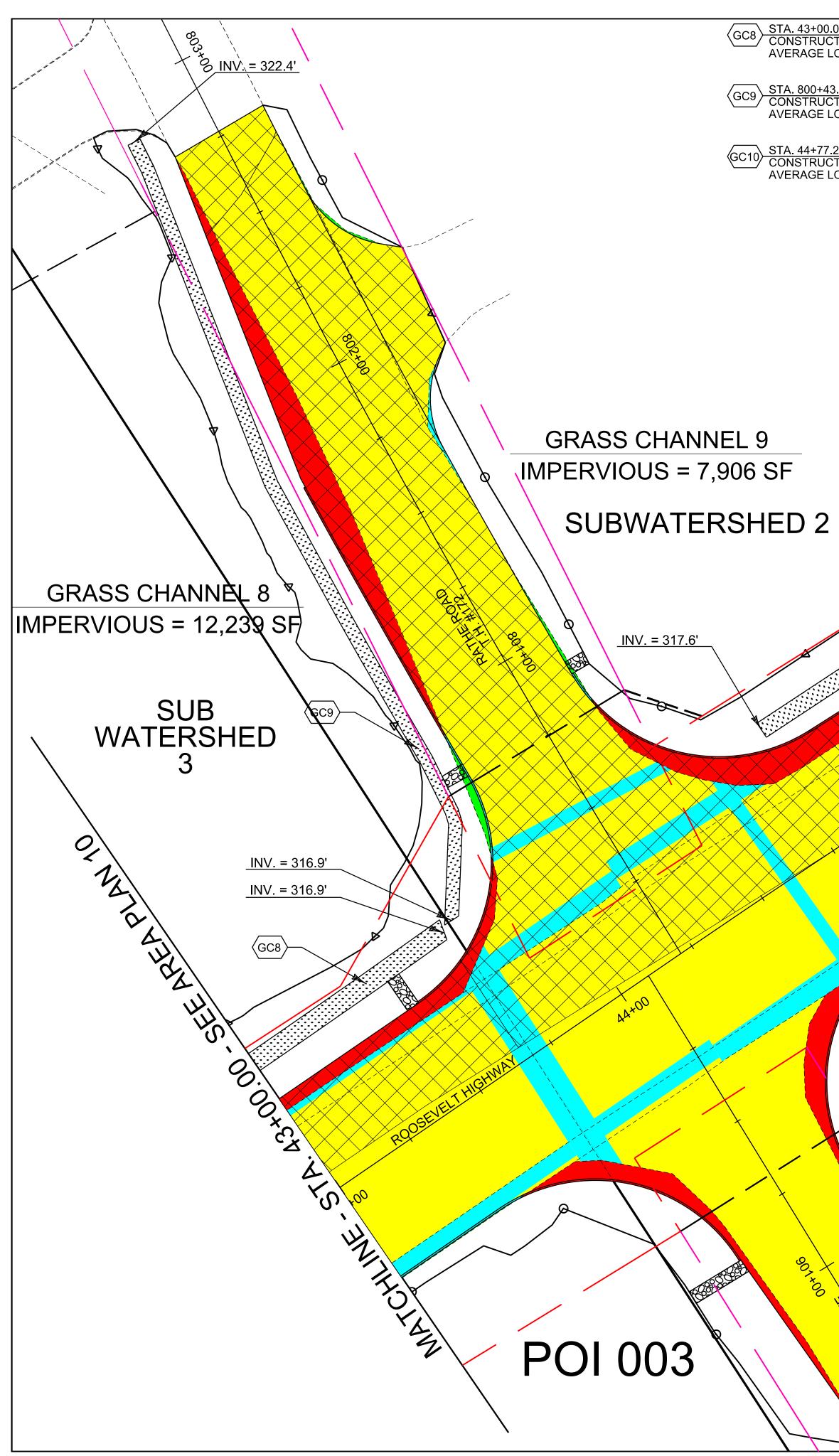




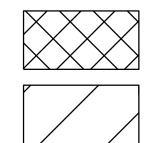





M VT STATE PLANE GRID _____ SUB WATER SHED 8 SUBWATERSHED 6



GC8 STA. 43+00.0, LT - STA. 43+67.4, LT CONSTRUCT 448' TOTAL GRASS CHANNEL AVERAGE LONGITUDINAL SLOPE = 1.3%

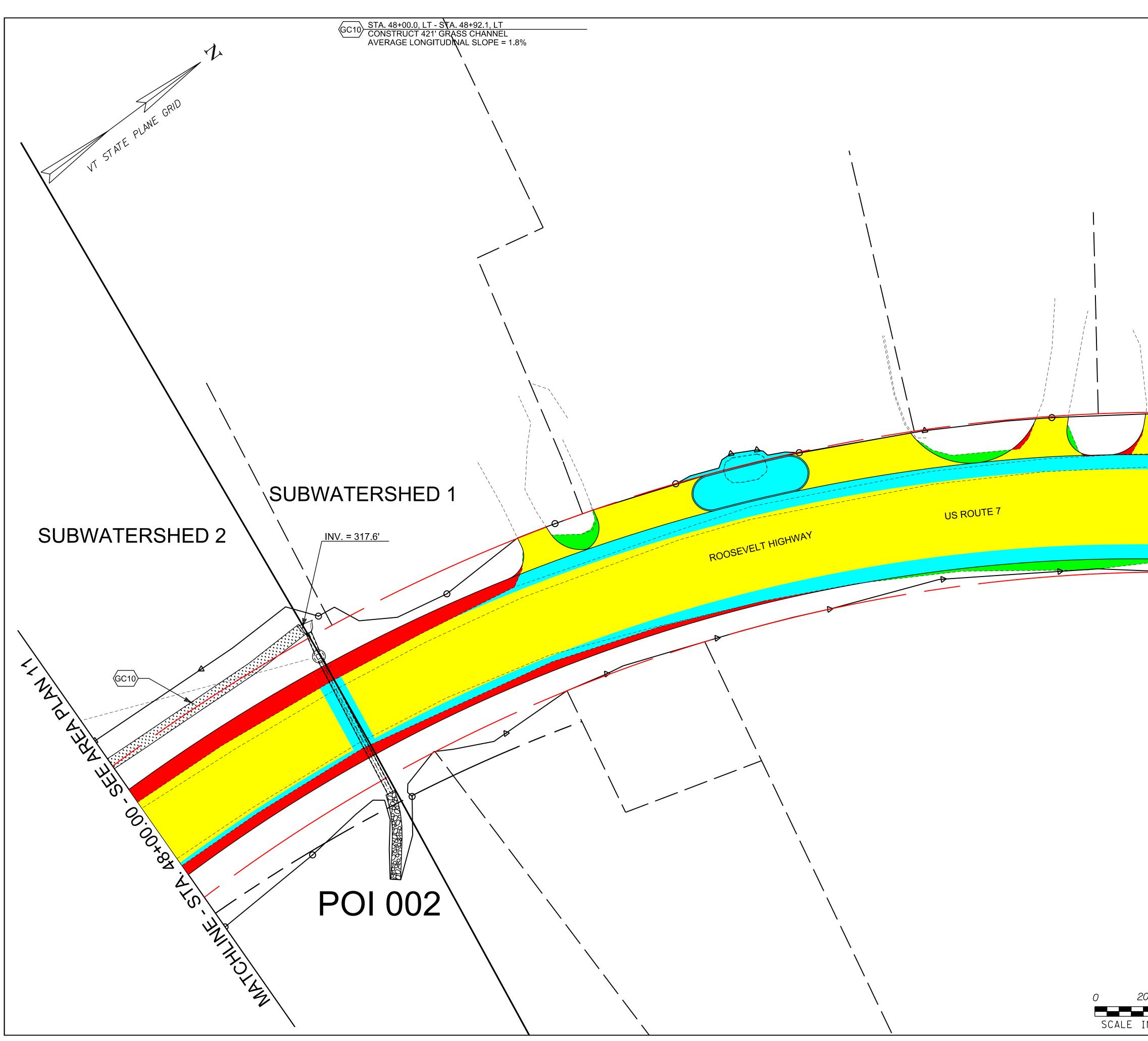

GC9 STA. 800+43.1, LT - STA. 802+85.0, LT CONSTRUCT 250' GRASS CHANNEL AVERAGE LONGITUDINAL SLOPE = 2.2%

GC10 STA. 44+77.2, LT - STA. 48+00.0, LT CONSTRUCT 421' GRASS CHANNEL AVERAGE LONGITUDINAL SLOPE = 1.8%

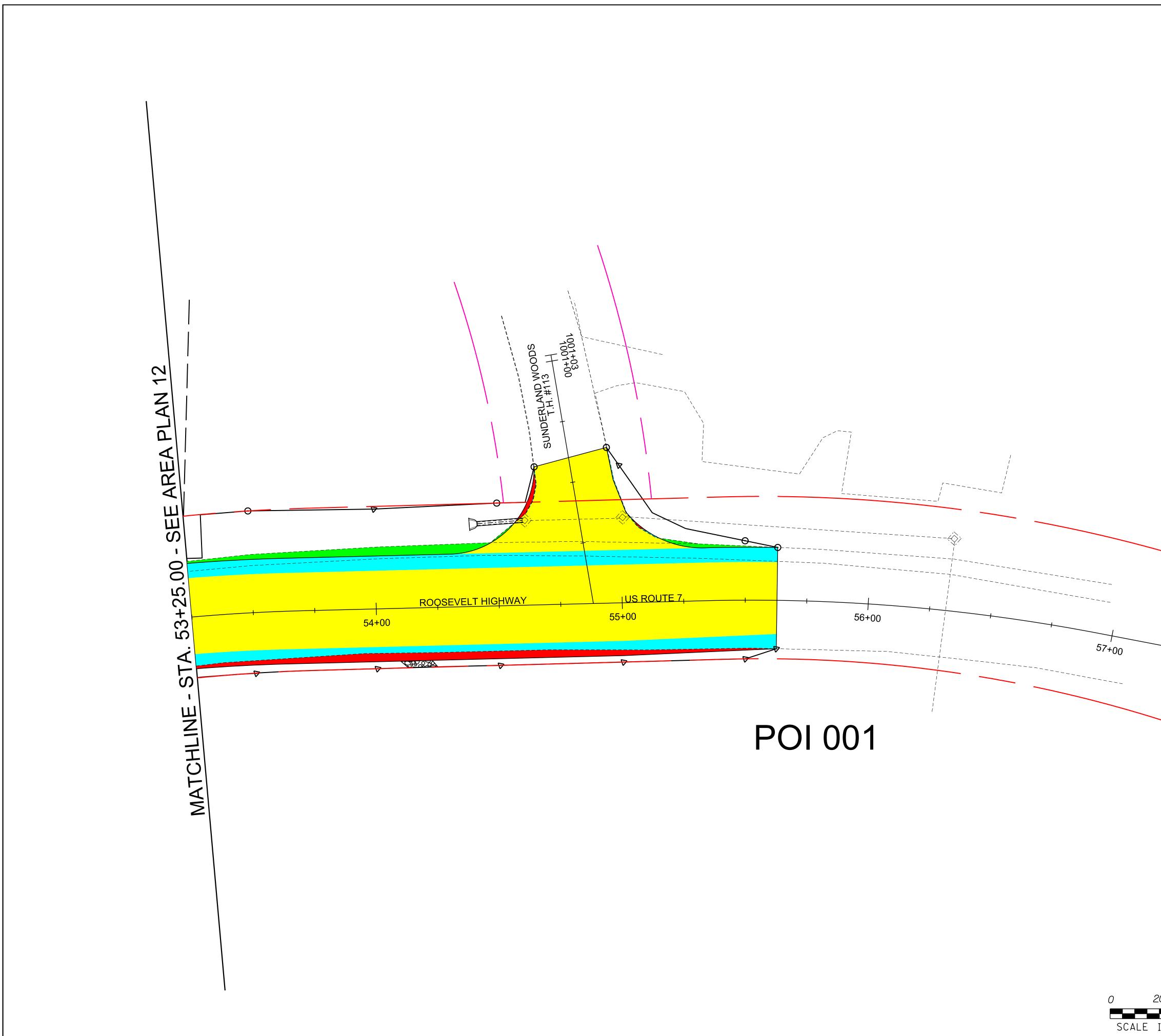
GRASS CHANNEL 10 IMPERVIOUS = 12,142 SF

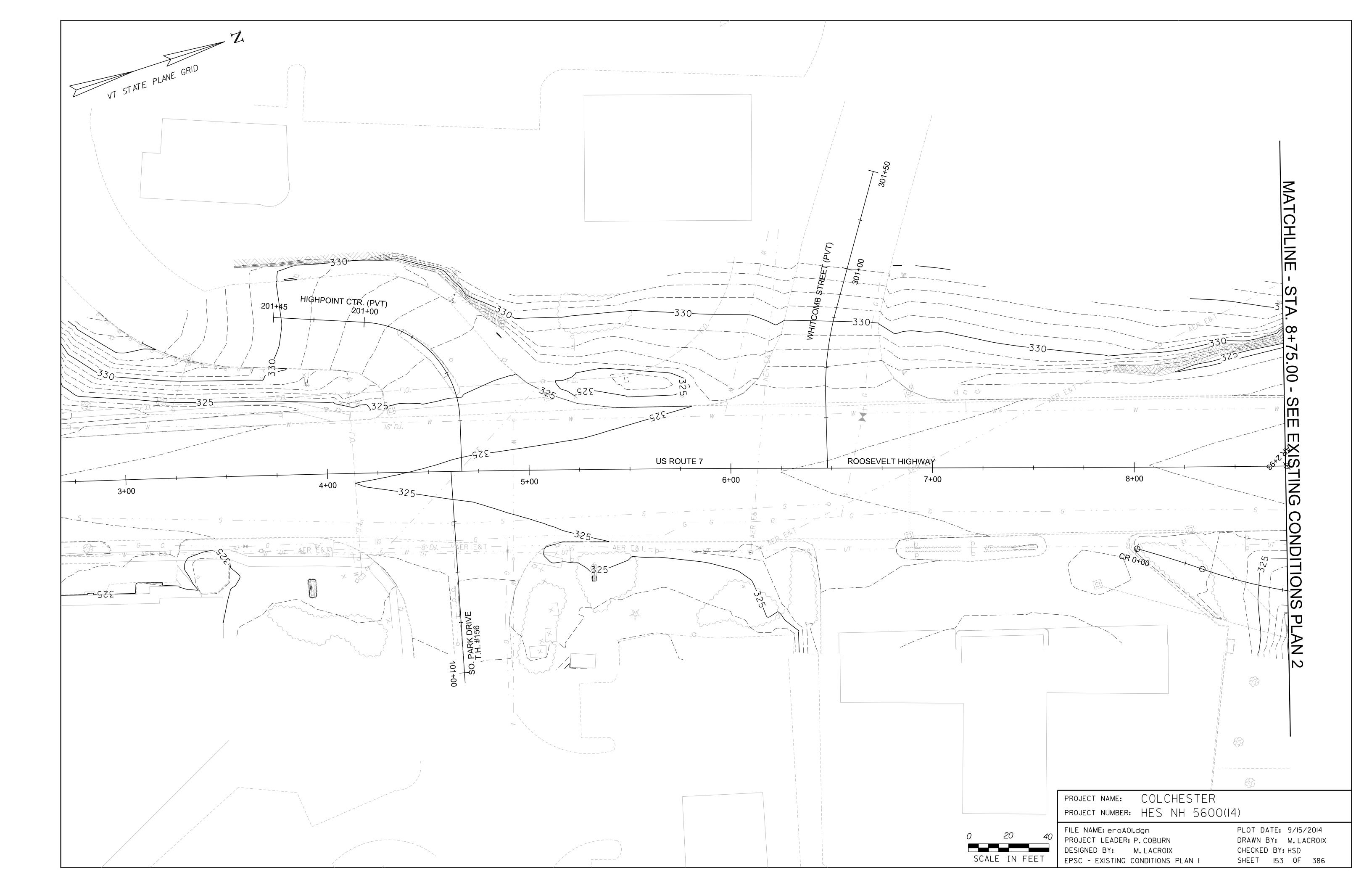
(GC10)

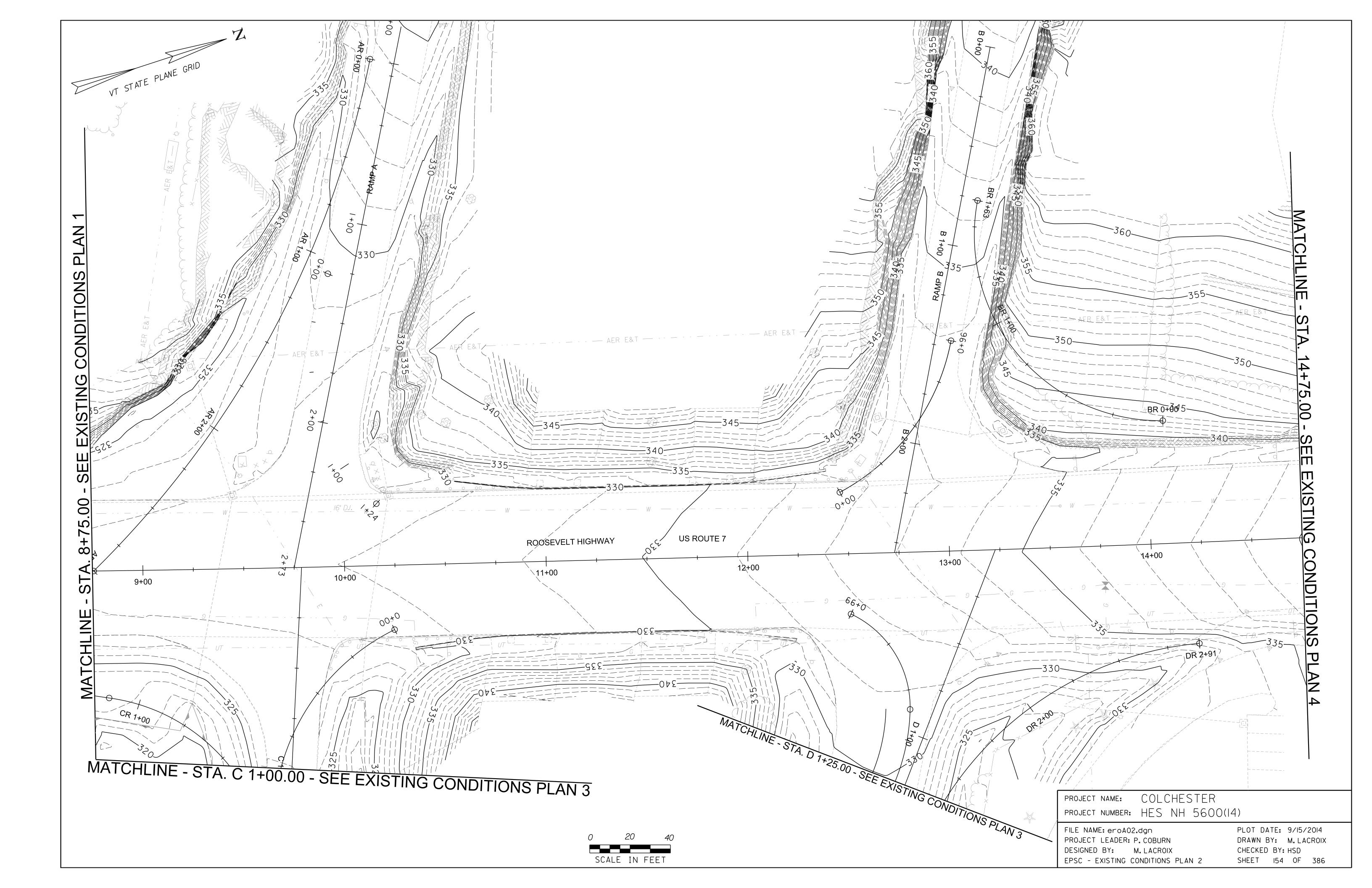
JINING RIVING



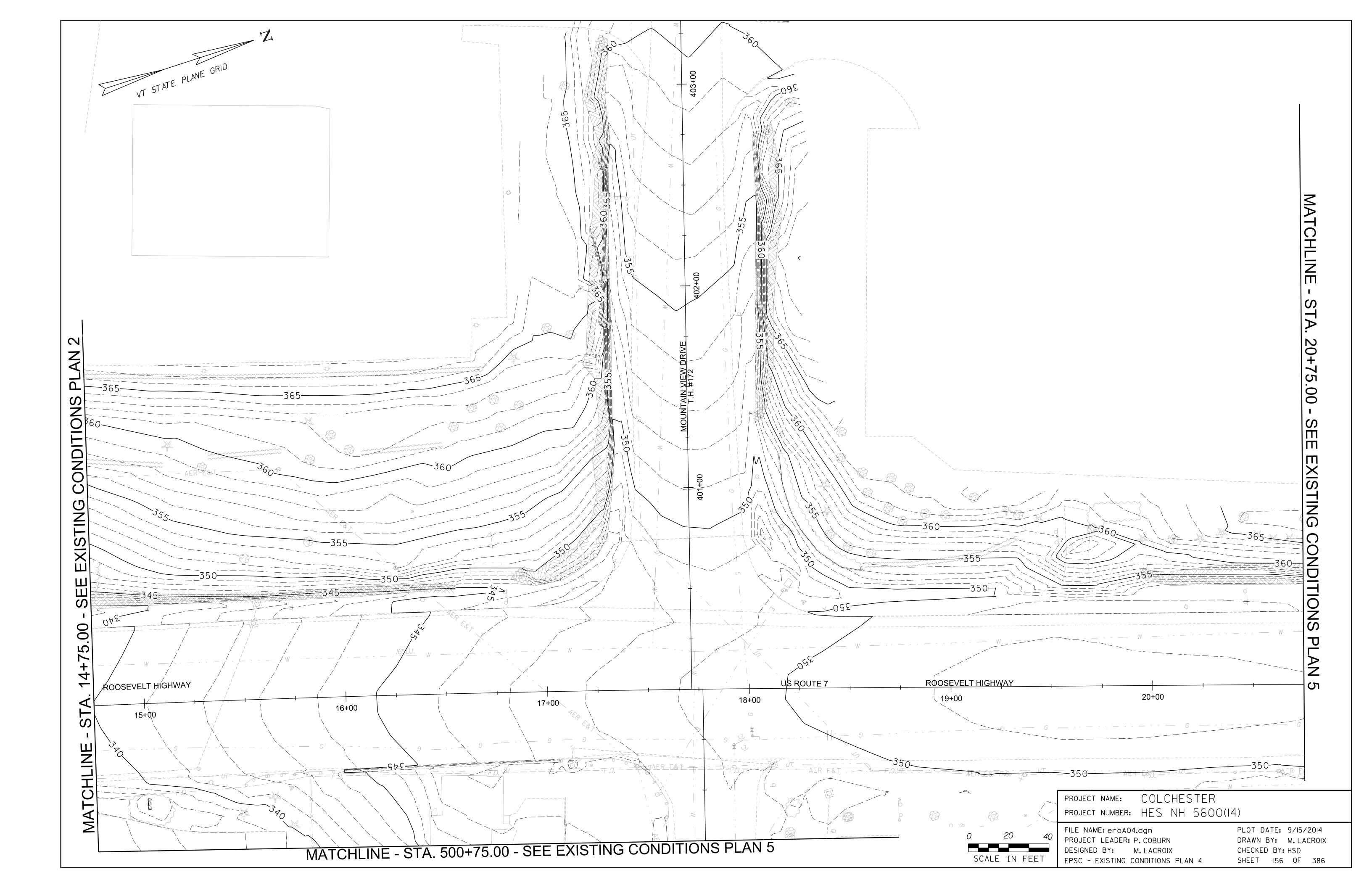
IMPERVIOUS AREA TREATED BY GRASS CHANNEL


IMPERVIOUS AREA TREATED BY POND

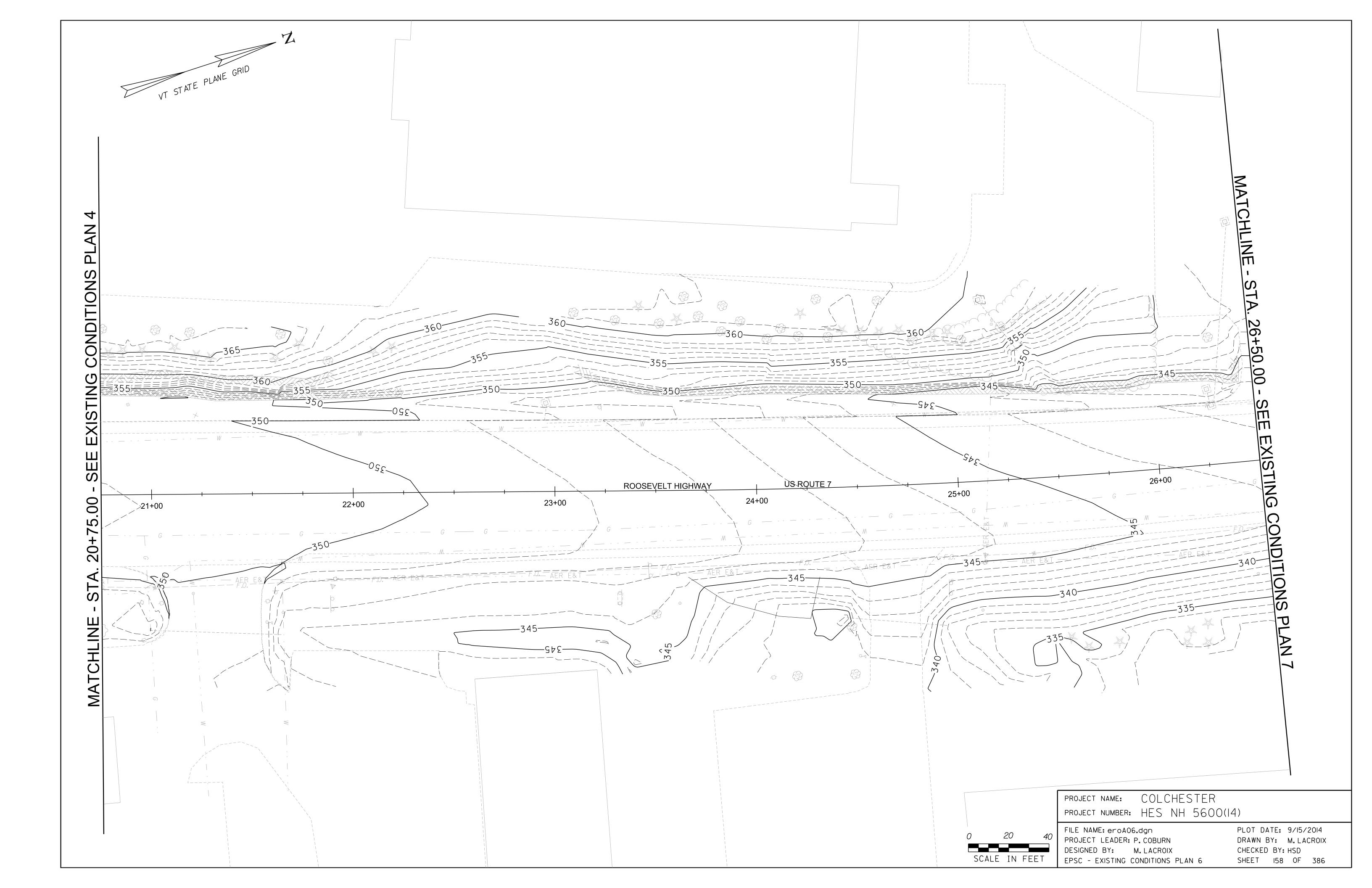

			L
	3		THE GRID
	48 TT	VT STATE PL	r
	O, TP 		
	i Bo)))	
	0	TE	
	ST		ER LEGEND
			R GRASS CHANNEL
		CHESTER NH 5600(14)
20 40 In Feet	FILE NAME: NAME\$DGN PROJECT LEADER: P.COBU DESIGNED BY: M.LACR JURISDICTIONAL AREA PLAN	RN OIX	PLOT DATE: \$\$\$DATE\$\$\$ DRAWN BY: T.SISSON CHECKED BY: M.LACROIX SHEET II OF I3
	CONSCIONAL ANEA I LAI	• "	

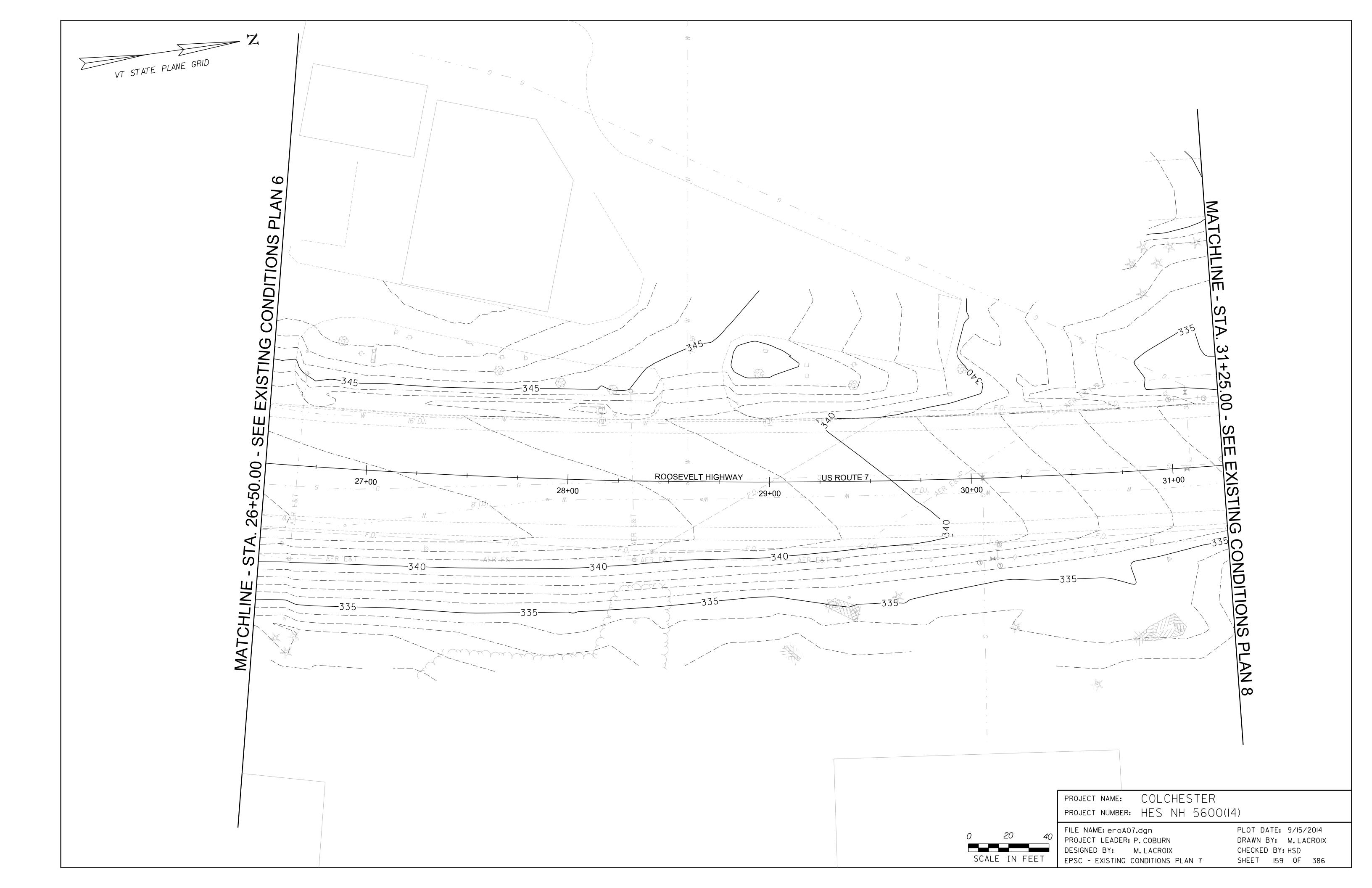


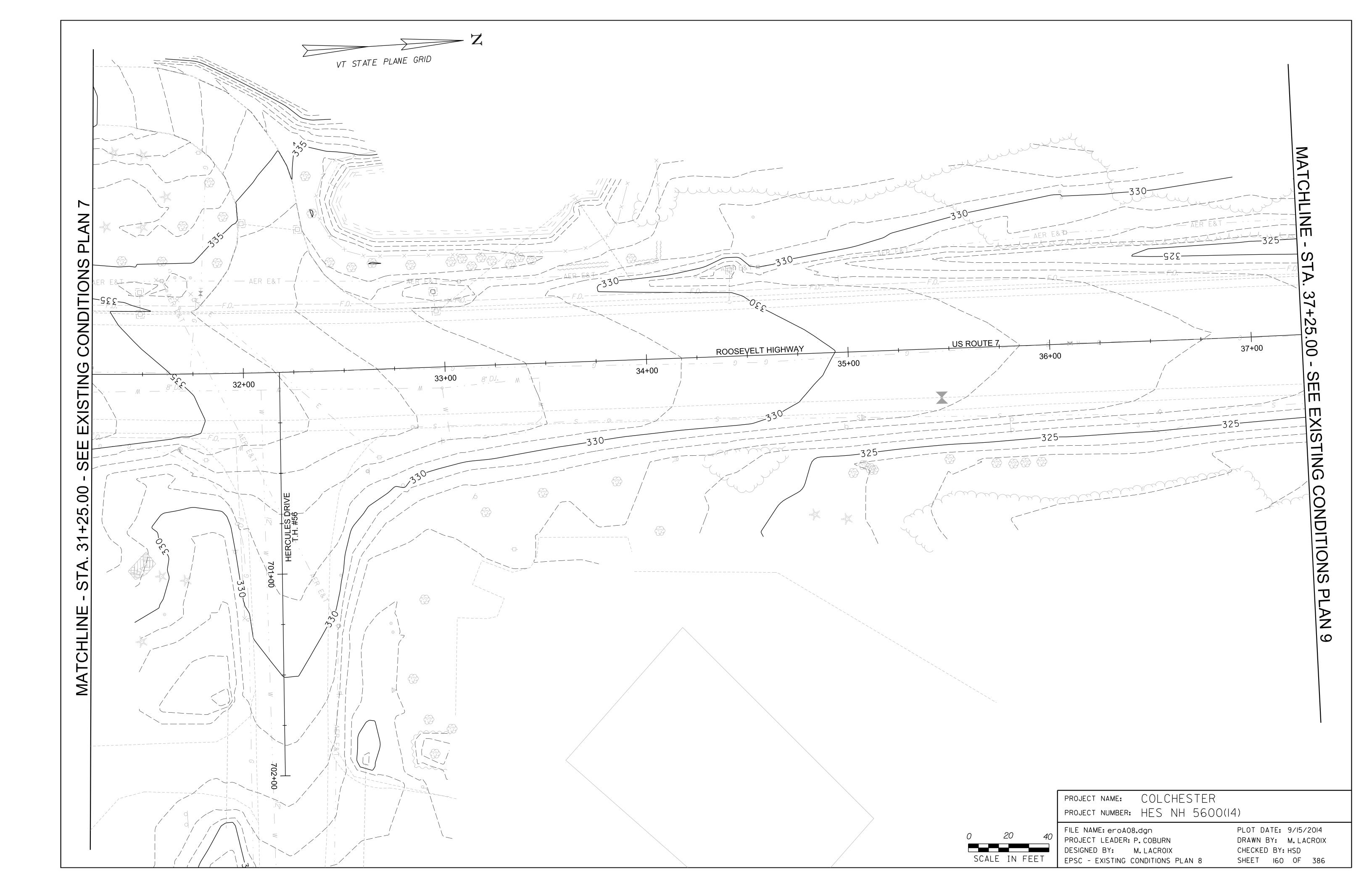
	MATCH	
	NTCHINE - STA. 53+25.00 - SEE AR	
	REA PLAN 13	
<i>20 40</i> In Feet	PROJECT NAME: COLCHESTER PROJECT NUMBER: HES NH 5600(1) FILE NAME: NAME\$DGN PROJECT LEADER: P. COBURN DESIGNED BY: M. LACROIX JURISDICTIONAL AREA PLAN 12	4) PLOT DATE: \$\$\$\$DATE\$\$\$ DRAWN BY: T. SISSON CHECKED BY: M. LACROIX SHEET 12 OF 13

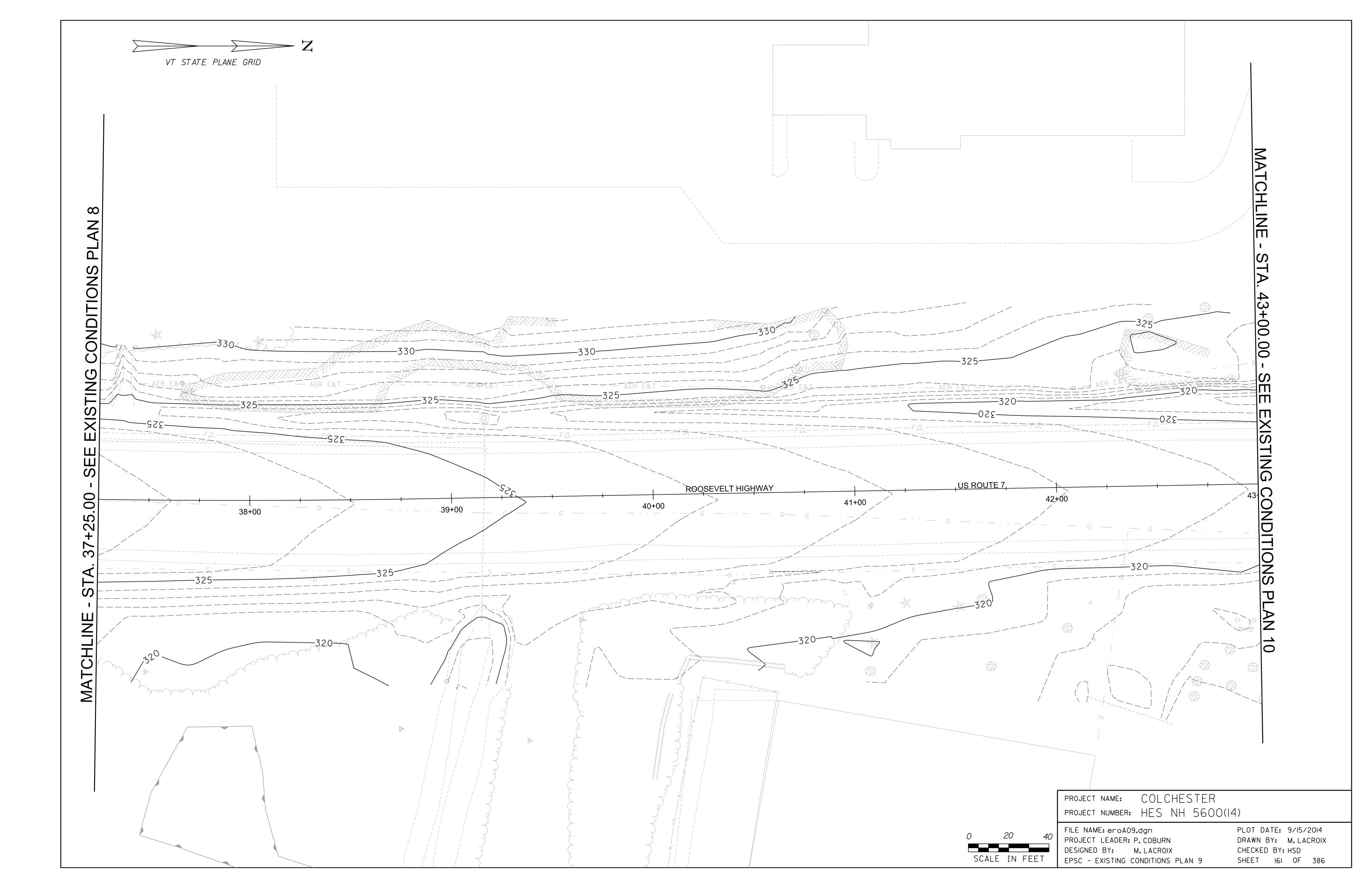


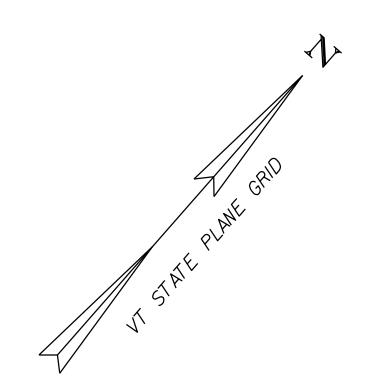
	J. STATE PLANE GRID
	57+74
	PROJECT NAME: COLCHESTER PROJECT NUMBER: HES NH 5600(14)
20 40 In Feet	FILE NAME: NAME\$DGNPLOT DATE: \$\$\$DATE\$\$\$PROJECT LEADER: P. COBURNDRAWN BY: T. SISSONDESIGNED BY:M. LACROIXJURISDICTIONAL AREA PLAN I3SHEET I3 OF I3

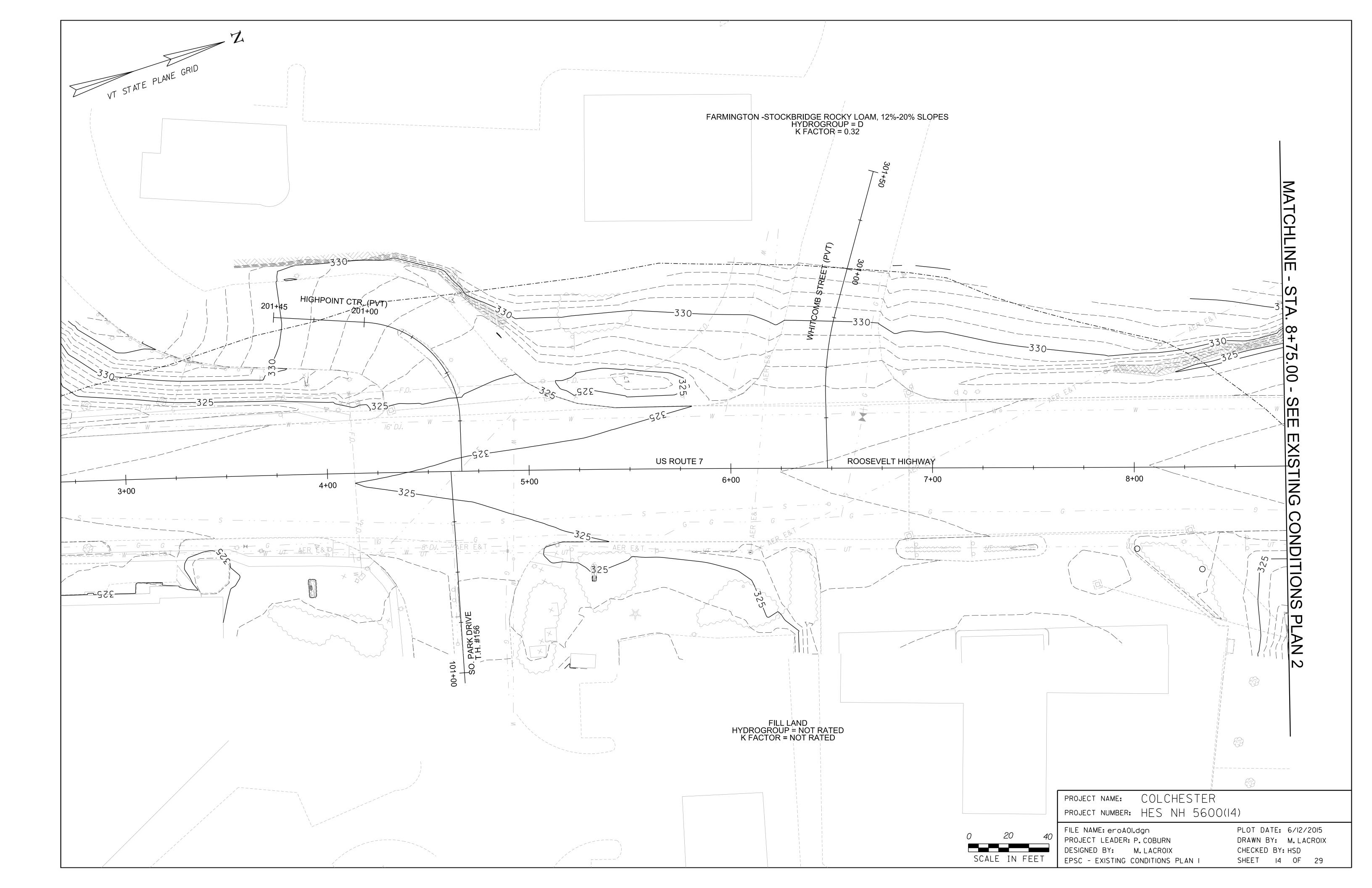


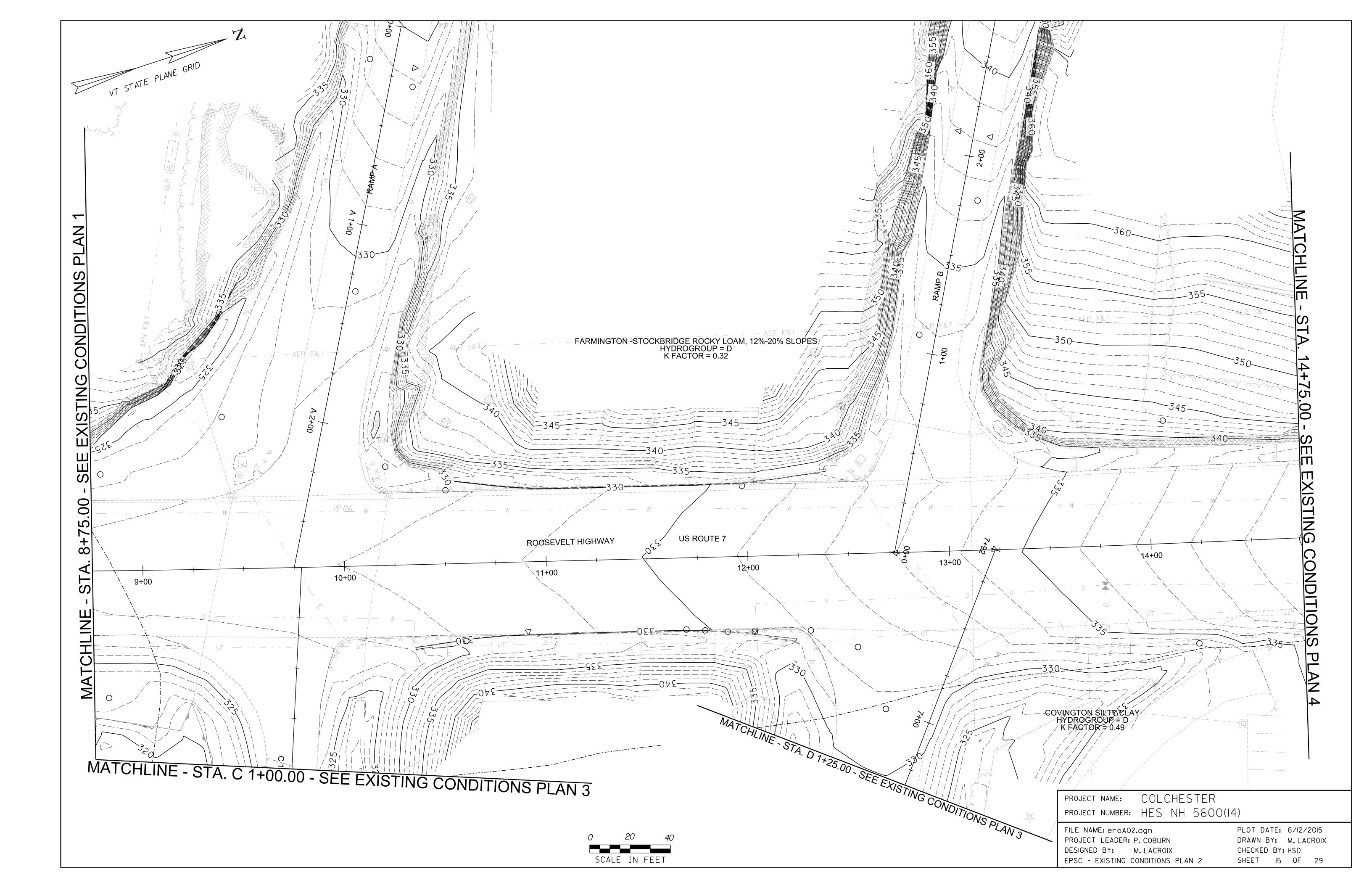


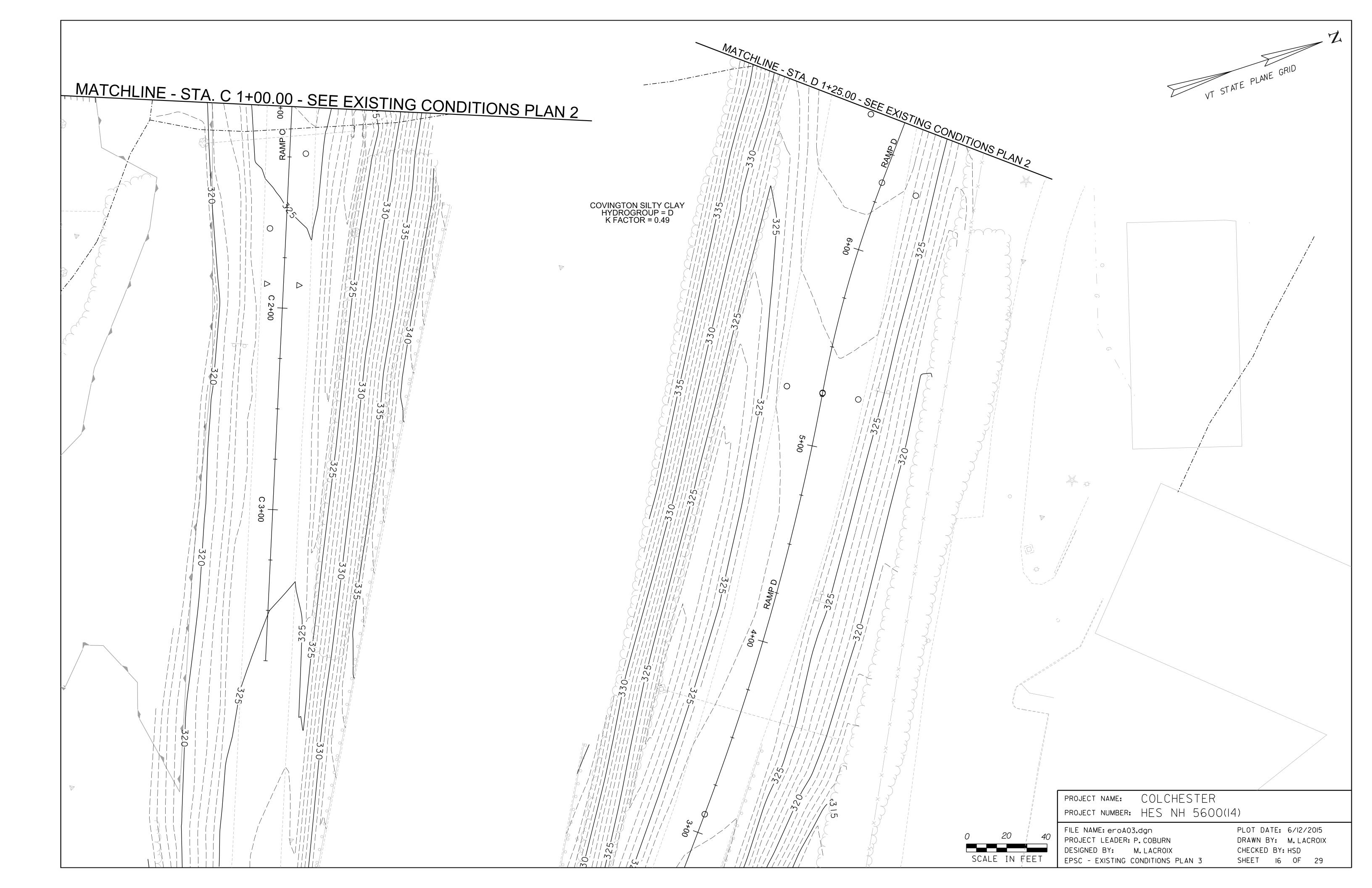


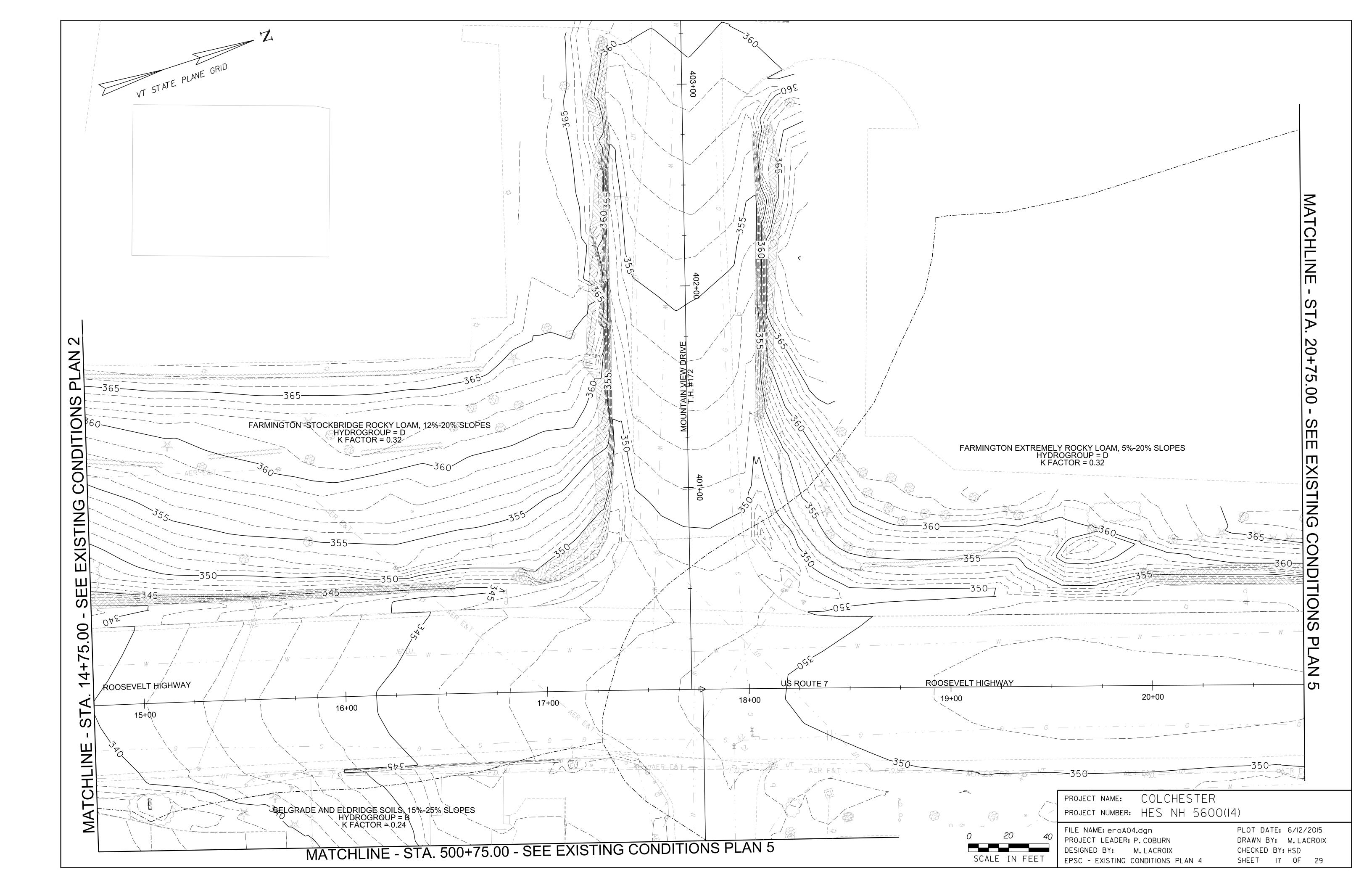


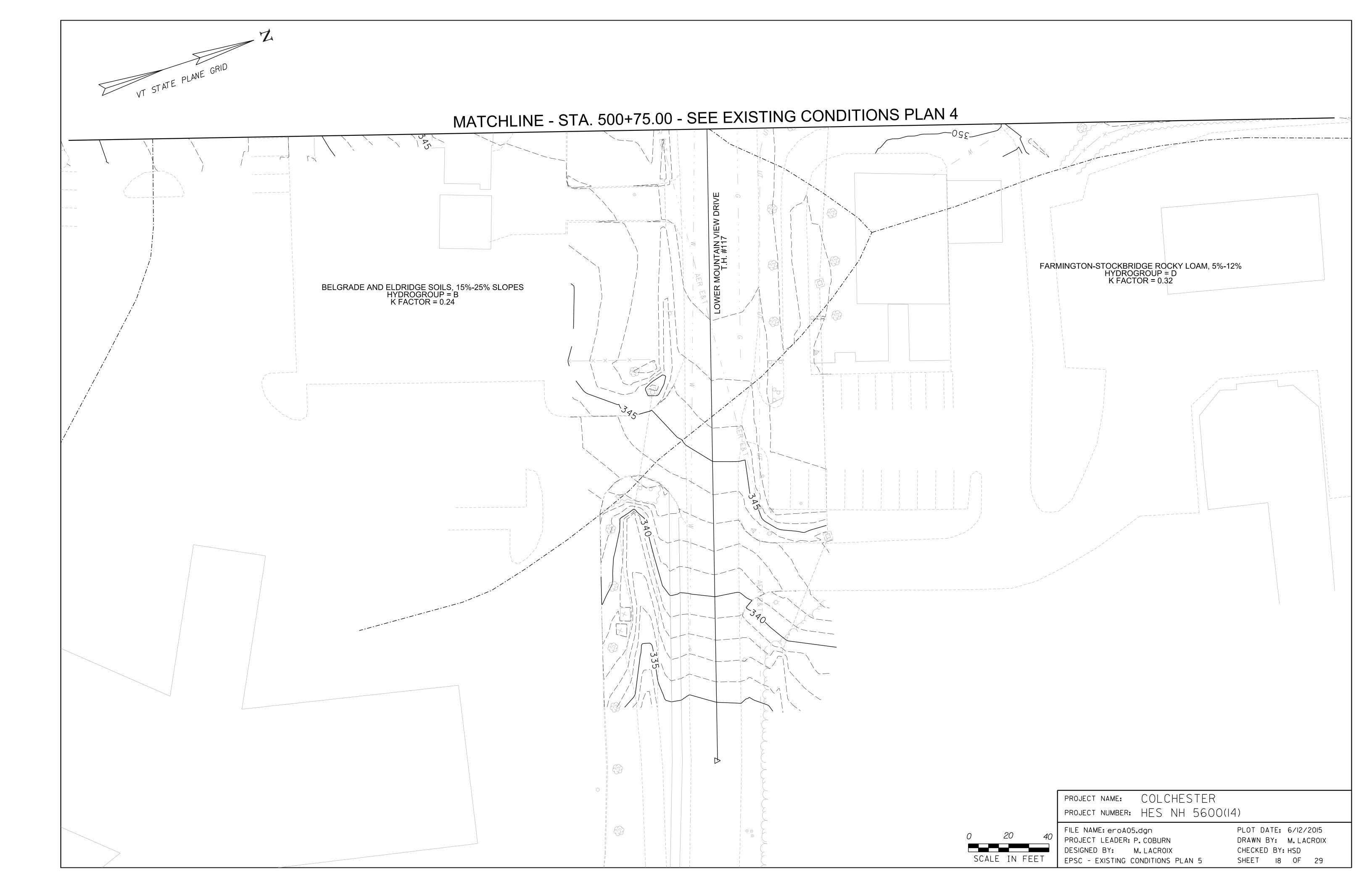


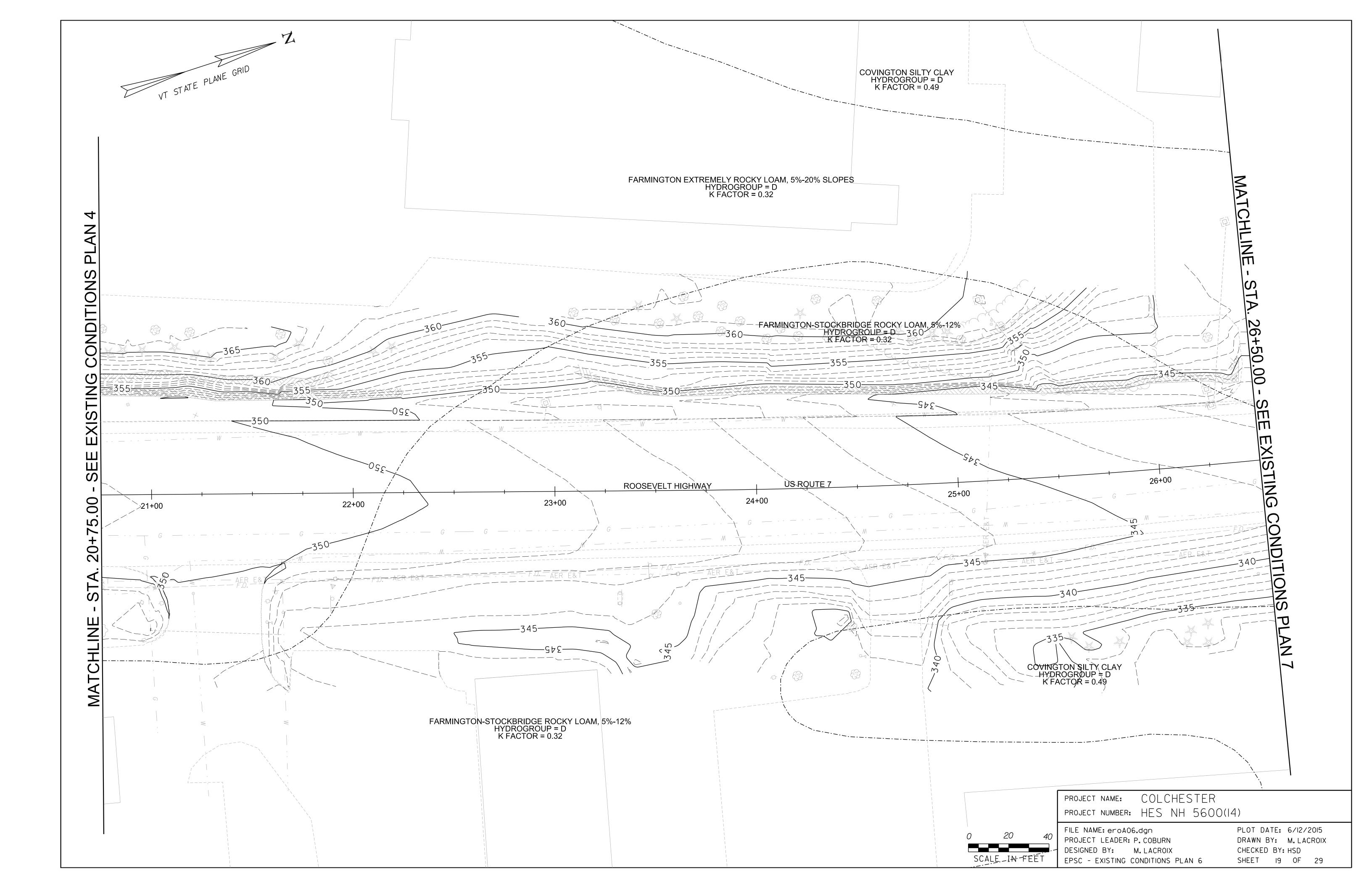

<u> </u>		1.
315-		VT STATE PLANE GRID
		AG COMPITIONS PLAN 11
	PROJECT NAME: COLCHESTE PROJECT NUMBER: HES NH 56	
20 40 In Feet	FILE NAME: eroAIO.dgn PROJECT LEADER: P.COBURN DESIGNED BY: M.LACROIX EPSC - EXISTING CONDITIONS PLAN IO	PLOT DATE: 9/15/2014 DRAWN BY: M.LACROIX CHECKED BY:HSD SHEET 162 OF 386

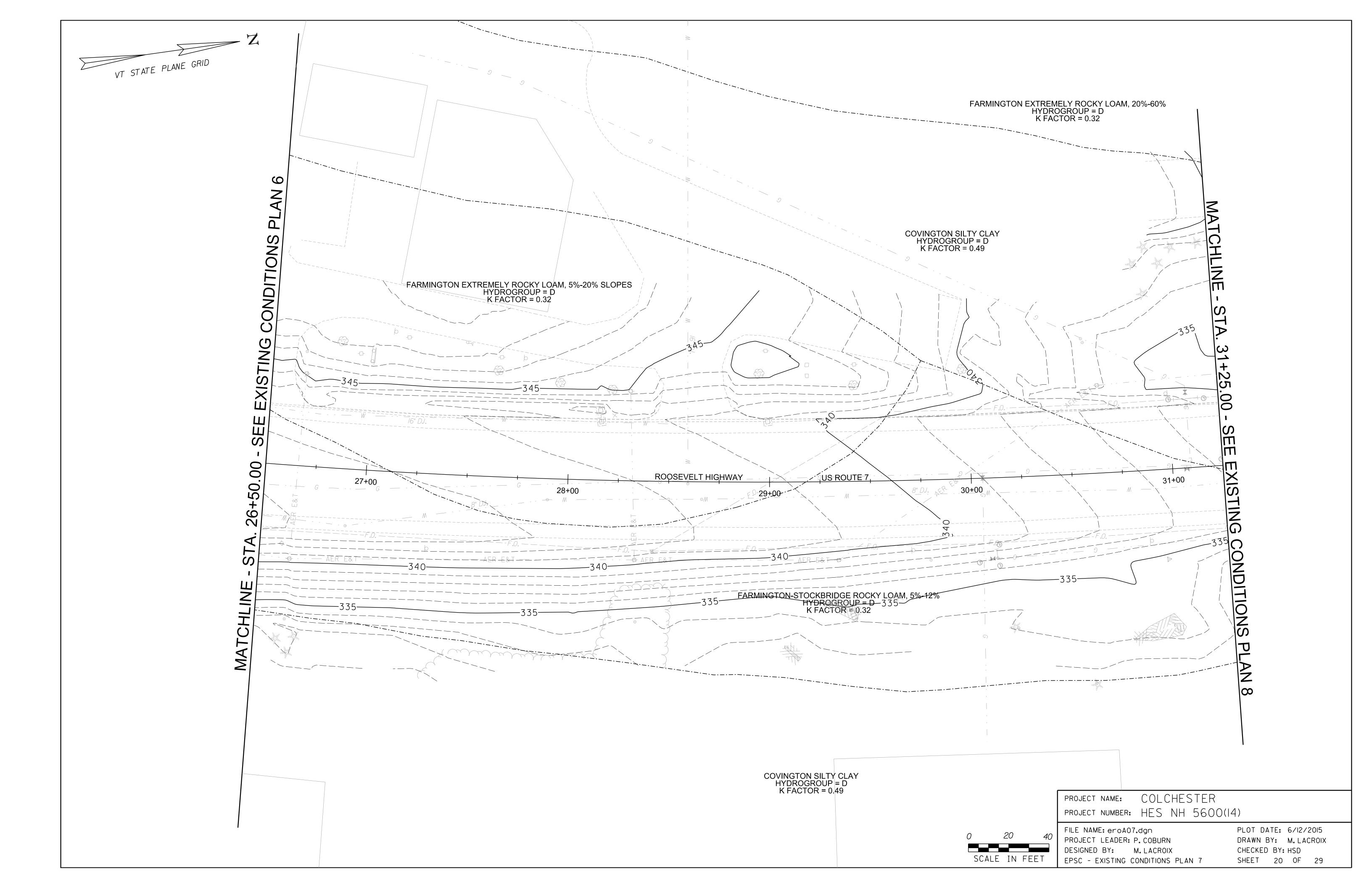


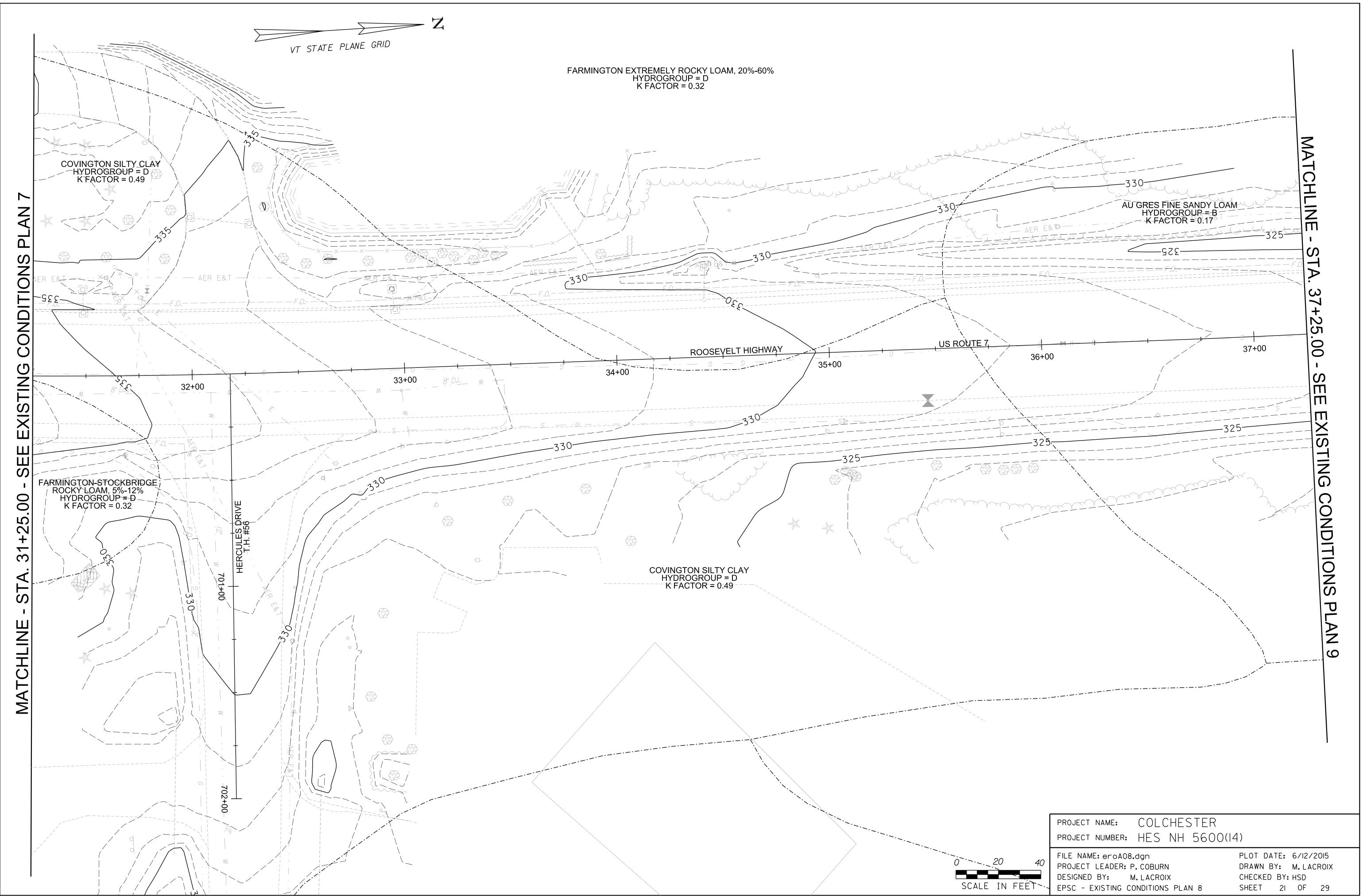


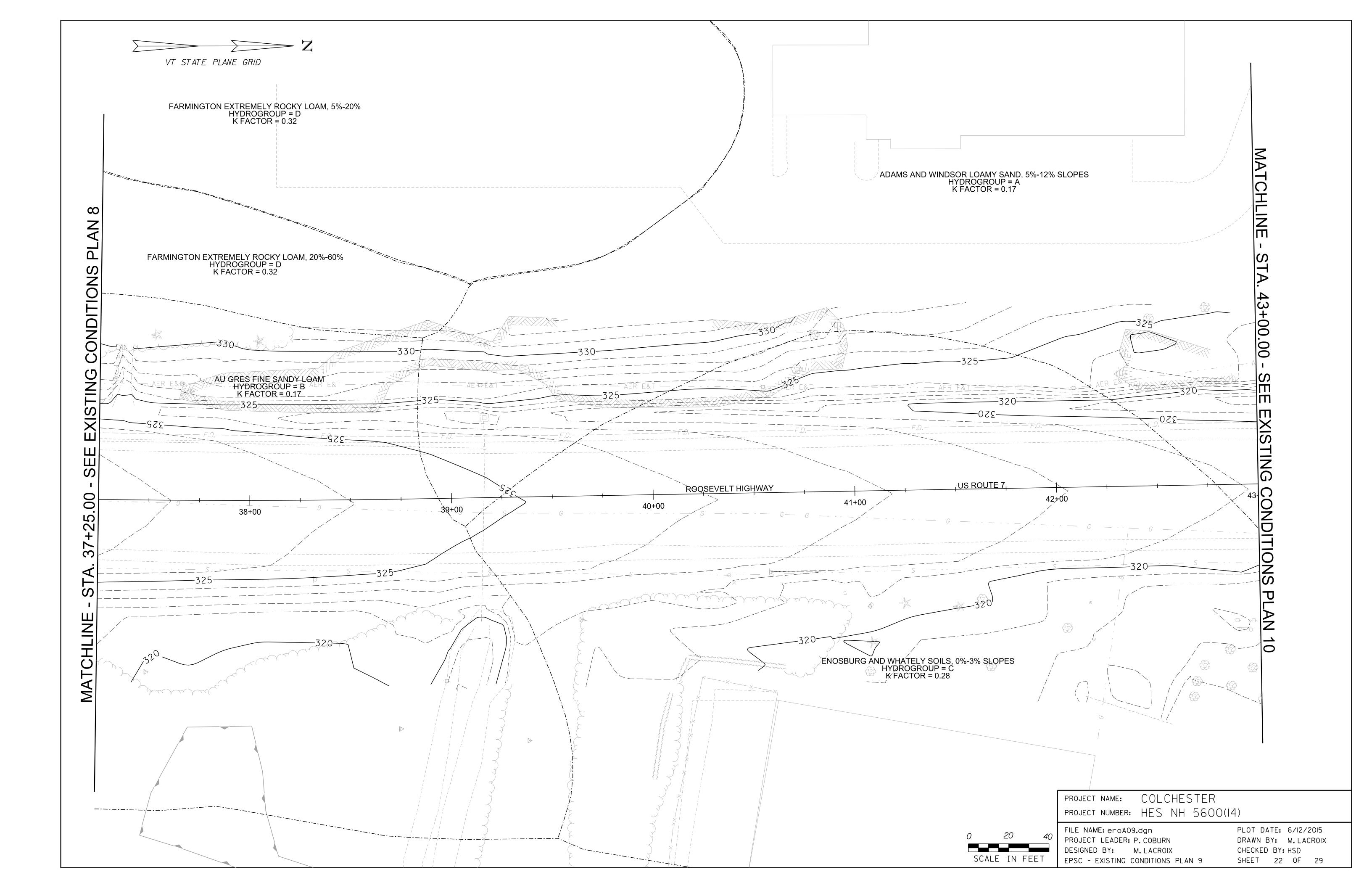


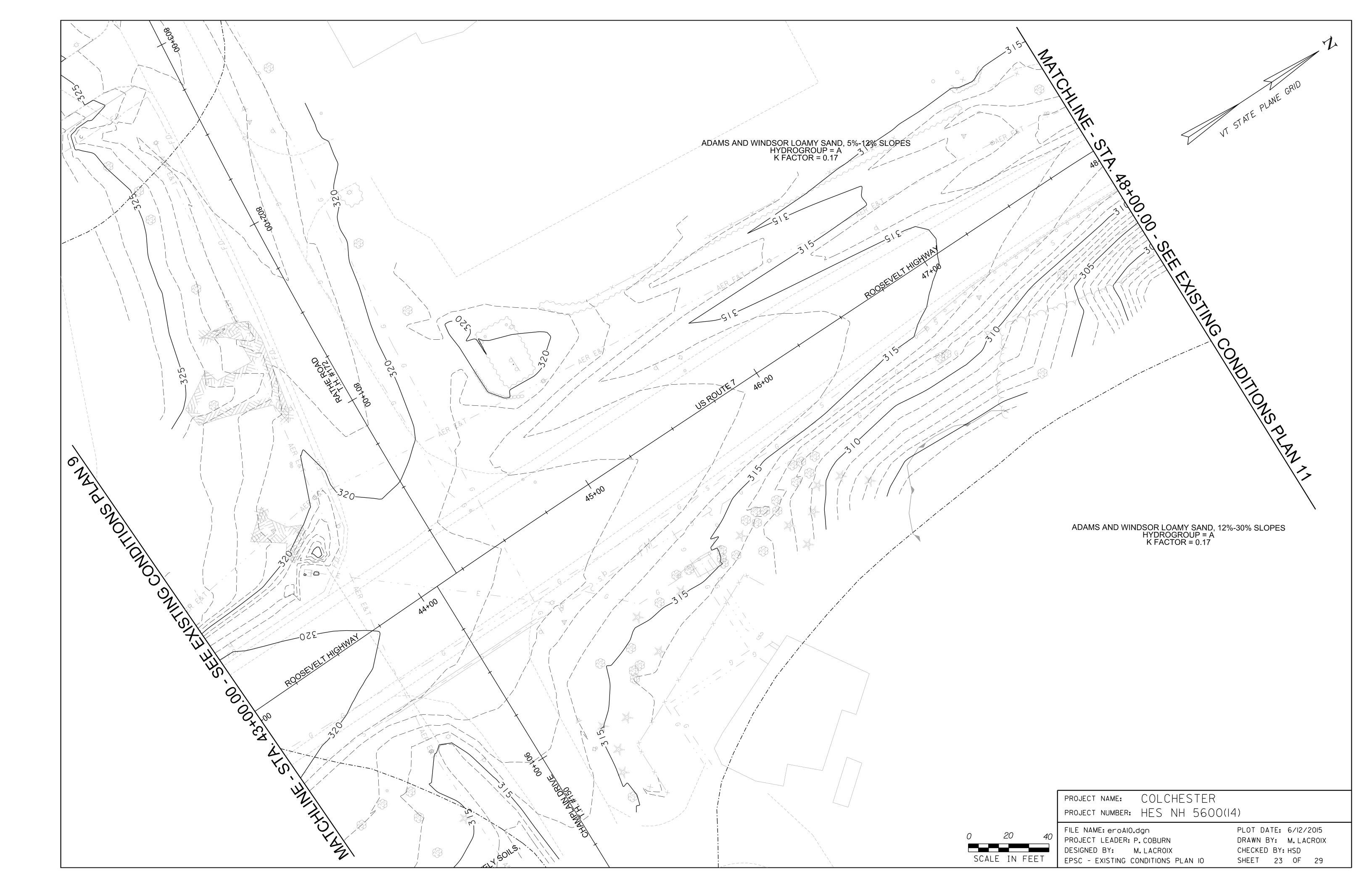

	PROJECT NAME: COLCHESTER	
	PROJECT NUMBER: HES NH 5600(1	4)
20 40	FILE NAME: eroAl2.dgn PROJECT LEADER: P. COBURN DESIGNED BY: M. LACROIX	PLOT DATE: 9/15/2014 DRAWN BY: M.LACROIX CHECKED BY:HSD
IN FEET	EPSC - EXISTING CONDITIONS PLAN 12	SHEET I64 OF 386

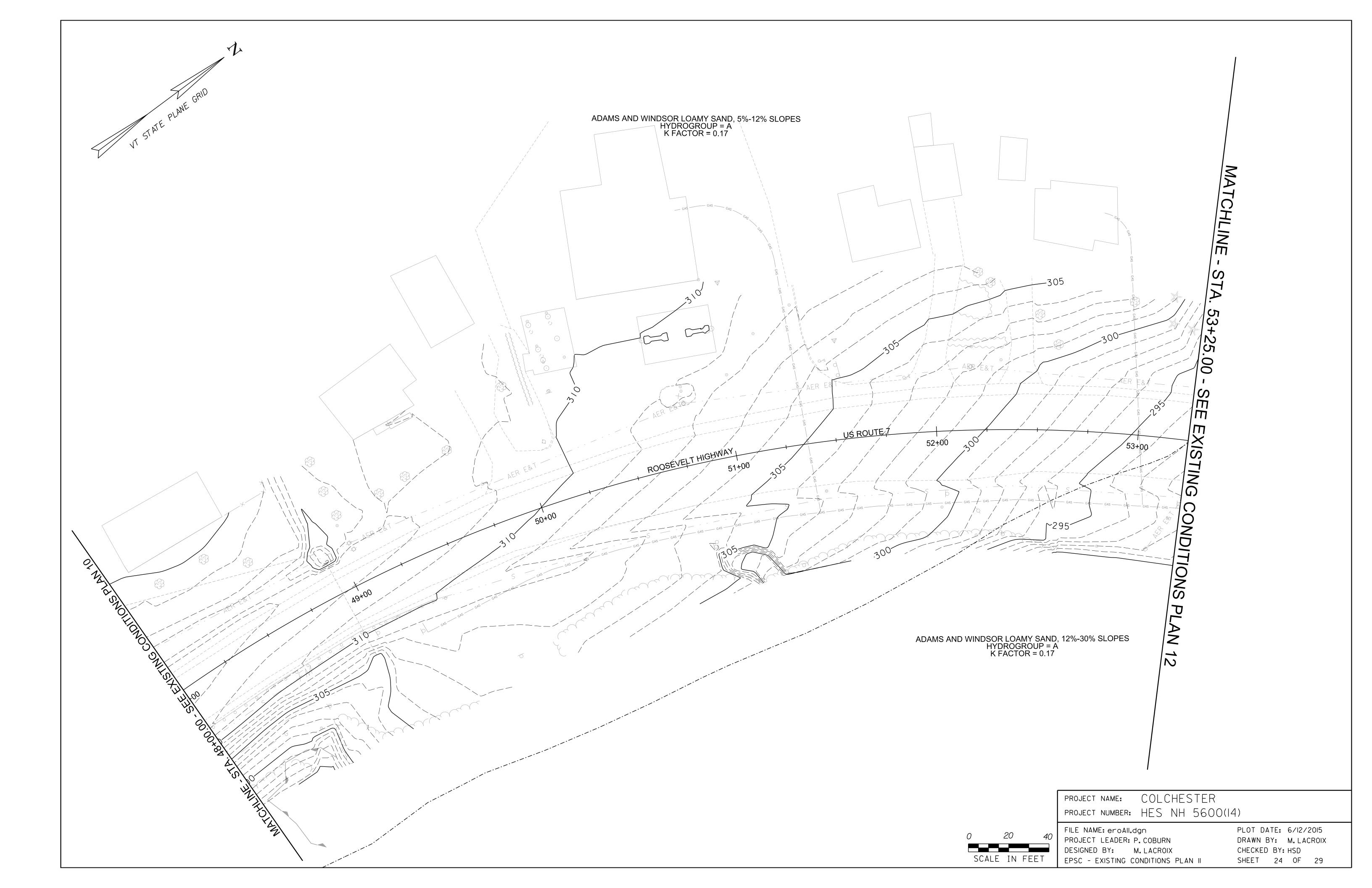


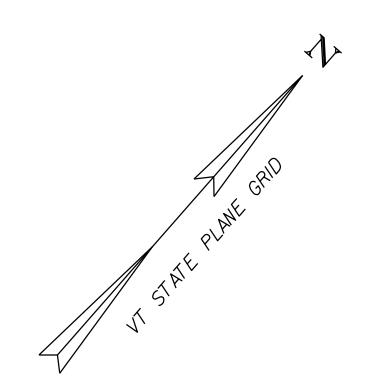


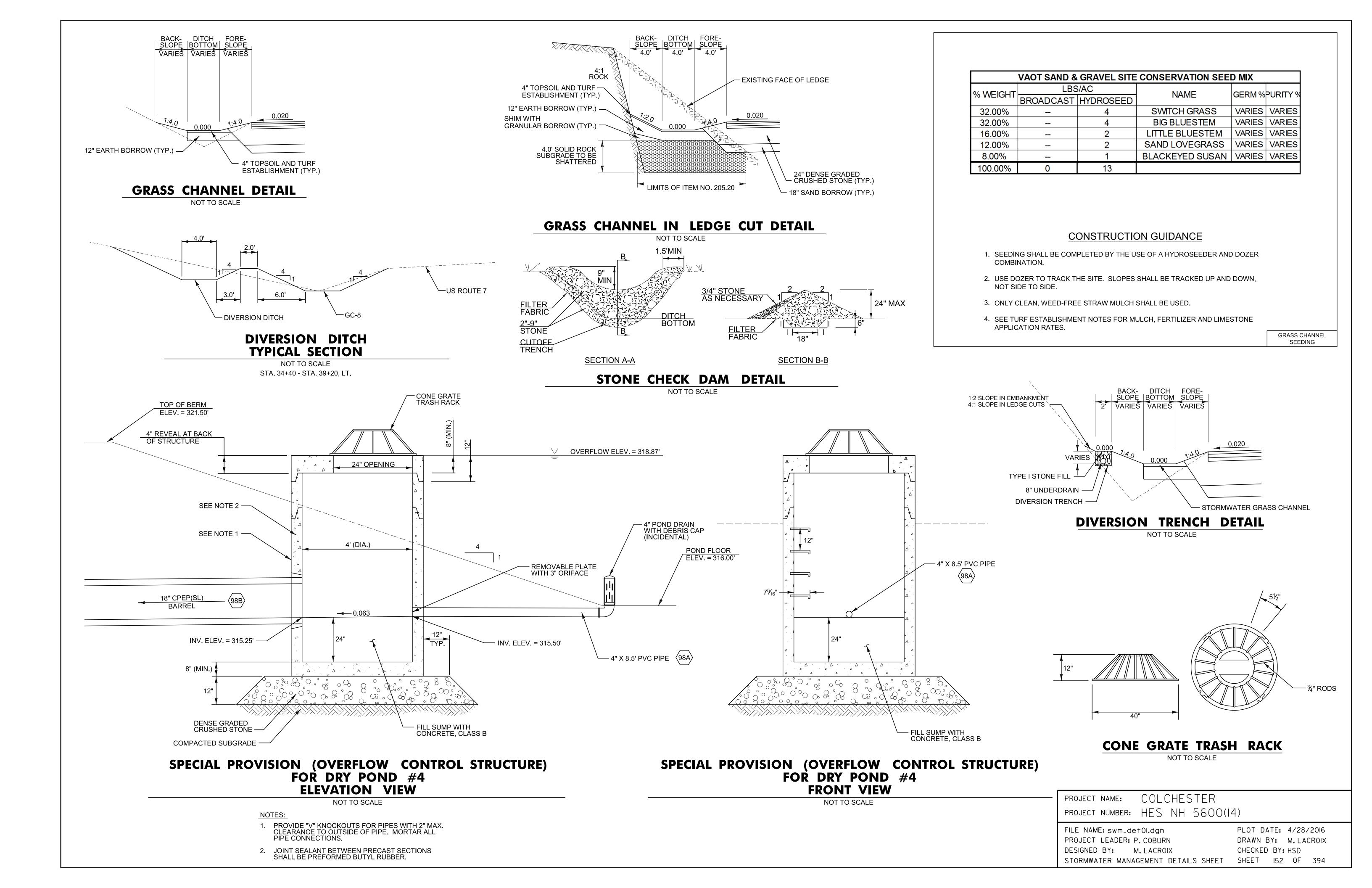


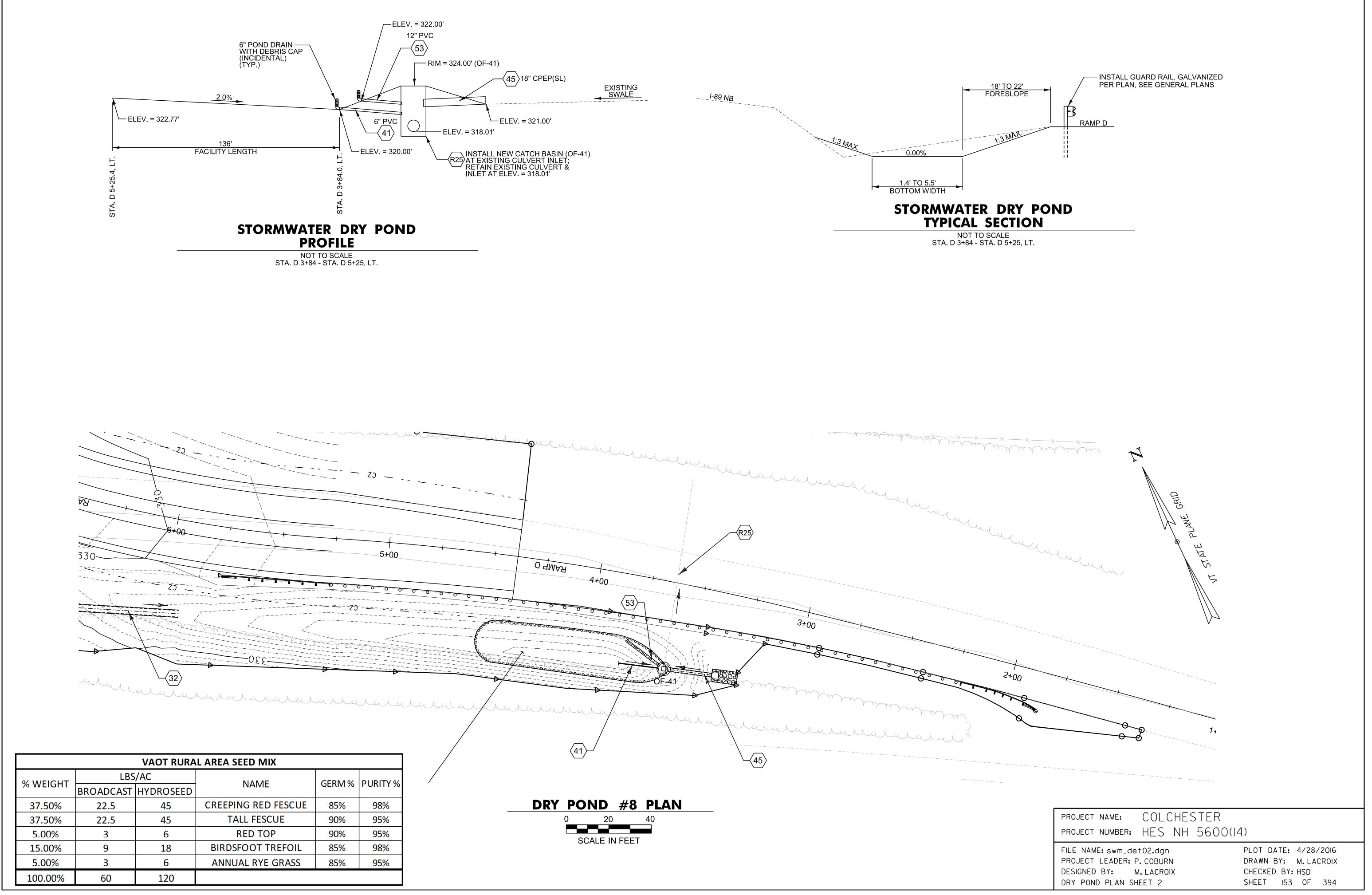


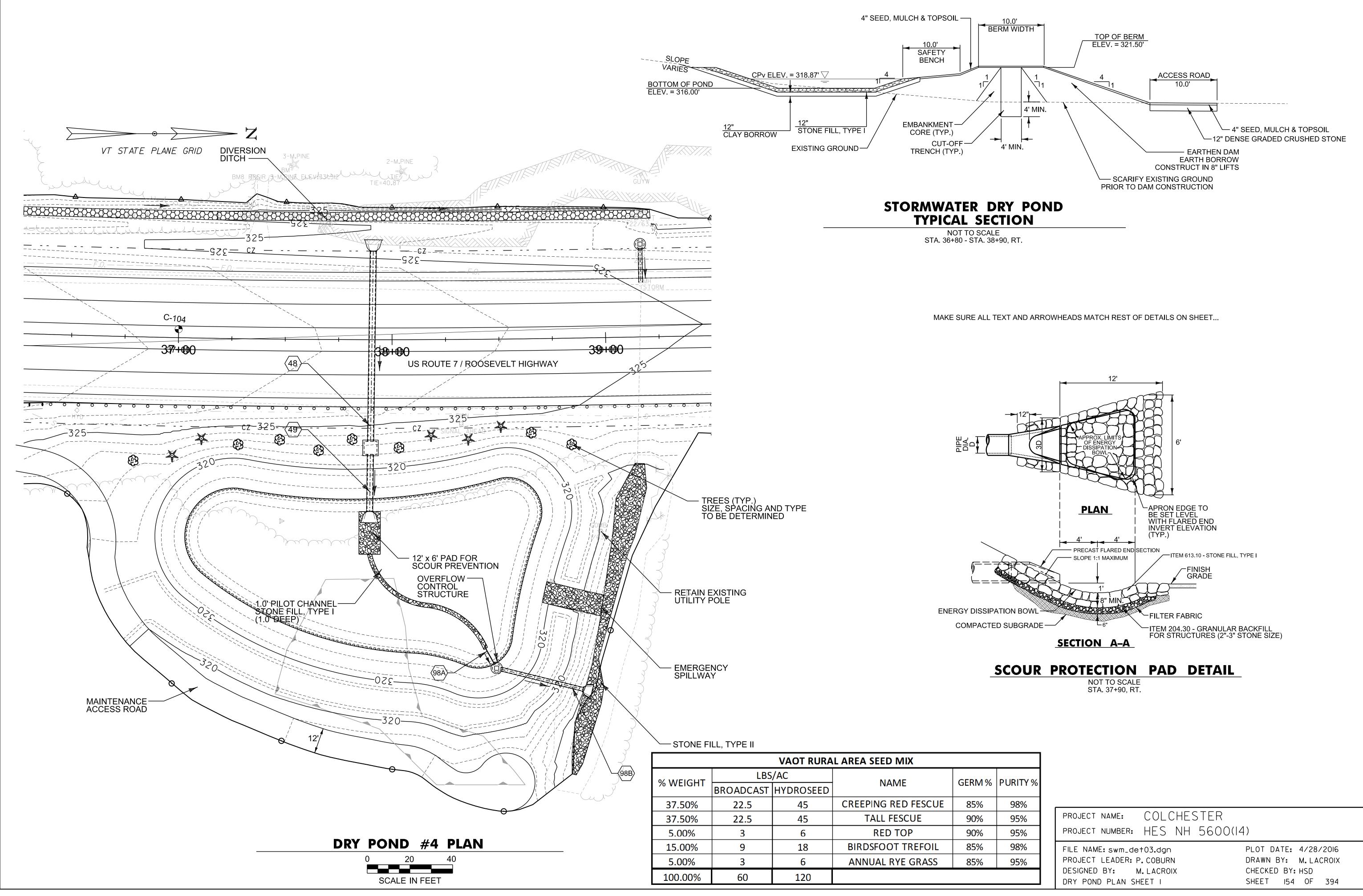


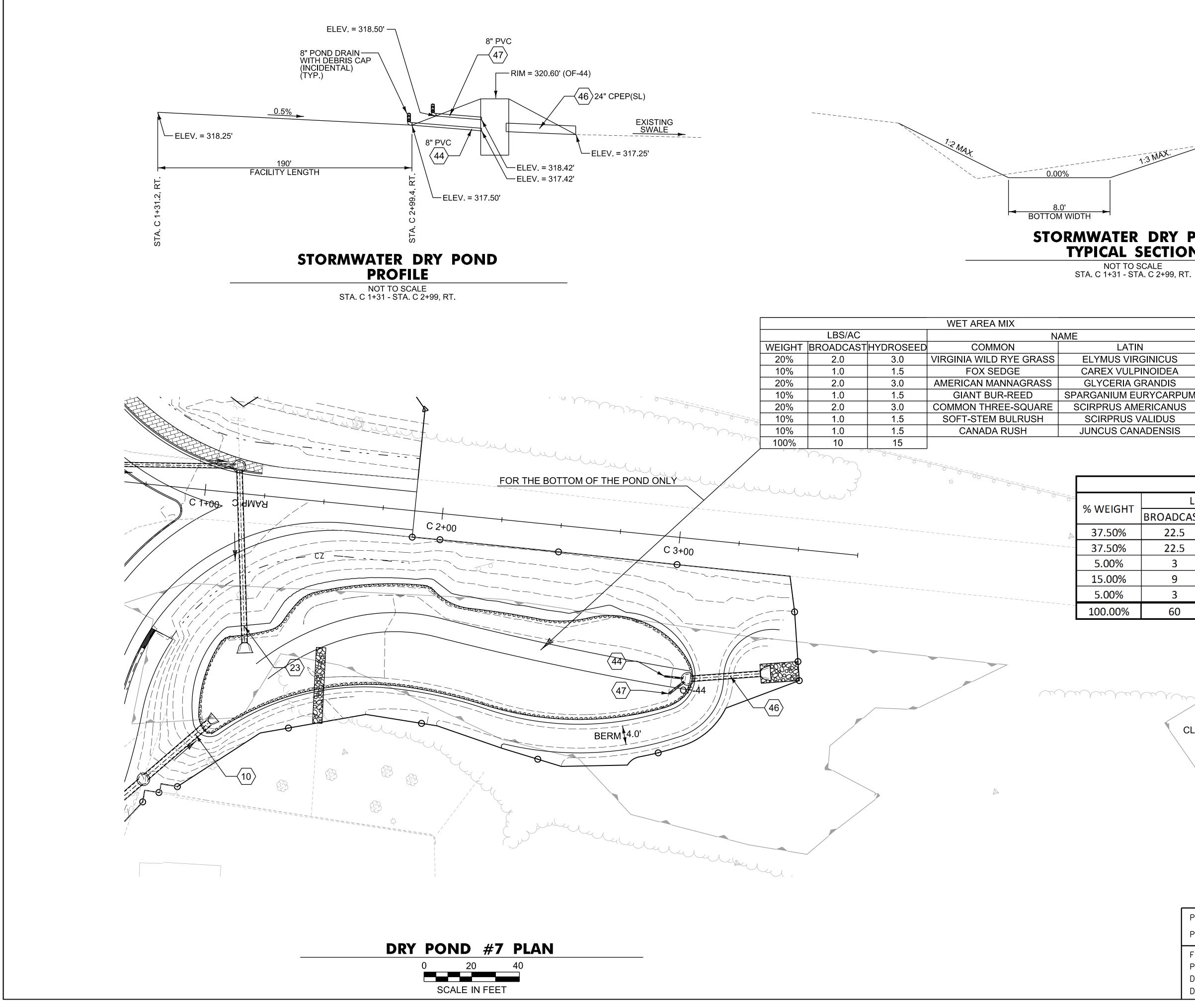




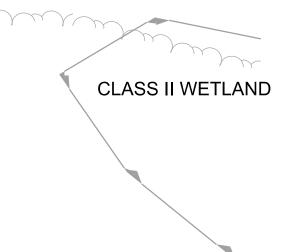


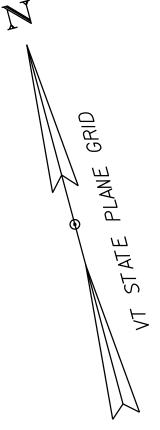




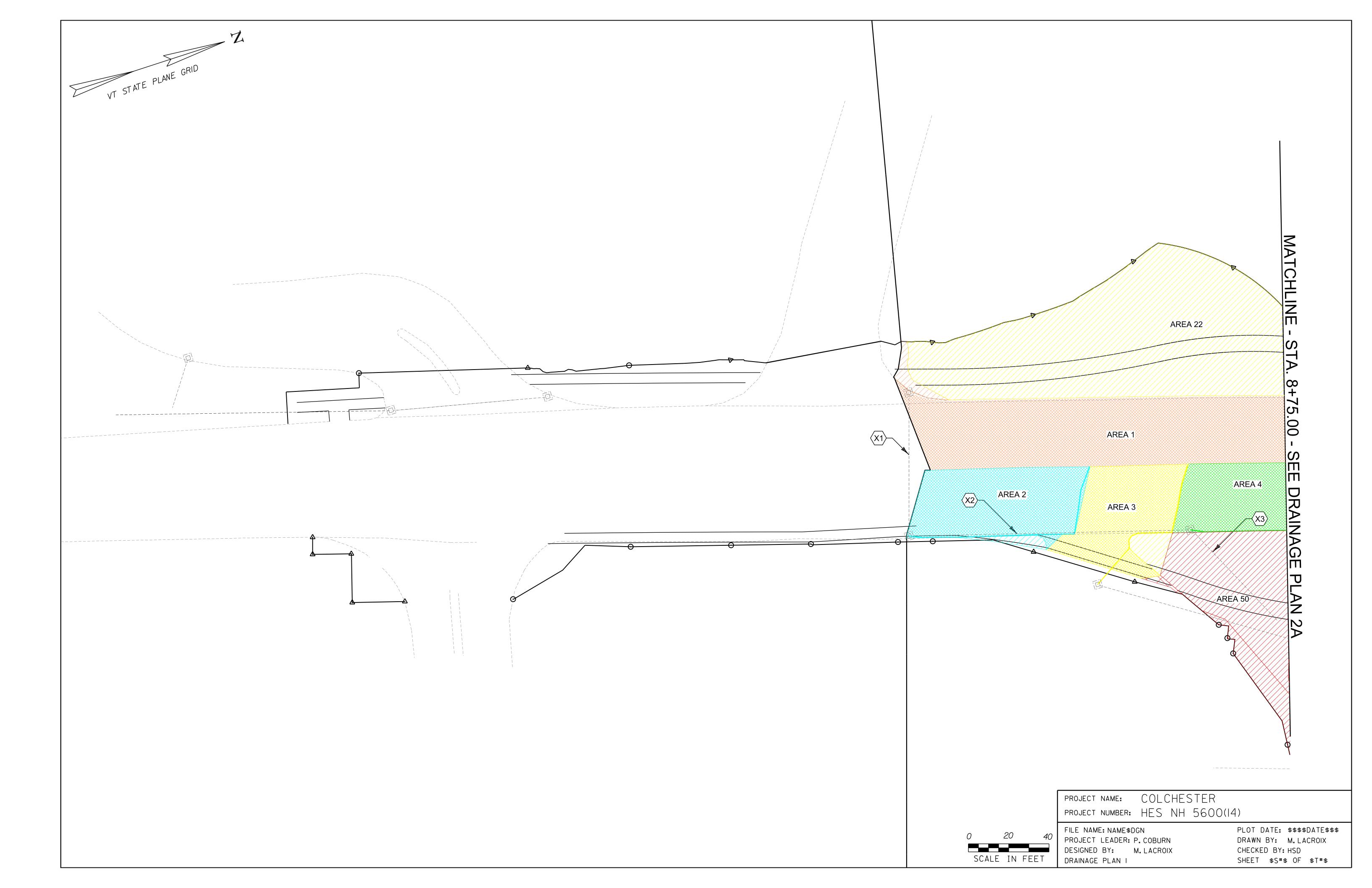


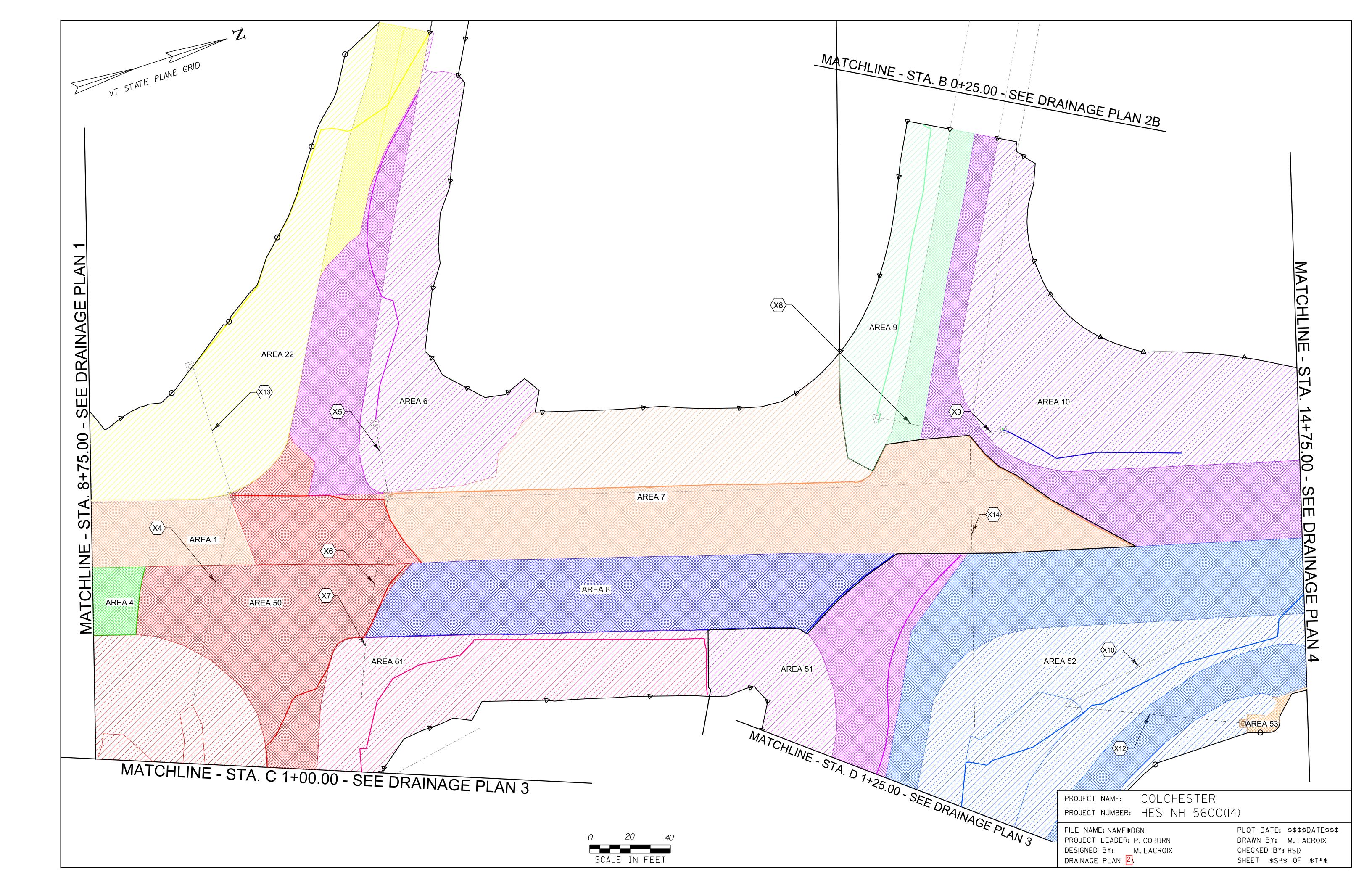
	PROJECT NAME: COLCHESTER
	project number: HES NH 5600(14)
20 40	FILE NAME: eroAl2.dgnPLOT DATE: 6/12/2015PROJECT LEADER: P. COBURNDRAWN BY: M. LACROIXDESIGNED BY:M. LACROIXCHECKED BY: HSD
IN FEET	EPSC - EXISTING CONDITIONS PLAN 12 SHEET 25 OF 29

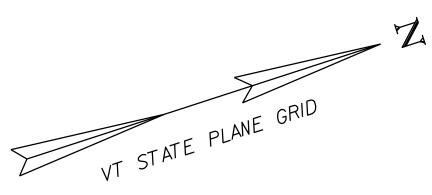



RAMP C 1:3 MAX.

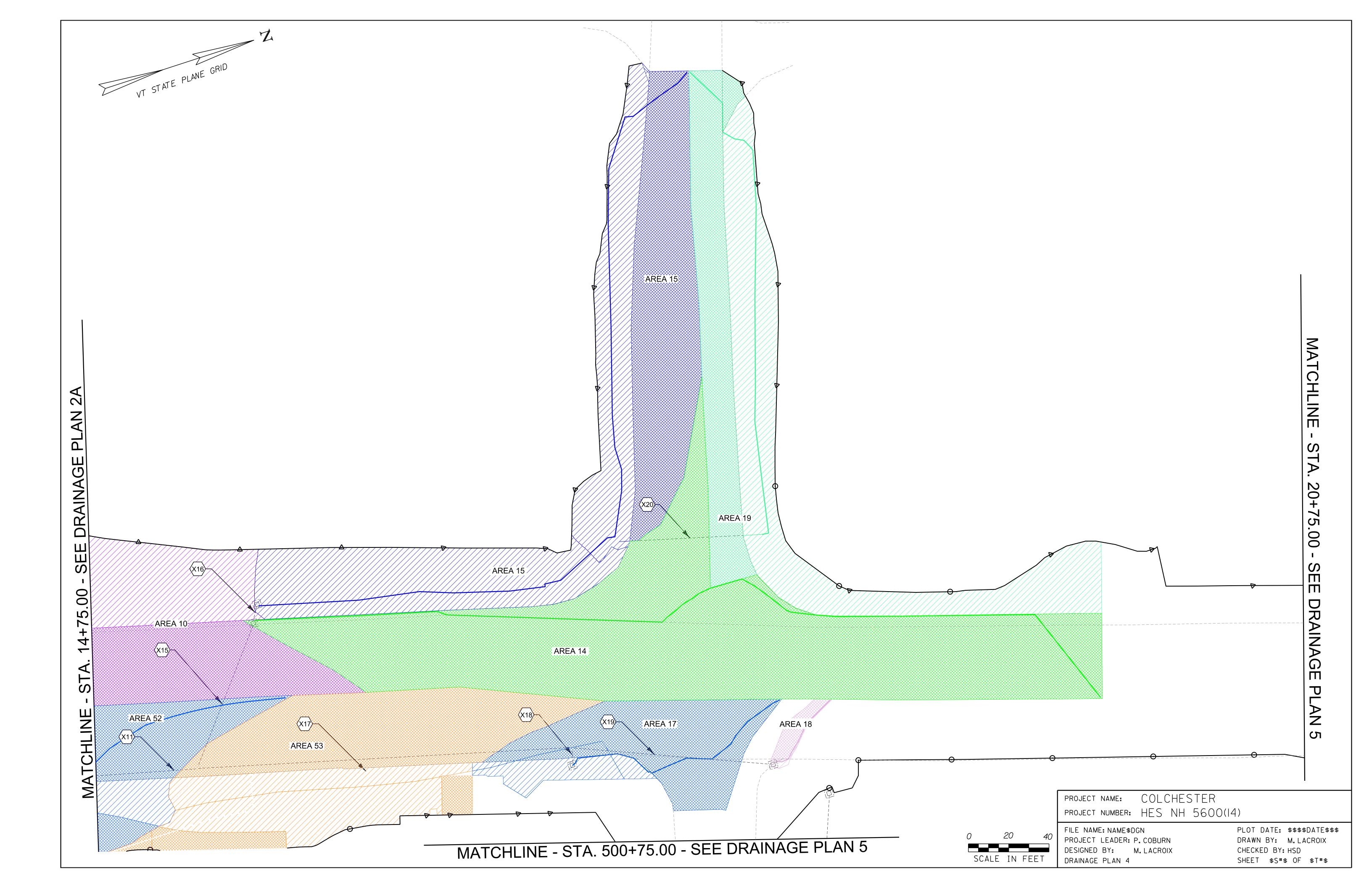
STORMWATER DRY POND TYPICAL SECTION


LATIN	
S VIRGINICUS	
/ULPINOIDEA	FOWL BLUEGRASS/POA PALUSTRIS (NE AG) CAMBRIDGE JUNE 2014
RIA GRANDIS	
M EURYCARPUM	
S AMERICANUS	
US VALIDUS	
CANADENSIS	SOFT RUSH/JUNCUS EFFUSUS (NE AG) CAMBRIDGE JUNE 2014

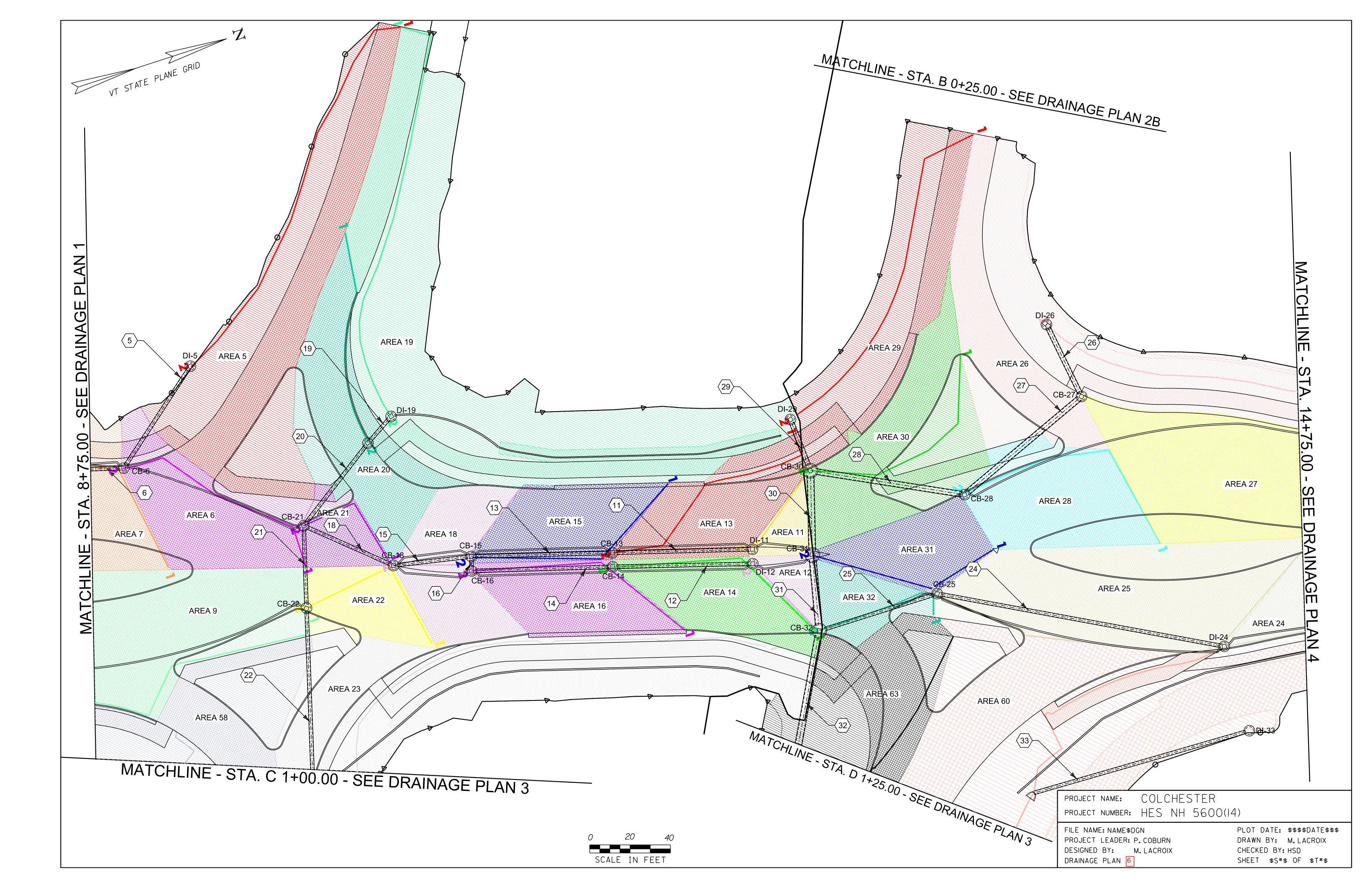

	VAOT RURAL AREA SEED MIX					
Т. Г.	LBS/AC			GERM %	PURITY %	
βHT	BROADCAST	HYDROSEED	NAME	GERIVI 70	PURIT 70	
%	22.5	45	CREEPING RED FESCUE	85%	98%	
%	22.5	45	TALL FESCUE	90%	95%	
6	3	6	RED TOP	90%	95%	
%	9	18	BIRDSFOOT TREFOIL	85%	98%	
6	3	6	ANNUAL RYE GRASS	85%	95%	
)%	60	120				

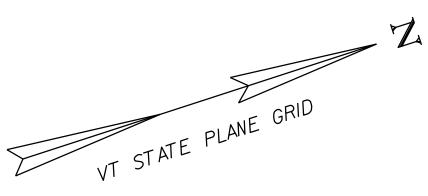


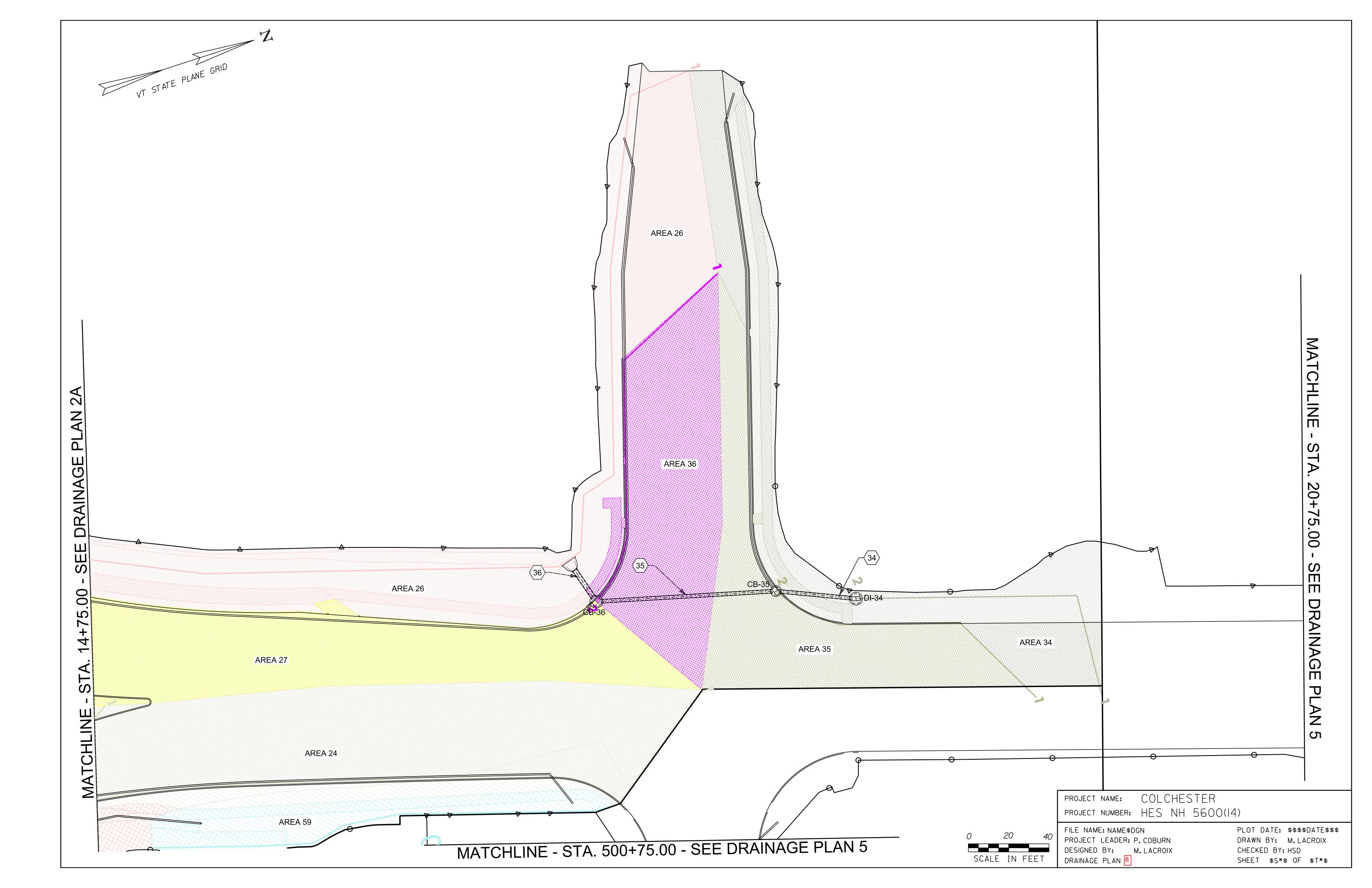
PROJECT NAME: COLCHESTER PROJECT NUMBER: HES NH 5600(14) FILE NAME: swm_de+04.dgn PLOT DATE: 4/28/2016 PROJECT LEADER: P. COBURN DRAWN BY: M.LACROIX DESIGNED BY: M.LACROIX CHECKED BY: HSD DRY POND PLAN SHEET 3 SHEET 155 OF 394

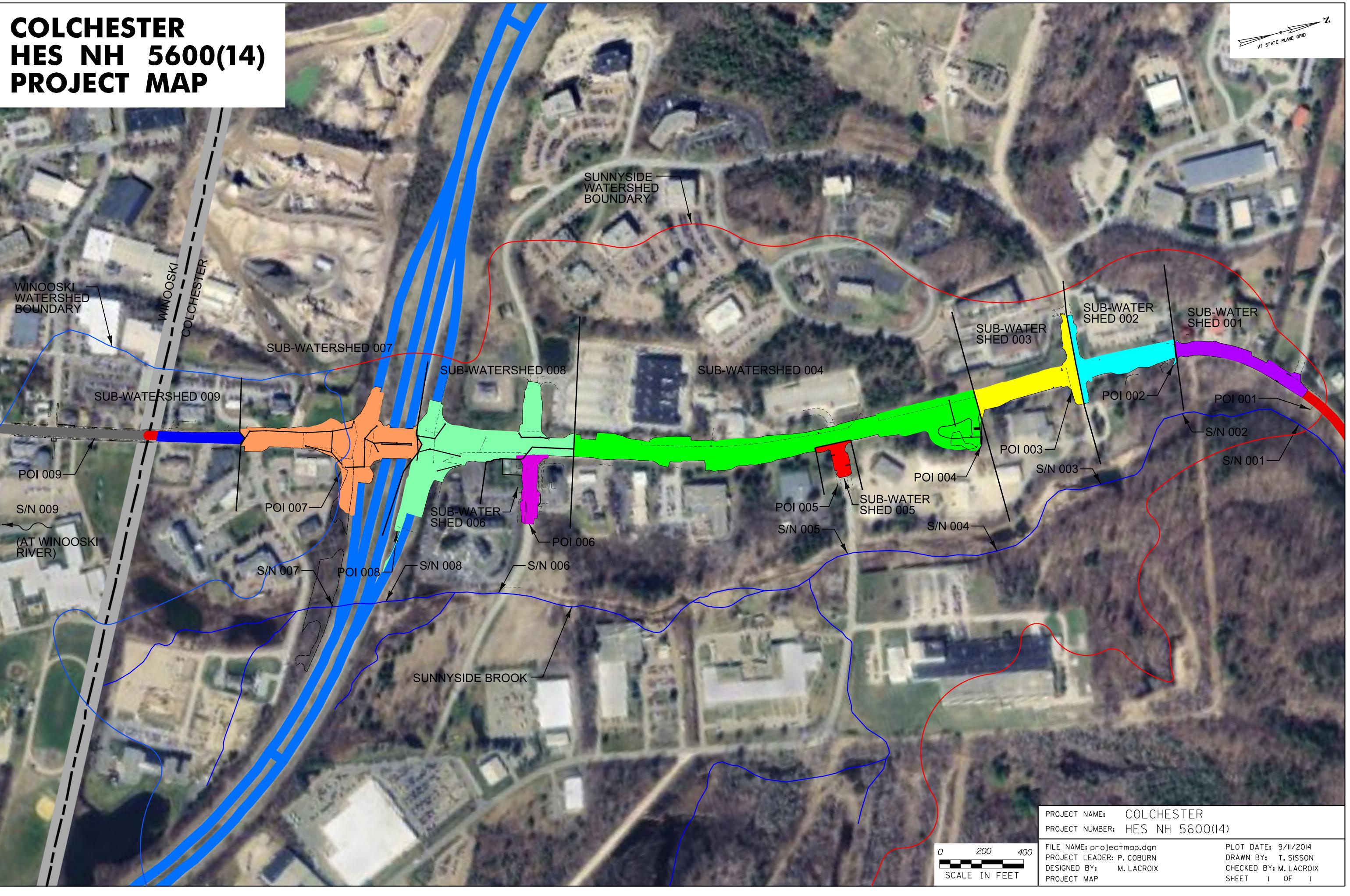


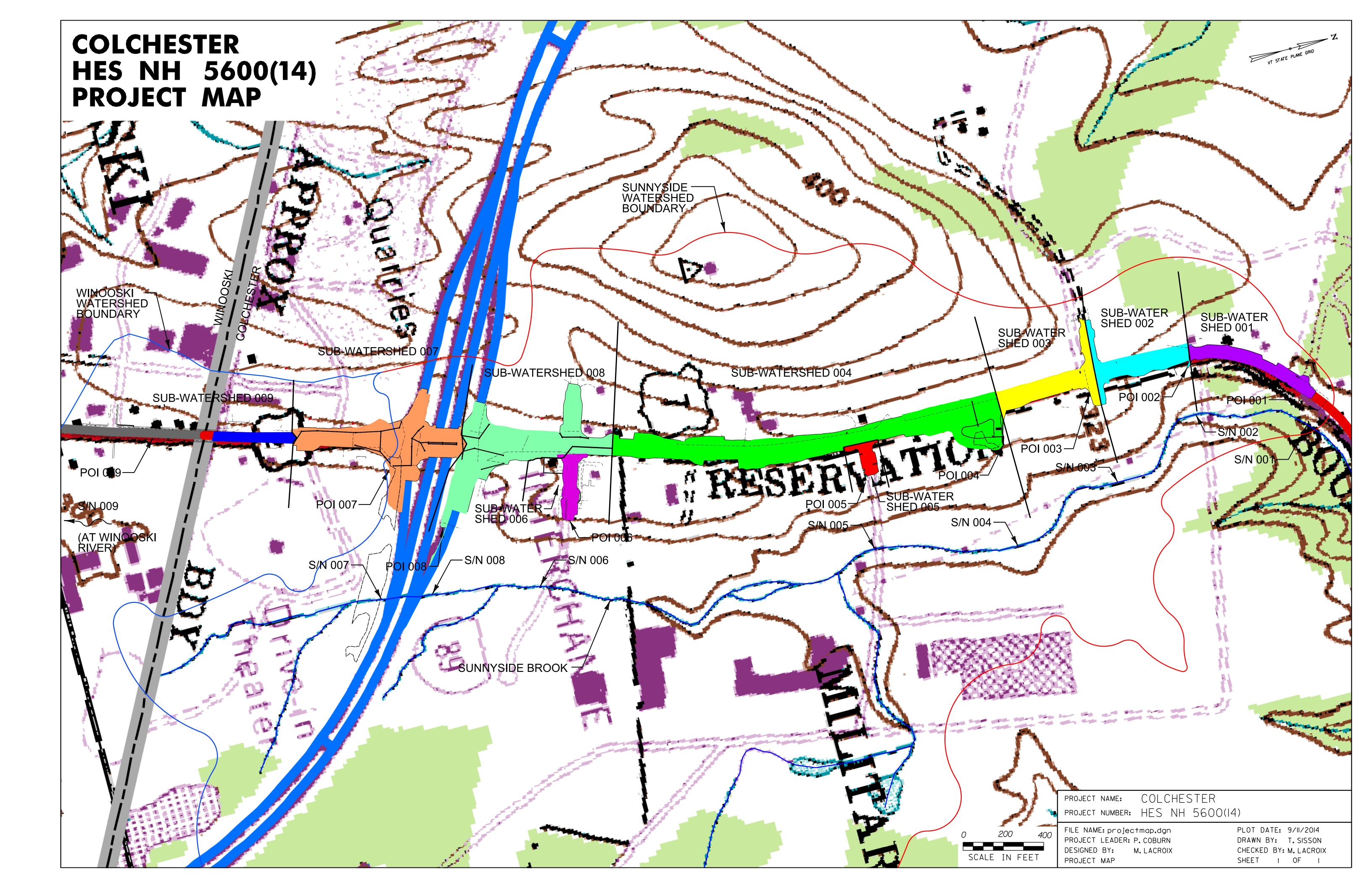





	PROJECT NAME: COLCHESTER PROJECT NUMBER: HES NH 5600(14	1)
20 40 In Feet	FILE NAME: NAME\$DGN PROJECT LEADER: P.COBURN DESIGNED BY: M.LACROIX DRAINAGE PLAN 3	PLOT DATE: \$\$\$\$DATE\$\$\$ DRAWN BY: M.LACROIX CHECKED BY:HSD SHEET \$S#\$ OF \$T#\$







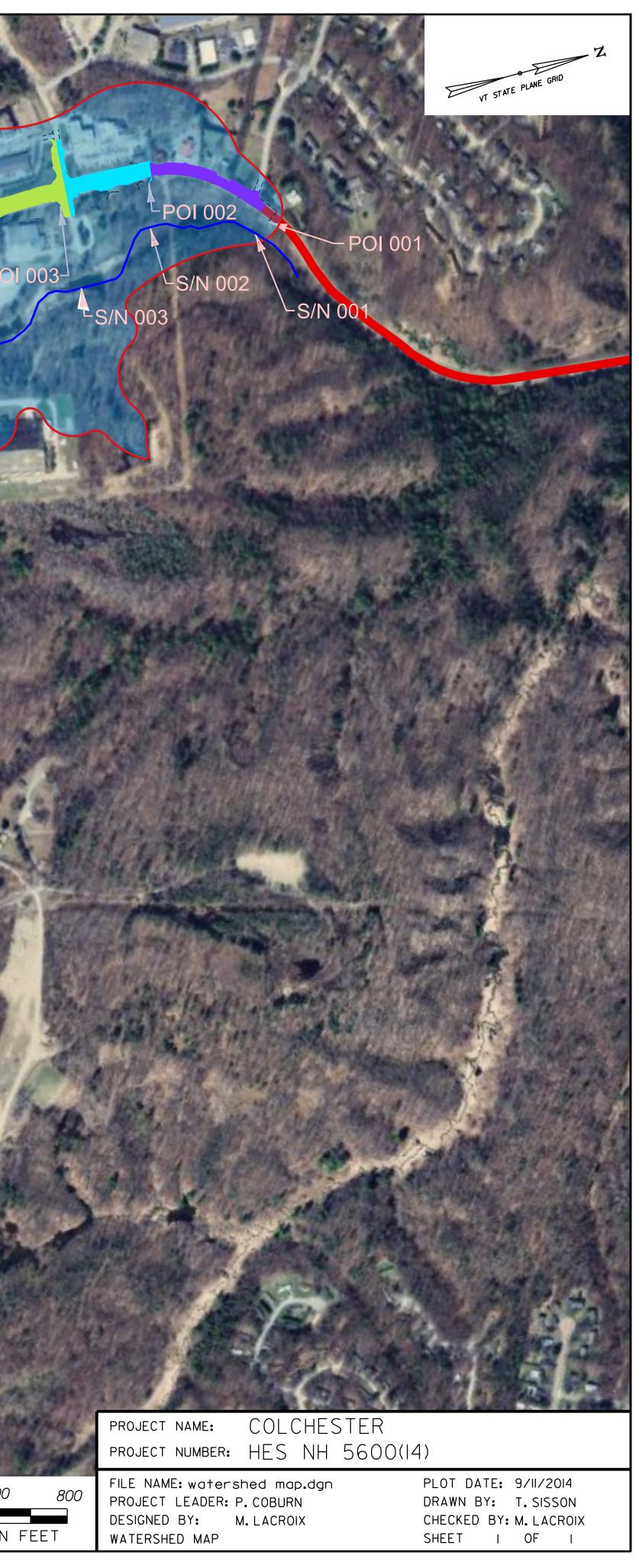
	PROJECT NAME: COLCHESTER PROJECT NUMBER: HES NH 5600(14	1)
20 40 In FEET	FILE NAME: NAME\$DGN PROJECT LEADER: P. COBURN DESIGNED BY: M. LACROIX DRAINAGE PLAN 7	PLOT DATE: \$\$\$\$DATE\$\$\$ DRAWN BY: M.LACROIX CHECKED BY:HSD SHEET \$S#\$ OF \$T#\$

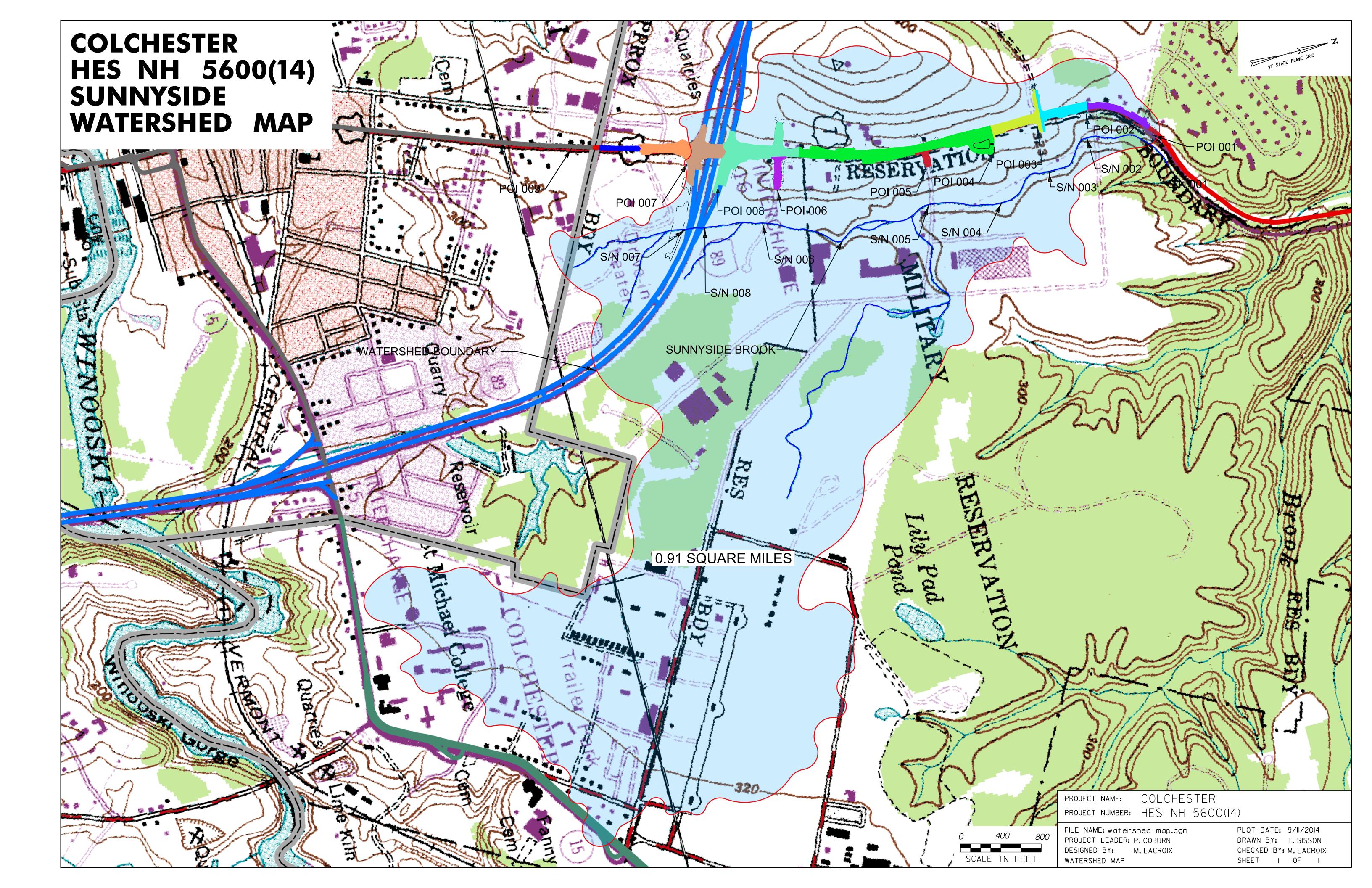
COLCHESTER HES NH 5600(14) SUNNYSIDE WATERSHED MAP

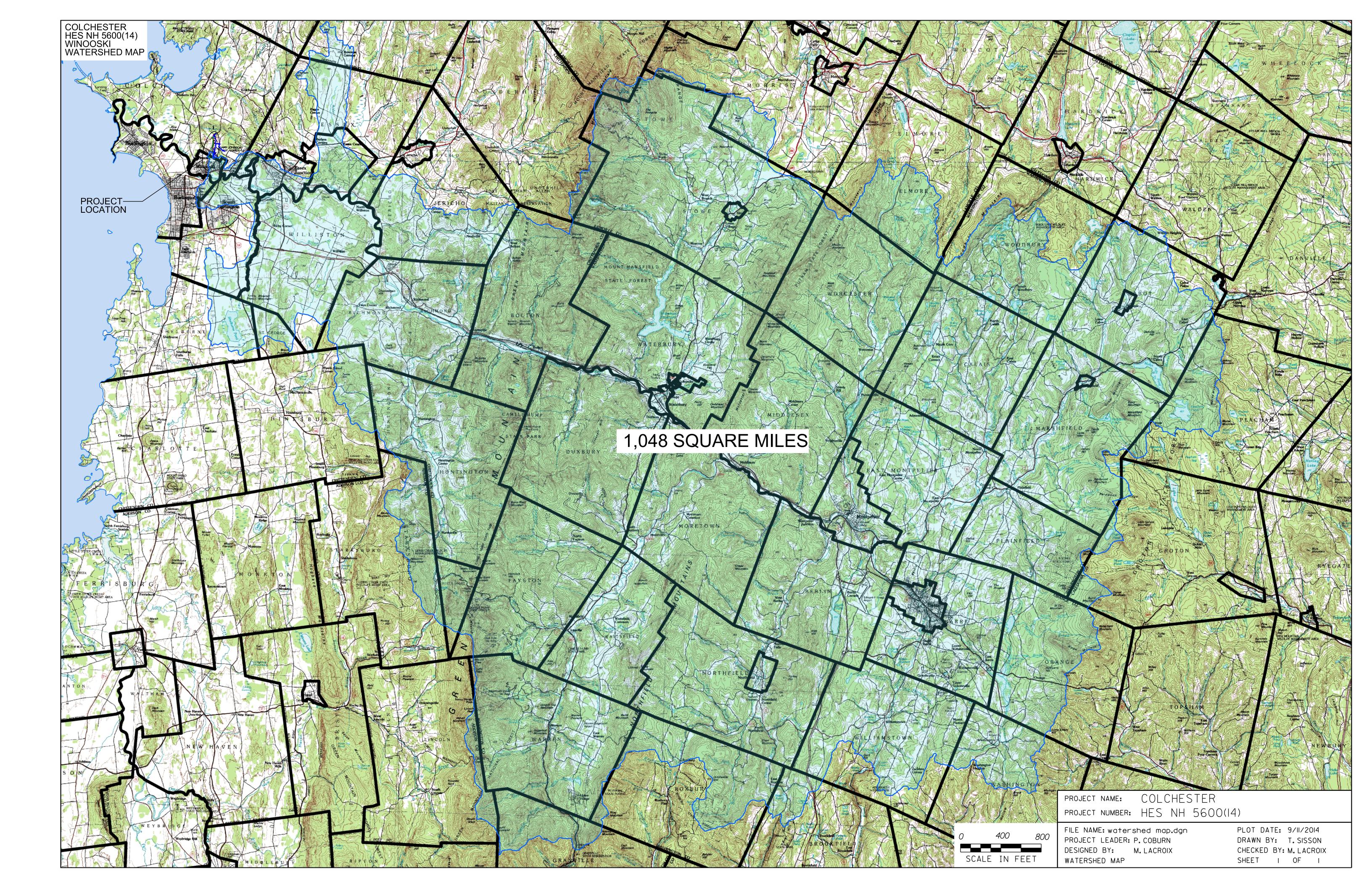
WATERSHED BOUNDARY -

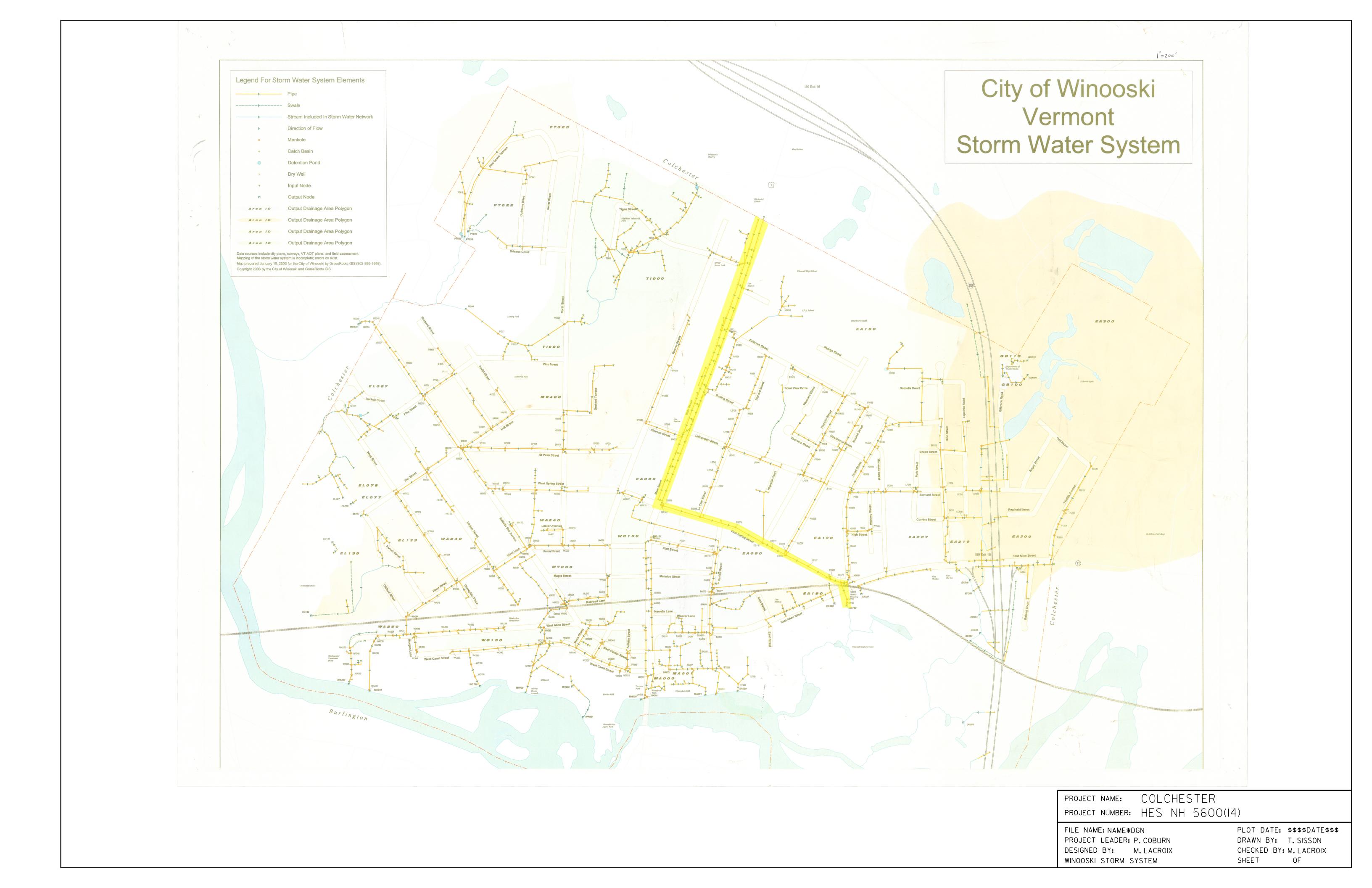
POI 008 POI 006

C/N


S/N 007

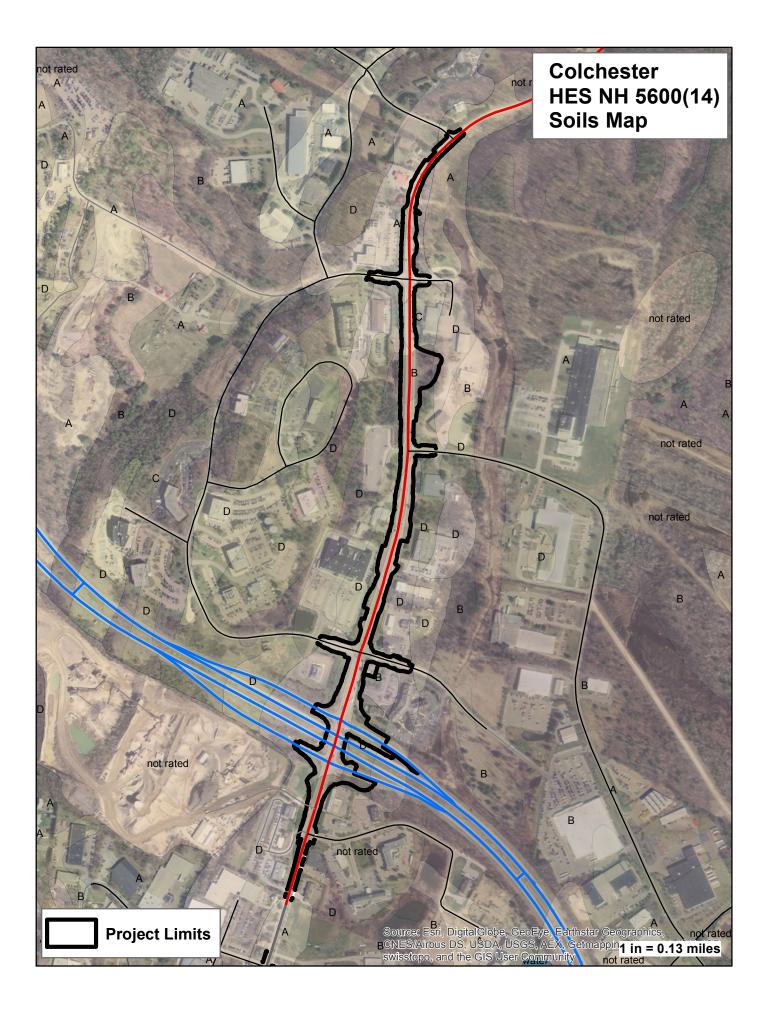

-S/N 008


UNNYSIDE BROOK-


0.91 SQUARE MILES

Project: Colchester HES NH 5600 (14) Stormwater Management

Soils Data:


Soil Name	Hydrologic Soil Group	<u>Area (%)</u>
Fill Land	Not Rated	8.9
Farmington-Stockbridge Rocky Loam	D	35.1
Covington Silty Clay	D	13.8
Belgrade and Eldridge Soils	В	2.9
Farmington Extremely Rocky Loam	D	10.7
Au Grey Fine Sandy Loam	В	8.1
Adams and Windsor Loamy Sand	A	16.6
Enosburg and Whately Soils	С	3.9

Results:

Hydrologic Soil Group	Percent of Site
A	16.6%
В	11.1%
С	3.9%
D	59.5%
Not Rated	8.9%

Notes:

This soil information was obtained using the project's site limits and the Natural Resources Conservation Service (NRCS) Web Soil Survey 2.0. In all calculations where determining one and ten year storm flows using TR-55, hydrologic soil groups A, B, C and D were applied. Soils that are Not Rated were assumed hydrologic soil group D for all calculations to be conservative.

Water Quality Treatment Standard:

The water quality volumes (WQ_v) were calculated in accordance with the 2002 Vermont Stormwater Management Manual, Volumes I and II. To meet the Water Quality Treatment Standard 100 % of all new impervious area needs to be treated, and 20% of jurisdictional redeveloped area needs to be treated. The following table displays the amount of impervious area that must be collected and treated for the site. Grass Channels are modeled with and provide treatment for the full impervious tributary area; they collect and treat new impervious area, jurisdictional redeveloped area, and resurfaced area.

Water Quality Treatment Standard (Project)		
Rainfall (inches)	0.9	
Site Areas (acres)	18.404	
New Impervious Area: Expansion (acres)	1.576	
Reconstructed Impervious Area: Redevelopment (acres)	3.203	
Resurfacing (acres)	6.507	
Existing Impervious Area (acres)	0.457	
Total On-Site Impervious Area (acres)	11.286	
New Impervious Area Requiring Treatment, 100% (acres)	1.576	
Reconstruct. Impervious Area Requiring Treatment, 20% (acres)	0.641	
Total Impositions Area Dequising Treatment (acres)	2 217	
Total Impervious Area Requiring Treatment (acres)	2.217	
Total Impervious Area Treated (acres)	2.569	
Total Calculated Water Quality Volume (cf)	60,844	

Project:	Colchester
	HES NH 5600 (14)
	Stormwater Treatment
Practice:	Grass Channel 1
	Sta. A -0+74.9 LT Sta. AL 1+85.2, LT.

Grass Channel Description: The Grass Channel is located from Station A -0+74.9 to Station AL 1+85.2 on the left side of the proposed I-89 Exit 16 southbound off ramp.

Water Quality Volume (Grass Channel)		
Rainfall (inches):	0.9	
Channel Drainage Area (square feet)*:	53,370	
Total Impervious Area (square feet)*:	15,116	
Off-Site Impervious Area (square feet)*:	13,096	
Runoff Coefficient:	0.305	
Runoff Volume (inches):	0.274	
Curve Number:	91	
Initial Abstraction:	0.209	
Initial Abstraction/Rainfall:	0.233	
Time of Concentration (min.):	18.2	
Unit Peak Discharge (csm/in):	650	
Water Quality Volume (cf):	1230	

*Areas relate to grass channel, not project as a whole.

This value is based upon treatment of 100% of the water quality volume from the new and existing impervious area. This grass channel collects and treats 2,020 square feet of impervious area. These calculations use the entire drainage area that is collected and conveyed to the channel.

Grass Channel Design Criteria		
Bottom Width:	4'	
Side Slope:	4:1	
Back Slope:	4:1	
Grass Channel Longitudinal Slope:	2.7%	
Channel Depth:	1'	

Water Quality Storm in Grass Channel		
Peak Discharge (cfs):	0.341	
Depth of Flow (inches):	1.97	
Manning's "n" Coefficient:	0.15	
Cross Sectional Area (sf):	0.764	
Velocity (ft/s):	0.4	
Length required for 10 min. residence time (ft):	267	

The design requirement for the water quality storm focuses on velocity and residence time. The water quality storm velocity in the channel must not exceed 1 ft/s. The resulting velocity for this grass channel is 0.4 ft/s. The second criterion is that an average 10 minute residence time must be attained in the channel. The calculated length required to attain an average 10 minute residence time is 267 feet. This channel provides treatment over a length of 270 feet. The manual states as a guideline for the water quality storm, the depth in the channel generally should not exceed four inches. The depth of flow in this grass channel is 1.97 inches.

One-Year Storm Event for Grass Channel	
Curve Number:	85
Peak Discharge (cfs):	1.25
Depth of Flow (inches):	4.085
Velocity (ft/s):	0.7

Ten-Year Storm Event for Grass Channel	
Curve Number:	85
Peak Discharge (cfs):	2.44
Depth of Flow (inches):	5.43
Velocity (ft/s):	0.9

Another requirement states that when using a grass channel for treatment it must have the capacity to pass the one-year storm without producing erosive velocities. A velocity of 2.5 ft/s is considered erosive (Appendix D7, Vermont Stormwater Management Manual, Volume II). The resulting velocity within the channel for the one-year storm is 0.7 ft/s and is below the maximum allowable velocity.

Results:

- Grass Channel length = 270 feet
- Impervious Area treated = 2,020 square feet
- Water Quality Volume = 1230 cf
- Water Quality Storm Velocity = 0.4 ft/s
- Length required for 10 minute residence time = 267 feet
- One-year Storm Velocity = 0.7 ft/s

Project:	Colchester
	HES NH 5600 (14)
	Stormwater Treatment
Practice:	Grass Channel 4
	Sta. 13+51.6, LT Sta. 403+07.5, LT.

Grass Channel Description: The Grass Channel is located from Station 13+51.6 to Station 403+07.5 on the left side of US Route 2 & 7 and the left side of Mountain View Road.

Water Quality Volume (Grass Channel)	
Rainfall (inches):	0.9
Channel Drainage Area (square feet)*:	1,027,207
Total Impervious Area (square feet)*:	588,048
Off-Site Impervious Area (square feet)*:	541,846
Runoff Coefficient:	0.104-0.717
Runoff Volume (inches):	Varies
Curve Number:	88-96
Water Quality Volume (cf):	43,658

*Areas relate to grass channel, not project as a whole.

This value is based upon treatment of 100% of the water quality volume from the new and existing impervious area. This grass channel collects and treats 43,853 square feet of impervious area. These calculations use the entire drainage area that is collected and conveyed to the channel. This grass channel includes a check dam to prevent scour from water that outlets from the closed drainage system directly to this channel.

Grass Channel Design Criteria	
Bottom Width:	5′
Side Slope:	4:1
Back Slope:	4:1
Grass Channel Longitudinal Slope:	3.8%
Channel Depth:	1.5′

Water Quality Storm in Grass Channel		
Peak Discharge (cfs):	2.12	
Depth of Flow (inches):	4.4	
Manning's "n" Coefficient:	0.144	
Cross Sectional Area (sf):	2.371	
Velocity (ft/s):	0.9	
Length required for 10 min. residence time (ft):	536	

The design requirement for the water quality storm focuses on velocity and residence time. The water quality storm velocity in the channel must not exceed 1 ft/s. The resulting velocity for this grass channel is 0.9 ft/s. The second criterion is that an average 10 minute residence time must be attained in the channel. The calculated length required to attain an average 10 minute residence time is 536 feet. This channel provides treatment over a length of 625 feet. The

manual states as a guideline for the water quality storm, the depth in the channel generally should not exceed four inches. The depth of flow in this grass channel is 4.4 inches. While the depth does exceed the guideline of four inches, it only exceeds it slightly and meets all of the other requirements for the Water Quality storm.

One-Year Storm Event for Grass Channel		
Curve Number:	81-93	
Peak Discharge (cfs):	8.91	
Depth of Flow (inches):	7.665	
Velocity (ft/s):	1.8	

Ten-Year Storm Event for Grass Channel	
Curve Number:	81-93
Peak Discharge (cfs):	22.44
Depth of Flow (inches):	9.985
Velocity (ft/s):	3.3

Another requirement states that when using a grass channel for treatment it must have the capacity to pass the one-year storm without producing erosive velocities. A velocity of 2.5 ft/s is considered erosive (Appendix D7, Vermont Stormwater Management Manual, Volume II). The resulting velocity within the channel for the one-year storm is 1.8 ft/s and is below the maximum allowable velocity.

<u>Results</u>:

- Grass Channel length = 625 feet
- Impervious Area treated = 43,658 square feet
- Water Quality Storm Velocity = 0.9 ft/s
- Length required for 10 minute residence time = 536 feet
- One-year Storm Velocity = 1.8 ft/s

Project:	Colchester
	HES NH 5600 (14)
	Stormwater Treatment
Practice:	Grass Channel 5
	Sta. 18+55.5, LT.– Sta. 19+17.0, LT.

Grass Channel Description: The Grass Channel is located from Station 18+55.5 to Station 19+75.0 on the left side of US Route 2 & 7.

Water Quality Volume (Grass Channel)		
Rainfall (inches):	0.9	
Channel Drainage Area (square feet)*:	5,032	
Total Impervious Area (square feet)*:	2,349	
Off-Site Impervious Area (square feet)*:	0	
Runoff Coefficient:	0.47	
Runoff Volume (inches):	0.423	
Curve Number:	94	
Initial Abstraction:	0.128	
Initial Abstraction/Rainfall:	0.142	
Time of Concentration (min.):	1.7	
Unit Peak Discharge (csm/in):	1000	
Water Quality Volume (cf):	177	

*Areas relate to grass channel, not project as a whole.

This value is based upon treatment of 100% of the water quality volume from the new and existing impervious area. This grass channel collects and treats 2,349 square feet of impervious area. These calculations use the entire drainage area that is collected and conveyed to the channel.

Grass Channel Design Criteria	
Bottom Width:	4'
Side Slope:	4:1
Back Slope:	4:1
Grass Channel Longitudinal Slope:	0.2%
Channel Depth:	1'

Water Quality Storm in Grass Channel		
Peak Discharge (cfs):	0.076	
Depth of Flow (inches):	1.755	
Manning's "n" Coefficient:	0.15	
Cross Sectional Area (sf):	0.671	
Velocity (ft/s):	0.1	
Length required for 10 min. residence time (ft):	68	

The design requirement for the water quality storm focuses on velocity and residence time. The water quality storm velocity in the channel must not exceed 1 ft/s. The resulting velocity for this grass channel is 0.1 ft/s. The second criterion is that an average 10 minute residence time must be attained in the channel. The calculated length required to attain an average 10 minute residence time is 68 feet. This channel provides treatment over a length of 120 feet. The manual states as a guideline for the water quality storm, the depth in the channel generally should not exceed four inches. The depth of flow in this grass channel is 1.755 inches.

One-Year Storm Event for Grass Channel	
Curve Number:	88
Peak Discharge (cfs):	0.21
Depth of Flow (inches):	3.135
Velocity (ft/s):	0.2

Ten-Year Storm Event for Grass Channel	
Curve Number:	88
Peak Discharge (cfs):	0.40
Depth of Flow (inches):	4.39
Velocity (ft/s):	0.2

Another requirement states that when using a grass channel for treatment it must have the capacity to pass the one-year storm without producing erosive velocities. A velocity of 2.5 ft/s is considered erosive (Appendix D7, Vermont Stormwater Management Manual, Volume II). The resulting velocity within the channel for the one-year storm is 0.2 ft/s and is below the maximum allowable velocity.

<u>Results</u>:

- Grass Channel length = 120 feet
- Impervious Area treated = 2,349 square feet
- Water Quality Volume = 177 cf
- Water Quality Storm Velocity = 0.1 ft/s
- Length required for 10 minute residence time = 68 feet
- One-year Storm Velocity = 0.2 ft/s

Project:	Colchester
	HES NH 5600 (14)
	Stormwater Treatment
Practice:	Grass Channel 6
	Sta. 19+75.0, LT Sta. 22+93.3, LT.

Grass Channel Description: The Grass Channel is located from Station 19+75.0 to Station 22+93.3 on the left side of US Route 2 & 7.

Water Quality Volume (Grass Channel)		
Rainfall (inches):	0.9	
Channel Drainage Area (square feet)*:	21,392	
Total Impervious Area (square feet)*:	10,391	
Off-Site Impervious Area (square feet)*:	0	
Runoff Coefficient:	0.487	
Runoff Volume (inches):	0.438	
Curve Number:	94	
Initial Abstraction:	0.121	
Initial Abstraction/Rainfall:	0.134	
Time of Concentration (min.):	1.7	
Unit Peak Discharge (csm/in):	1000	
	·	
Water Quality Volume (cf):	783	

*Areas relate to grass channel, not project as a whole.

This value is based upon treatment of 100% of the water quality volume from the new and existing impervious area. This grass channel collects and treats 10,391 square feet of impervious area. These calculations use the entire drainage area that is collected and conveyed to the channel.

Grass Channel Design Criteria	
Bottom Width:	4'
Side Slope:	4:1
Back Slope:	4:1
Grass Channel Longitudinal Slope:	0.7%
Channel Depth:	1'

Water Quality Storm in Grass Channel		
Peak Discharge (cfs):	0.336	
Depth of Flow (inches):	2.87	
Manning's "n" Coefficient:	0.15	
Cross Sectional Area (sf):	1.185	
Velocity (ft/s):	0.3	
Length required for 10 min. residence time (ft):	170	

The design requirement for the water quality storm focuses on velocity and residence time. The water quality storm velocity in the channel must not exceed 1 ft/s. The resulting velocity for this grass channel is 0.3 ft/s. The second criterion is that an average 10 minute residence time must be attained in the channel. The calculated length required to attain an average 10 minute residence time is 170 feet. This channel provides treatment over a length of 318 feet. The manual states as a guideline for the water quality storm, the depth in the channel generally should not exceed four inches. The depth of flow in this grass channel is 2.87 inches.

One-Year Storm Event for Grass Channel	
Curve Number:	89
Peak Discharge (cfs):	0.91
Depth of Flow (inches):	4.775
Velocity (ft/s):	0.4

Ten-Year Storm Event for Grass Channel		
Curve Number:	89	
Peak Discharge (cfs):	1.70	
Depth of Flow (inches):	6.135	
Velocity (ft/s):	0.6	

Another requirement states that when using a grass channel for treatment it must have the capacity to pass the one-year storm without producing erosive velocities. A velocity of 2.5 ft/s is considered erosive (Appendix D7, Vermont Stormwater Management Manual, Volume II). The resulting velocity within the channel for the one-year storm is 0.4 ft/s and is below the maximum allowable velocity.

<u>Results</u>:

- Grass Channel length = 318 feet
- Impervious Area treated = 10,391 square feet
- Water Quality Volume = 783 cf
- Water Quality Storm Velocity = 0.3 ft/s
- Length required for 10 minute residence time = 170 feet
- One-year Storm Velocity = 0.4 ft/s

Project:	Colchester
	HES NH 5600 (14)
	Stormwater Treatment
Practice:	Grass Channel 7
	Sta. 22+97.8, LT Sta. 26+28.1, LT.

Grass Channel Description: The Grass Channel is located from Station 22+97.8 to Station 26+28.1 on the left side of US Route 2 & 7.

Water Quality Volume (Grass Channel)		
Rainfall (inches):	0.9	
Channel Drainage Area (square feet)*:	26,849	
Total Impervious Area (square feet)*:	20,989	
Off-Site Impervious Area (square feet)*:	0	
Runoff Coefficient:	0.754	
Runoff Volume (inches):	0.678	
Curve Number:	98	
Initial Abstraction:	0.045	
Initial Abstraction/Rainfall:	0.05	
Time of Concentration (min.):	2.5	
Unit Peak Discharge (csm/in):	1000	
Water Quality Volume (cf):	1519	

*Areas relate to grass channel, not project as a whole.

This value is based upon treatment of 100% of the water quality volume from the new and existing impervious area. This grass channel collects and treats 20,989 square feet of impervious area. These calculations use the entire drainage area that is collected and conveyed to the channel.

Grass Channel Design Criteria	
Bottom Width:	4'
Side Slope:	4:1
Back Slope:	4:1
Grass Channel Longitudinal Slope:	1.3%
Channel Depth:	2'

Water Quality Storm in Grass Channel		
Peak Discharge (cfs):	0.653	
Depth of Flow (inches):	3.505	
Manning's "n" Coefficient:	0.15	
Cross Sectional Area (sf):	1.51	
Velocity (ft/s):	0.4	
Length required for 10 min. residence time (ft):	260	

The design requirement for the water quality storm focuses on velocity and residence time. The water quality storm velocity in the channel must not exceed 1 ft/s. The resulting velocity for this grass channel is 0.4 ft/s. The second criterion is that an average 10 minute residence time must be attained in the channel. The calculated length required to attain an average 10 minute residence time is 260 feet. This channel provides treatment over a length of 327 feet. The manual states as a guideline for the water quality storm, the depth in the channel generally should not exceed four inches. The depth of flow in this grass channel is 3.505 inches.

One-Year Storm Event for Grass Channel	
Curve Number:	94
Peak Discharge (cfs):	1.52
Depth of Flow (inches):	5.2
Velocity (ft/s):	0.6

Ten-Year Storm Event for Grass Channel	
Curve Number:	94
Peak Discharge (cfs):	2.45
Depth of Flow (inches):	6.265
Velocity (ft/s):	0.8

Another requirement states that when using a grass channel for treatment it must have the capacity to pass the one-year storm without producing erosive velocities. A velocity of 2.5 ft/s is considered erosive (Appendix D7, Vermont Stormwater Management Manual, Volume II). The resulting velocity within the channel for the one-year storm is 0.6 ft/s and is below the maximum allowable velocity.

Results:

- Grass Channel length = 327 feet
- Impervious Area treated = 20,989 square feet
- Water Quality Volume = 1519 cf
- Water Quality Storm Velocity = 0.4 ft/s
- Length required for 10 minute residence time = 260 feet
- One-year Storm Velocity = 0.6 ft/s

Project:	Colchester
	HES NH 5600 (14)
	Stormwater Treatment
Practice:	Grass Channel 8
	Sta. 39+19.3, LT Sta. 43+67.4, LT.

Grass Channel Description: The Grass Channel is located from Station 39+19.3 to Station 43+67.4 on the left side of US Route 2 & 7.

Water Quality Volume (Grass Channel)		
Rainfall (inches):	0.9	
Channel Drainage Area (square feet)*:	176,707	
Total Impervious Area (square feet)*:	68,389	
Off-Site Impervious Area (square feet)*:	56,150	
Runoff Coefficient:	0.398	
Runoff Volume (inches):	0.358	
Curve Number:	93	
Initial Abstraction:	0.158	
Initial Abstraction/Rainfall:	0.176	
Time of Concentration (min.):	19.1	
Unit Peak Discharge (csm/in):	650	
Water Quality Volume (cf):	5,279	

*Areas relate to grass channel, not project as a whole.

This value is based upon treatment of 100% of the water quality volume from the new and existing impervious area. This grass channel collects and treats 12,239 square feet of impervious area. These calculations use the entire drainage area that is collected and conveyed to the channel.

Grass Channel Design Criteria	
Bottom Width:	6'
Side Slope:	4:1
Back Slope:	2:1
Grass Channel Longitudinal Slope:	1.3%
Channel Depth:	2'

Water Quality Storm in Grass Channel		
Peak Discharge (cfs):	1.477	
Depth of Flow (inches):	4.49	
Manning's "n" Coefficient:	0.143	
Cross Sectional Area (sf):	2.665	
Velocity (ft/s):	0.6	
Length required for 10 min. residence time (ft):	333	

The design requirement for the water quality storm focuses on velocity and residence time. The water quality storm velocity in the channel must not exceed 1 ft/s. The resulting velocity for this grass channel is 0.6 ft/s. The second criterion is that an average 10 minute residence time must be attained in the channel. The calculated length required to attain an average 10 minute residence time is 333 feet. This channel provides treatment over a length of 448 feet. The manual states as a guideline for the water quality storm, the depth in the channel generally should not exceed four inches. The depth of flow in this grass channel is 4.49 inches. This flow depth does exceed the flow depth that is suggested by the storm water manual. The reason for this is because of the large amount of off-site runoff that this channel collects. The flow depth and 6" freeboard depth.

One-Year Storm Event for Grass Channel		
Curve Number:	71	
Peak Discharge (cfs):	2.98	
Depth of Flow (inches):	6.05	
Velocity (ft/s):	0.8	

Ten-Year Storm Event for Grass Channel	
Curve Number:	71
Peak Discharge (cfs):	4.72
Depth of Flow (inches):	7.18
Velocity (ft/s):	1.0

Another requirement states that when using a grass channel for treatment it must have the capacity to pass the one-year storm without producing erosive velocities. A velocity of 2.5 ft/s is considered erosive (Appendix D7, Vermont Stormwater Management Manual, Volume II). The resulting velocity within the channel for the one-year storm is 0.8 ft/s and is below the maximum allowable velocity.

Results:

- Grass Channel length = 448 feet
- Impervious Area treated = 12,239 square feet
- Water Quality Volume = 5,279 cf
- Water Quality Storm Velocity = 0.6 ft/s
- Length required for 10 minute residence time = 333 feet
- One-year Storm Velocity = 0.8 ft/s

Project:	Colchester
	HES NH 5600 (14)
	Stormwater Treatment
Practice:	Grass Channel 9
	Sta. 800+43.1, LT Sta. 802+85.0, LT.

Grass Channel Description: The Grass Channel is located from Station 800+43.1 to Station 802+85.0 on the left side of Rathe Rd.

Water Quality Volume (Grass Channel)		
Rainfall (inches):	0.9	
Channel Drainage Area (square feet)*:	46,064	
Total Impervious Area (square feet)*:	16,628	
Off-Site Impervious Area (square feet)*:	8,722	
Runoff Coefficient:	0.375	
Runoff Volume (inches):	0.337	
Curve Number:	92	
Initial Abstraction:	0.17	
Initial Abstraction/Rainfall:	0.189	
Time of Concentration (min.):	26.0	
Unit Peak Discharge (csm/in):	550	
Water Quality Volume (cf):	1,296	
*Anone valate to groep channel, not project on a who	· · · · · · · · · · · · · · · · · · ·	

*Areas relate to grass channel, not project as a whole.

This value is based upon treatment of 100% of the water quality volume from the new and existing impervious area. This grass channel collects and treats 7,906 square feet of impervious area. These calculations use the entire drainage area that is collected and conveyed to the channel.

Grass Channel Design Criteria	
Bottom Width:	4'
Side Slope:	4:1
Back Slope:	4:1
Grass Channel Longitudinal Slope:	2.2%
Channel Depth:	1'

Water Quality Storm in Grass Channel		
Peak Discharge (cfs):	0.307	
Depth of Flow (inches):	1.965	
Manning's "n" Coefficient:	0.15	
Cross Sectional Area (sf):	0.762	
Velocity (ft/s):	0.4	
Length required for 10 min. residence time (ft):	242	

The design requirement for the water quality storm focuses on velocity and residence time. The water quality storm velocity in the channel must not exceed 1 ft/s. The resulting velocity for this grass channel is 0.4 ft/s. The second criterion is that an average 10 minute residence time must be attained in the channel. The calculated length required to attain an average 10 minute residence time is 242 feet. This channel provides treatment over a length of 250 feet. The manual states as a guideline for the water quality storm, the depth in the channel generally should not exceed four inches. The depth of flow in this grass channel is 1.965 inches.

One-Year Storm Event for Grass Channel		
Curve Number:	74	
Peak Discharge (cfs):	0.62	
Depth of Flow (inches):	2.94	
Velocity (ft/s):	0.5	

Ten-Year Storm Event for Grass Channel		
Curve Number:	74	
Peak Discharge (cfs):	1.13	
Depth of Flow (inches):	4.09	
Velocity (ft/s):	0.6	

Another requirement states that when using a grass channel for treatment it must have the capacity to pass the one-year storm without producing erosive velocities. A velocity of 2.5 ft/s is considered erosive (Appendix D7, Vermont Stormwater Management Manual, Volume II). The resulting velocity within the channel for the one-year storm is 0.5 ft/s and is below the maximum allowable velocity.

<u>Results</u>:

- Grass Channel length = 250 feet
- Impervious Area treated = 7,906 square feet
- Water Quality Volume = 1,296 cf
- Water Quality Storm Velocity = 0.4 ft/s
- Length required for 10 minute residence time = 242 feet
- One-year Storm Velocity = 0.5 ft/s

Project:	Colchester
	HES NH 5600 (14)
	Stormwater Treatment
Practice:	Grass Channel 10
	Sta. 44+77.2, LT Sta. 48+92.1, LT.

Grass Channel Description: The Grass Channel is located from Station 44+77.2 to Station 48+92.1 on the left side of US Route 7.

Water Quality Volume	(Grass Channel)	
Painfall (inchas):	0.9	
Rainfall (inches): Channel Drainage Area (square feet)*:	146,747	
Total Impervious Area (square feet)*:	94,131	
Off-Site Impervious Area (square feet)*:	81,989	
Runoff Coefficient:	0.627	
Runoff Volume (inches):	0.565	
Curve Number:	96	
Initial Abstraction:	0.076	
Initial Abstraction/Rainfall:	0.084	
Time of Concentration (min.):	28.2	
Unit Peak Discharge (csm/in):	550	
Water Quality Volume (cf):	6,902	

*Areas relate to grass channel, not project as a whole.

This value is based upon treatment of 100% of the water quality volume from the new and existing impervious area. This grass channel collects and treats 12,142 square feet of impervious area. These calculations use the entire drainage area that is collected and conveyed to the channel.

Grass Channel Design Criteria					
Bottom Width:	5′				
Side Slope:	3:1				
Back Slope:	3:1				
Grass Channel Longitudinal Slope:	1.8%				
Channel Depth:	varies				

Water Quality Storm in Grass Channel						
Peak Discharge (cfs):	1.635					
Depth of Flow (inches):	4.705					
Manning's "n" Coefficient:	0.139					
Cross Sectional Area (sf):	2.422					
Velocity (ft/s):	0.7					
Length required for 10 min. residence time (ft):	405					

The design requirement for the water quality storm focuses on velocity and residence time. The water quality storm velocity in the channel must not exceed 1 ft/s. The resulting velocity for this grass channel is 0.7 ft/s. The second criterion is that an average 10 minute residence time must be attained in the channel. The calculated length required to attain an average 10 minute residence time is 405 feet. This channel provides treatment over a length of 421 feet. The manual states as a guideline for the water quality storm, the depth in the channel generally should not exceed four inches. The depth of flow in this grass channel is 4.705 inches. This flow depth does exceed the flow depth that is suggested by the storm water manual. The reason for this is because of the large amount of off-site runoff that this channel collects. The flow depth and 6" freeboard depth.

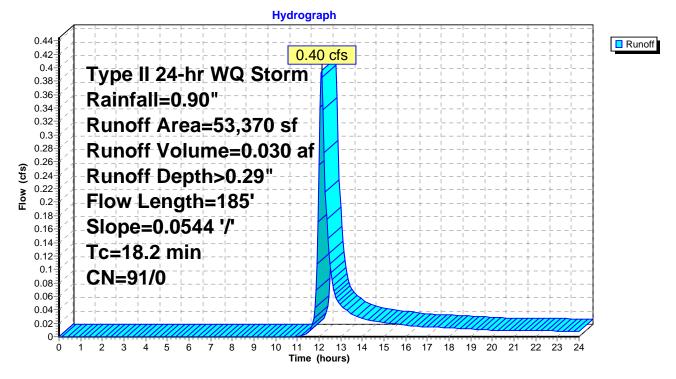
One-Year Storm Event for Grass Channel					
Curve Number:	77				
Peak Discharge (cfs):	3.35				
Depth of Flow (inches):	6.32				
Velocity (ft/s):	1.0				

Ten-Year Storm Event for Grass Channel					
Curve Number:	77				
Peak Discharge (cfs):	5.20				
Depth of Flow (inches):	7.405				
Velocity (ft/s):	1.2				

Another requirement states that when using a grass channel for treatment it must have the capacity to pass the one-year storm without producing erosive velocities. A velocity of 2.5 ft/s is considered erosive (Appendix D7, Vermont Stormwater Management Manual, Volume II). The resulting velocity within the channel for the one-year storm is 1.0 ft/s and is below the maximum allowable velocity.

<u>Results</u>:

- Grass Channel length = 421 feet
- Impervious Area treated = 12,142 square feet
- Water Quality Volume = 6,902 cf
- Water Quality Storm Velocity = 0.7 ft/s
- Length required for 10 minute residence time = 405 feet
- One-year Storm Velocity = 1.0 ft/s


Summary for Subcatchment GC 1: Grass Channel 1 Area

Runoff = 0.40 cfs @ 12.12 hrs, Volume= 0.030 af, Depth> 0.29"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr WQ Storm Rainfall=0.90"

	А	rea (sf)	CN	Description		
*		53,370	91			
		53,370	91	100.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
_	17.0	100	0.0544	4 0.10		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.30"
	1.2	85	0.0544	4 1.17		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	18.2	185	Total			

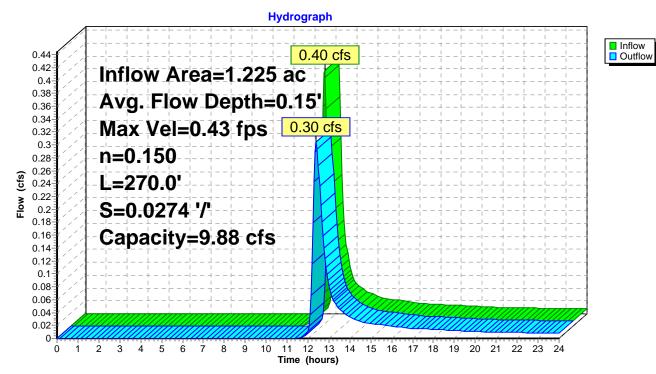
Subcatchment GC 1: Grass Channel 1 Area

Summary for Reach 1R: Grass Channel 1

 Inflow Area =
 1.225 ac,
 0.00% Impervious,
 Inflow Depth >
 0.29" for WQ Storm event

 Inflow =
 0.40 cfs @
 12.12 hrs,
 Volume=
 0.030 af

 Outflow =
 0.30 cfs @
 12.40 hrs,
 Volume=
 0.029 af,
 Atten= 23%,
 Lag= 17.1 min

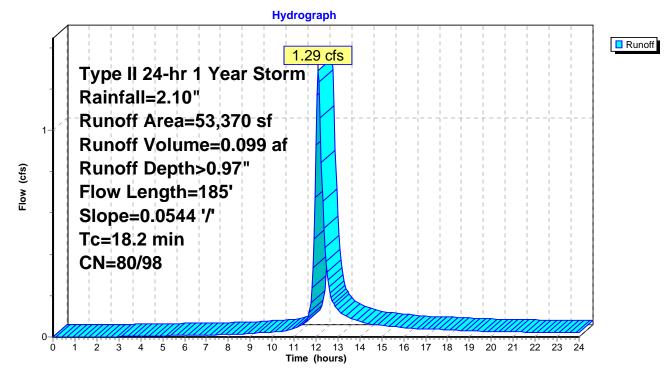

Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 0.43 fps, Min. Travel Time= 10.5 min Avg. Velocity = 0.15 fps, Avg. Travel Time= 29.4 min

Peak Storage= 192 cf @ 12.23 hrs Average Depth at Peak Storage= 0.15' Bank-Full Depth= 1.00', Capacity at Bank-Full= 9.88 cfs

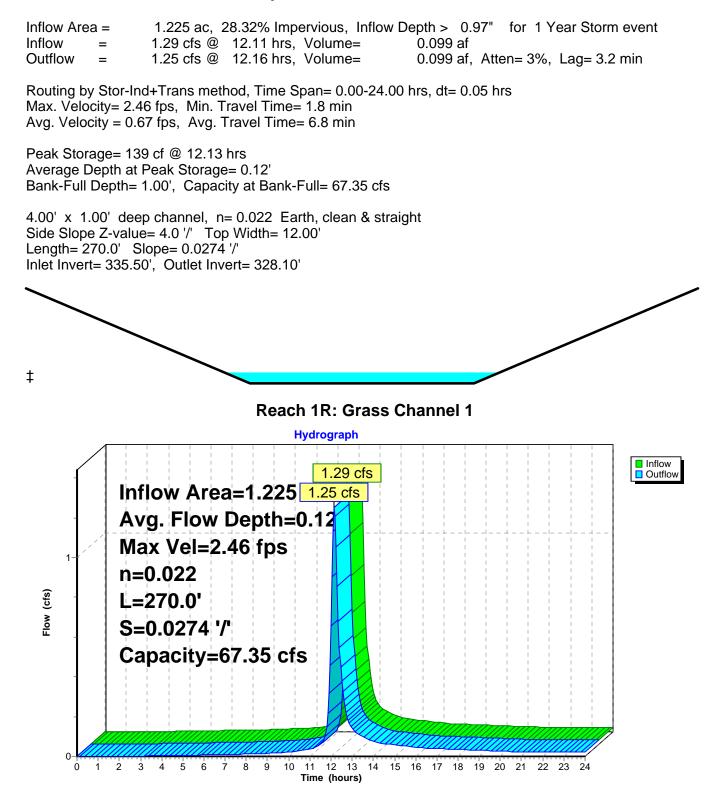
4.00' x 1.00' deep channel, n= 0.150 Sheet flow over Short Grass Side Slope Z-value= 4.0 '/' Top Width= 12.00' Length= 270.0' Slope= 0.0274 '/' Inlet Invert= 335.50', Outlet Invert= 328.10'

‡

Reach 1R: Grass Channel 1


Summary for Subcatchment GC 1: Grass Channel 1 Area

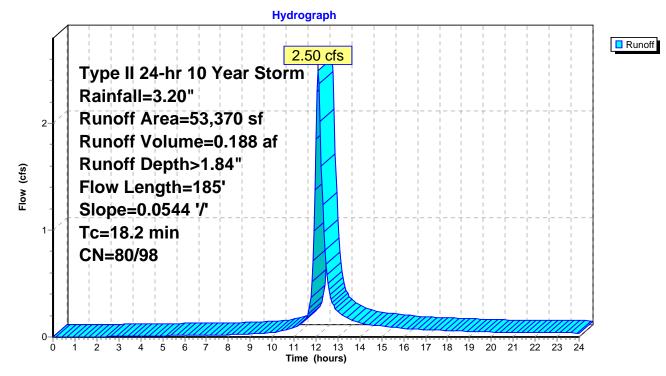
Runoff = 1.29 cfs @ 12.11 hrs, Volume= 0.099 af, Depth> 0.97"


Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Storm Rainfall=2.10"

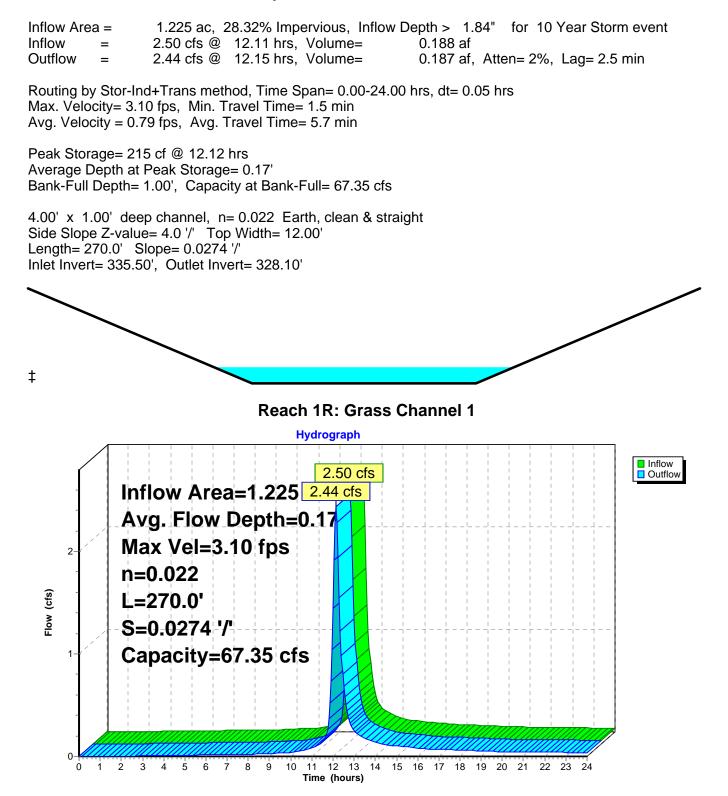
Α	rea (sf)	CN	Description		
	38,254	80	>75% Gras	s cover, Go	ood, HSG D
	15,116	98	Paved road	s w/curbs &	& sewers, HSG D
	53,370	85	Weighted A	verage	
	38,254	80	71.68% Pei	vious Area	
	15,116	98	28.32% Imp	pervious Are	ea
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description
17.0	100	0.0544	0.10		Sheet Flow,
1.2	85	0.0544	1.17		Woods: Light underbrush n= 0.400 P2= 2.30" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
18.2	185	Total			

Subcatchment GC 1: Grass Channel 1 Area

Summary for Reach 1R: Grass Channel 1


Summary for Subcatchment GC 1: Grass Channel 1 Area

Runoff = 2.50 cfs @ 12.11 hrs, Volume= 0.188 af, Depth> 1.84"

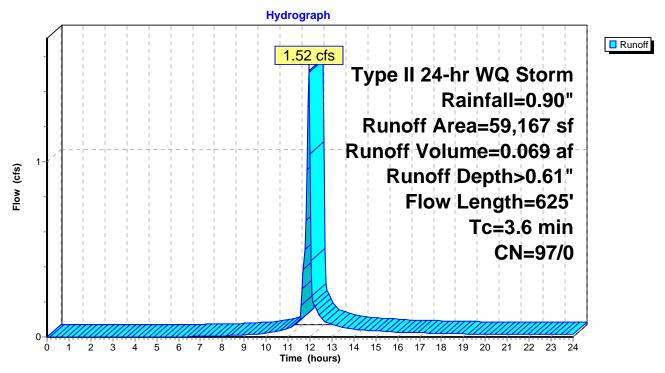

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

A	vrea (sf)	CN [Description		
	38,254	80 >	-75% Gras	s cover, Go	ood, HSG D
	15,116	98 F	Paved road	s w/curbs &	& sewers, HSG D
	53,370	85 \	Veighted A	verage	
	38,254	80 7	71.68% Per	vious Area	
	15,116	98 2	28.32% Imp	pervious Ar	ea
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
17.0	100	0.0544	0.10		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.30"
1.2	85	0.0544	1.17		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
18.2	185	Total			

Subcatchment GC 1: Grass Channel 1 Area

Summary for Reach 1R: Grass Channel 1

Summary for Subcatchment GC 4: Grass Channel 4 Area


Runoff = 1.52 cfs @ 11.94 hrs, Volume= 0.069 af, Depth> 0.61"

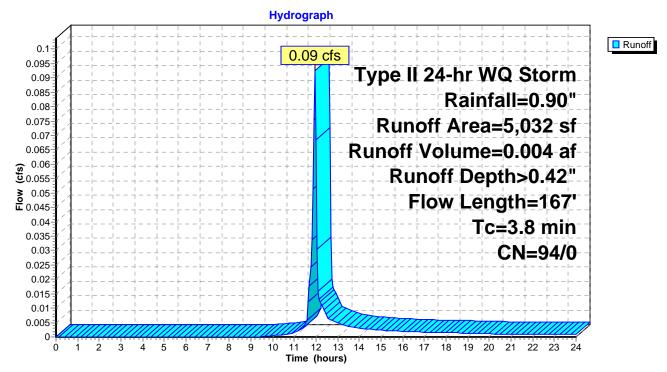
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr WQ Storm Rainfall=0.90"

	A	rea (sf)	CN	Description		
*		59,167	97	CN		
		59,167	97	100.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft	•	Capacity (cfs)	Description
	0.3	23	0.0730	0 1.46		Sheet Flow, Smooth surfaces n= 0.011 P2= 2.30"
	0.5	5	0.3400	0.17		Sheet Flow, Grass: Dense n= 0.240 P2= 2.30"
	2.8	597	0.0390) 3.55	5.10	Trap/Vee/Rect Channel Flow, Bot.W=5.00' D=0.25' Z= 3.0 '/' Top.W= 6.50 ' n= 0.030 Earth, grassed & winding
_	0.0	005	T . (.)			

3.6 625 Total

Subcatchment GC 4: Grass Channel 4 Area

Summary for Subcatchment GC5: Grass Channel 5 Area

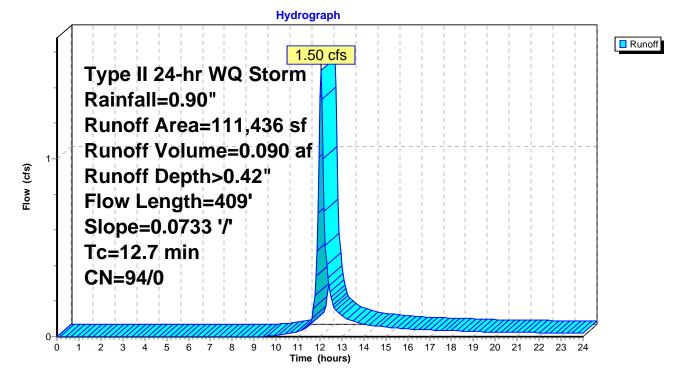

Runoff = 0.09 cfs @ 11.95 hrs, Volume= 0.004 af, Depth> 0.42"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr WQ Storm Rainfall=0.90"

	A	rea (sf)	CN	Description		
*		5,032	94	CN		
		5,032	94	100.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
	0.6	37	0.0200	0.96		Sheet Flow, Smooth surfaces n= 0.011 P2= 2.30"
	1.1	10	0.2040	0.16		Sheet Flow, Grass: Dense n= 0.240 P2= 2.30"
	2.1	120	0.0017	7 0.97	1.22	
	0.0	407	T ()			

3.8 167 Total

Subcatchment GC5: Grass Channel 5 Area

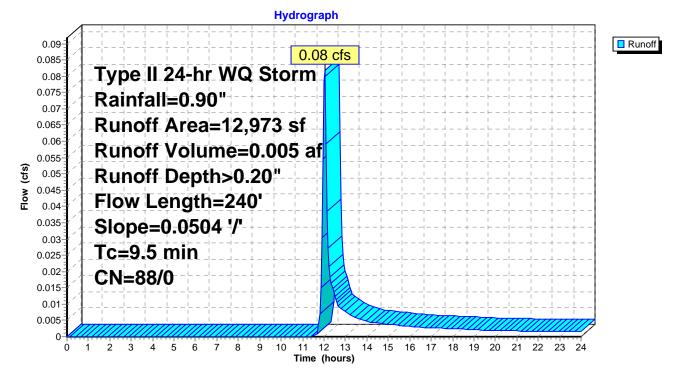

Summary for Subcatchment OS8a: (new Subcat)

Runoff = 1.50 cfs @ 12.05 hrs, Volume= 0.090 af, Depth> 0.42"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr WQ Storm Rainfall=0.90"

	A	rea (sf)	CN [Description			
*	1	11,436	94 (CN			
	1	11,436	94 1	00.00% Pe	ervious Are	a	_
	Tc (min)	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		_
	10.0	100	0.0733	0.17		Sheet Flow,	
						Grass: Dense n= 0.240 P2= 2.30"	
	2.7	309	0.0733	1.90		Shallow Concentrated Flow,	
						Short Grass Pasture Kv= 7.0 fps	
	12.7	409	Total				_

Subcatchment OS8a: (new Subcat)

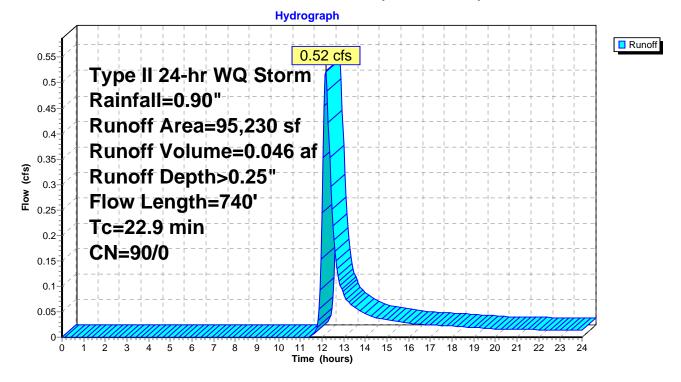

Summary for Subcatchment OS8c: (new Subcat)

Runoff = 0.08 cfs @ 12.03 hrs, Volume= 0.005 af, Depth> 0.20"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr WQ Storm Rainfall=0.90"

_	А	rea (sf)	CN	Description		
*		12,973	88	CN		
		12,973	88	100.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
	8.0	100	0.0504			Sheet Flow, Grass: Short n= 0.150 P2= 2.30"
	1.5	140	0.0504	1.57		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
	9.5	240	Total			

Subcatchment OS8c: (new Subcat)


Summary for Subcatchment OS8d: (new Subcat)

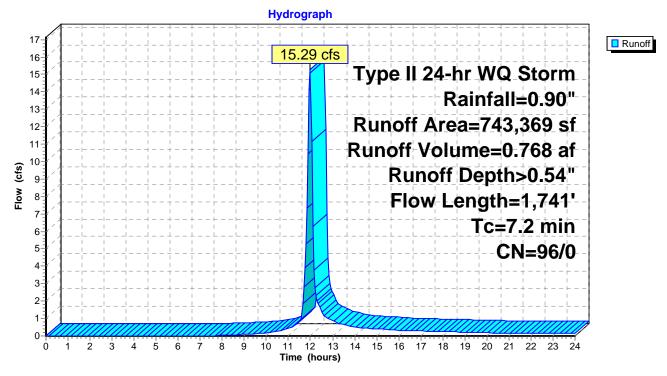
Runoff = 0.52 cfs @ 12.18 hrs, Volume= 0.046 af, Depth> 0.25"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr WQ Storm Rainfall=0.90"

	А	vrea (sf)	CN	Description		
*		95,230	90	CN		
		95,230	90	100.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
	14.8	100	0.0766	6 0.11		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.30"
	2.8	240	0.0796	6 1.41		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	5.3	400	0.0327	7 1.27		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
_	22.9	740	Total			

Subcatchment OS8d: (new Subcat)

Summary for Subcatchment OS8_5: (new Subcat)


Runoff = 15.29 cfs @ 11.98 hrs, Volume= 0.768 af, Depth> 0.54"

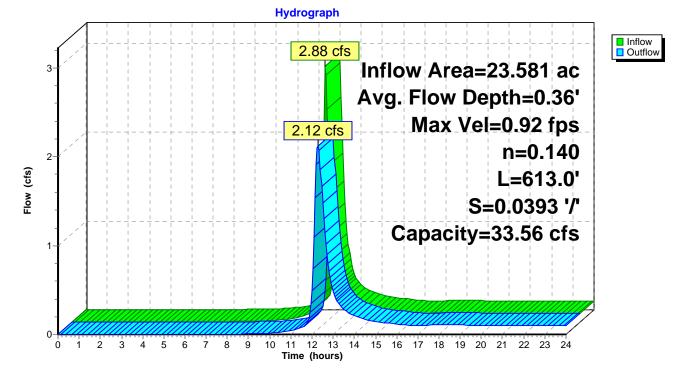
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr WQ Storm Rainfall=0.90"

	A	rea (sf)	CN	Description		
*	7	43,369	96	CN		
	7	43,369	96	100.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
	0.6	50	0.0398	8 1.34		Sheet Flow, Smooth surfaces n= 0.011 P2= 2.30"
	1.8	427	0.0398	4.05		Shallow Concentrated Flow, Paved Kv= 20.3 fps
	4.8	1,264	0.0498	3 4.41	3.03	Trap/Vee/Rect Channel Flow, Bot.W=2.00' D=0.25' Z= 3.0 '/' Top.W=3.50' n= 0.025
_						

7.2 1,741 Total

Subcatchment OS8_5: (new Subcat)

Summary for Reach 4R: Grass Channel 4


Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 0.92 fps, Min. Travel Time= 11.1 min Avg. Velocity = 0.30 fps, Avg. Travel Time= 33.8 min

Peak Storage= 1,418 cf @ 12.10 hrs Average Depth at Peak Storage= 0.36' Bank-Full Depth= 1.50', Capacity at Bank-Full= 33.56 cfs

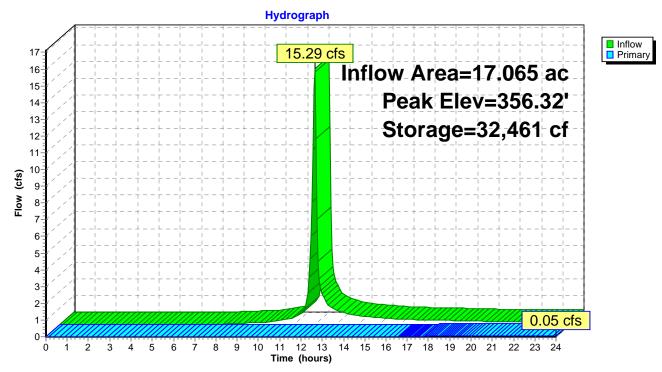
5.00' x 1.50' deep channel, n= 0.140 Side Slope Z-value= 4.0 '/' Top Width= 17.00' Length= 613.0' Slope= 0.0393 '/' Inlet Invert= 357.60', Outlet Invert= 333.50'

Reach 4R: Grass Channel 4

Summary for Pond P5: in Shaws Parking

Inflow Area	a =	17.065 ac,	0.00% Impervious, Inflow D	Depth > 0.54" for WQ Storm event
Inflow	=	15.29 cfs @	11.98 hrs, Volume=	0.768 af
Outflow	=	0.05 cfs @	24.00 hrs, Volume=	0.023 af, Atten= 100%, Lag= 720.9 min
Primary	=	0.05 cfs @	24.00 hrs, Volume=	0.023 af

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 356.32' @ 24.00 hrs Surf.Area= 18,822 sf Storage= 32,461 cf


Plug-Flow detention time= 691.3 min calculated for 0.023 af (3% of inflow) Center-of-Mass det. time= 438.8 min (1,254.4 - 815.7)

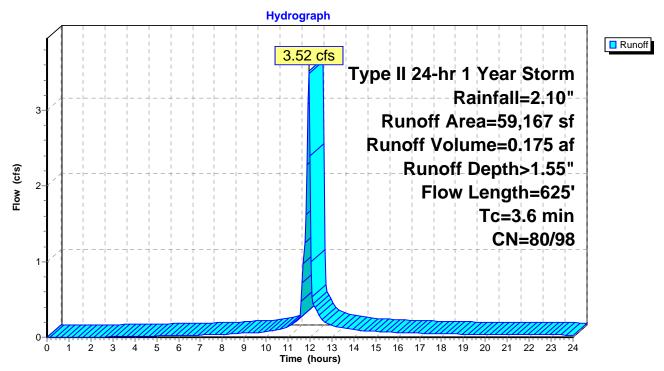
Volume	Inv	ert Avail.Sto	rage	Storage	Description				
#1 354.50' 168,10		07 cf	Custom	Stage Data (P	rismatic)Listed below				
Floveti	~~	Surf Area	Inc	Ctore	Cum Store				
Elevatio		Surf.Area		Store	Cum.Store				
(fee	et)	(sq-ft)	(cubic	c-feet)	(cubic-feet)				
354.8	50	16,374		0	0				
356.0	00	18,340	20	6,036	26,036				
358.0	00	21,318	39	9,658	65,694				
360.0	00	24,759	40	6,077	111,771				
362.0	00	31,577		6,336	168,107				
Device	Routing	Invert	Outle	et Devices	6				
#1	Primary	356.10'	2.0"	Horiz. 2"	ORIFICE/GRA	TE C= 0.600			
#2	Primary	357.00'	6.0"	Horiz. 6"	HORIZONTAL	ORIFICE/GRATE X9 X 9.00 C= 0.600			
	,		Limite	ed to wei	r flow at low hea	ads			
#3	Primary	359.60'	18.0"	' Horiz. 1	8" HORIZONT	AL ORIFICE/GRATE C= 0.600			
			Limite	ed to wei	r flow at low hea	ads			
Primary OutFlow Max=0.05 cfs @ 24.00 hrs HW=356.32' (Free Discharge)									

1=2" ORIFICE/GRATE (Orifice Controls 0.05 cfs @ 2.28 fps)

2=6" HORIZONTAL ORIFICE/GRATE X9 (Controls 0.00 cfs)

-3=18" HORIZONTAL ORIFICE/GRATE (Controls 0.00 cfs)

Pond P5: in Shaws Parking

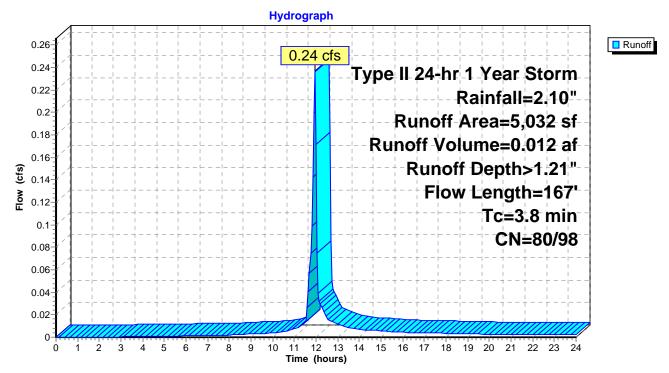

Summary for Subcatchment GC4: Grass Channel 4 On-site Area

Runoff = 3.52 cfs @ 11.94 hrs, Volume= 0.175 af, Depth> 1.55"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Storm Rainfall=2.10"

A	rea (sf)	CN	Description								
	43,853	98	98 Paved roads w/curbs & sewers, HSG D								
	15,314	80	>75% Gras	s cover, Go	ood, HSG D						
	59,167	93	Weighted A	verage							
	15,314	80	25.88% Pei	vious Area							
	43,853	98	74.12% Imp	pervious Are	ea						
_											
Тс	Length	Slope		Capacity	Description						
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)							
0.3	23	0.0730) 1.46		Sheet Flow,						
					Smooth surfaces n= 0.011 P2= 2.30"						
0.5	5	0.3400	0.17		Sheet Flow,						
					Grass: Dense n= 0.240 P2= 2.30"						
2.8	597	0.0390) 3.55	5.10							
					Bot.W=5.00' D=0.25' Z= 3.0 '/' Top.W=6.50'						
					n= 0.030 Earth, grassed & winding						
3.6	625	Total									

Subcatchment GC4: Grass Channel 4 On-site Area

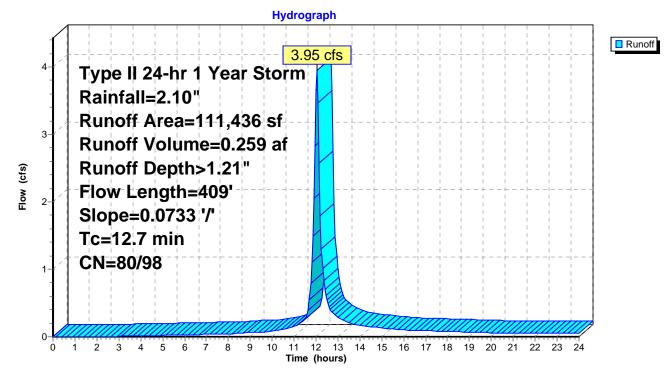

Summary for Subcatchment GC5: Grass Channel 5 Area

Runoff = 0.24 cfs @ 11.94 hrs, Volume= 0.012 af, Depth> 1.21"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Storm Rainfall=2.10"

A	rea (sf)	CN	Description							
	2,349	98	B Paved roads w/curbs & sewers, HSG D							
	2,683	80	>75% Gras	s cover, Go	ood, HSG D					
	5,032	88	Weighted A	verage						
	2,683	80	53.32% Pei	vious Area						
	2,349	98	46.68% Imp	pervious Are	ea					
_										
Tc	Length	Slope		Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
0.6	37	0.0200	0.96		Sheet Flow,					
					Smooth surfaces n= 0.011 P2= 2.30"					
1.1	10	0.2040	0.16		Sheet Flow,					
					Grass: Dense n= 0.240 P2= 2.30"					
2.1	120	0.0017	0.97	1.22	Trap/Vee/Rect Channel Flow,					
					Bot.W=4.00' D=0.25' Z= 4.0 '/' Top.W=6.00'					
					n= 0.022 Earth, clean & straight					
3.8	167	Total								

Subcatchment GC5: Grass Channel 5 Area

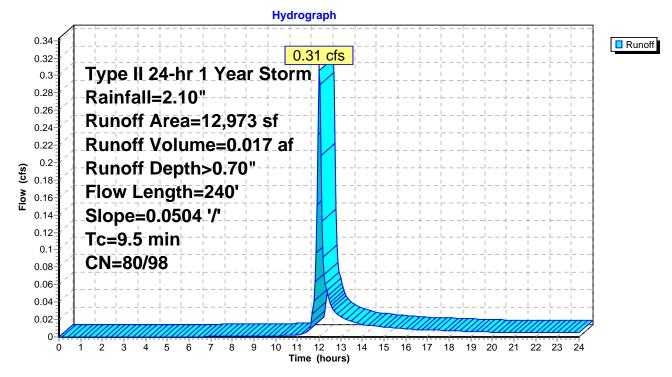

Summary for Subcatchment OS8a: (new Subcat)

Runoff = 3.95 cfs @ 12.04 hrs, Volume= 0.259 af, Depth> 1.21"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Storm Rainfall=2.10"

A	rea (sf)	CN [Description		
	58,467 80 >75% Grass cover, Goo				bod, HSG D
	45,548	98 F	Paved park	ing, HSG D)
	7,421	98 F	Roofs, HSC	6 D	
111,436 89 Weighted Average				verage	
	58,467 80 52.47% Pervious Area				
	52,969	98 4	17.53% Imp	pervious Ar	ea
Тс	Length	Slope		Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
10.0	100	0.0733	0.17		Sheet Flow,
					Grass: Dense n= 0.240 P2= 2.30"
2.7	309	0.0733	1.90		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
12.7	409	Total			

Subcatchment OS8a: (new Subcat)

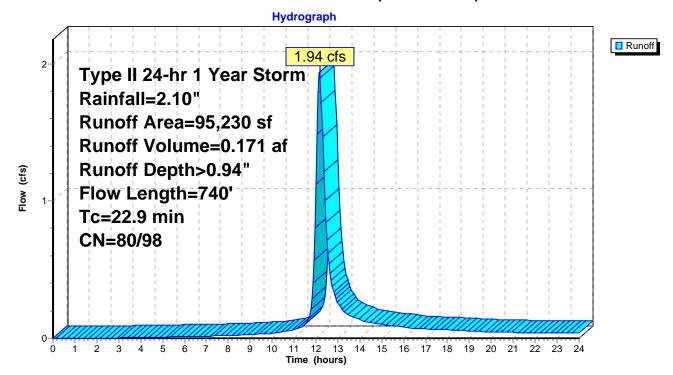

Summary for Subcatchment OS8c: (new Subcat)

Runoff = 0.31 cfs @ 12.02 hrs, Volume= 0.017 af, Depth> 0.70"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Storm Rainfall=2.10"

_	A	rea (sf)	CN I	Description		
		12,191	80 ;	>75% Gras	s cover, Go	ood, HSG D
_		782	98 I	Paved road	s w/curbs &	& sewers, HSG D
		12,973	81	Neighted A	verage	
		12,191	80 9	93.97% Pei	vious Area	
	782 98 6.03% Impervious Area				ervious Area	а
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	8.0	100	0.0504	0.21		Sheet Flow,
						Grass: Short n= 0.150 P2= 2.30"
	1.5	140	0.0504	1.57		Shallow Concentrated Flow,
_	0.5	240	Total			Short Grass Pasture Kv= 7.0 fps
	9.5	240	Total			

Subcatchment OS8c: (new Subcat)


Summary for Subcatchment OS8d: (new Subcat)

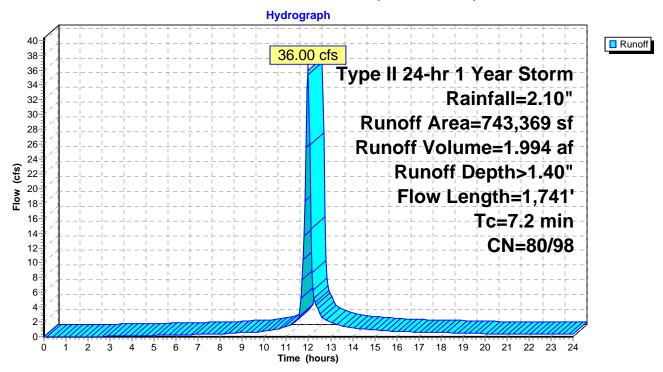
Runoff = 1.94 cfs @ 12.16 hrs, Volume= 0.171 af, Depth> 0.94"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Storm Rainfall=2.10"

A	rea (sf)	CN I	Description		
	24,055	98 I	Paved road	s w/curbs &	& sewers, HSG D
	70,880	80 >	>75% Gras	s cover, Go	ood, HSG D
	295	<u>98 l</u>	Jnconnecte	ed roofs, H	SG D
	95,230 85 Weighted Average				
	70,880	80 7	74.43% Pei	vious Area	
	24,350	98 2	25.57% Imp	pervious Ar	ea
Tc	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
14.8	100	0.0766	0.11		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.30"
2.8	240	0.0796	1.41		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
5.3	400	0.0327	1.27		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
22.9	740	Total			

Subcatchment OS8d: (new Subcat)

Summary for Subcatchment OS8_5: (new Subcat)


Runoff = 36.00 cfs @ 11.98 hrs, Volume= 1.994 af, Depth> 1.40"

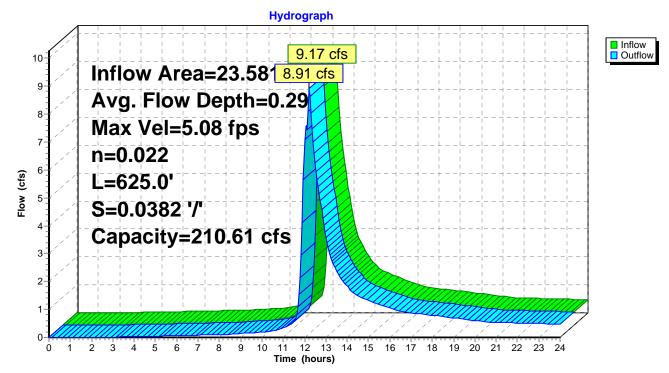
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Storm Rainfall=2.10"

A	rea (sf)	CN I	Description					
279,624 80 >75% Grass cover, Go				s cover, Go	bod, HSG D			
3	99,721	98 I	Paved park	ing, HSG D)			
45,396 98			Jnconnecte	ed roofs, HS	SG D			
	18,628	98 \	Water Surface, HSG D					
743,369 91			Neighted A	verage				
279,624		80 3	8 8					
463,745		98 6	62.38% lmp	pervious Ar	ea			
Tc	0				Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
0.6	50	0.0398	1.34		Sheet Flow,			
					Smooth surfaces n= 0.011 P2= 2.30"			
1.8	427	0.0398	4.05		Shallow Concentrated Flow,			
					Paved Kv= 20.3 fps			
4.8	1,264	0.0498	4.41	3.03	Trap/Vee/Rect Channel Flow,			
					Bot.W=2.00' D=0.25' Z= 3.0 '/' Top.W=3.50'			
					n= 0.025			
-	2 3 7 2 4 Tc (min) 0.6	399,721 45,396 18,628 743,369 279,624 463,745 Tc Length (min) 0.6 50 1.8	279,624 80 = 399,721 98 F 45,396 98 U 18,628 98 V 743,369 91 V 279,624 80 3 463,745 98 6 Tc Length Slope (min) (feet) (ft/ft) 0.6 50 0.0398 1.8 427 0.0398	279,624 80 >75% Gras 399,721 98 Paved park 45,396 98 Unconnected 18,628 98 Water Surfa 743,369 91 Weighted A 279,624 80 37.62% Per 463,745 98 62.38% Imp Tc Length Slope Velocity (min) (feet) (ft/ft) (ft/sec) 0.6 50 0.0398 1.34 1.8 427 0.0398 4.05	279,624 80 >75% Grass cover, Go 399,721 98 Paved parking, HSG E 45,396 98 Unconnected roofs, HS 18,628 98 Water Surface, HSG E 743,369 91 Weighted Average 279,624 80 37.62% Pervious Area 463,745 98 62.38% Impervious Ar Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 0.6 50 0.0398 1.34 1.8 427 0.0398 4.05			

7.2 1,741 Total

Subcatchment OS8_5: (new Subcat)

Summary for Reach 4R: Grass Channel 4 + Pond


Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 5.08 fps, Min. Travel Time= 2.1 min Avg. Velocity = 1.81 fps, Avg. Travel Time= 5.7 min

Peak Storage= 1,105 cf @ 12.17 hrs Average Depth at Peak Storage= 0.29' Bank-Full Depth= 1.50', Capacity at Bank-Full= 210.61 cfs

5.00' x 1.50' deep channel, n= 0.022 Side Slope Z-value= 4.0 '/' Top Width= 17.00' Length= 625.0' Slope= 0.0382 '/' Inlet Invert= 357.60', Outlet Invert= 333.70'

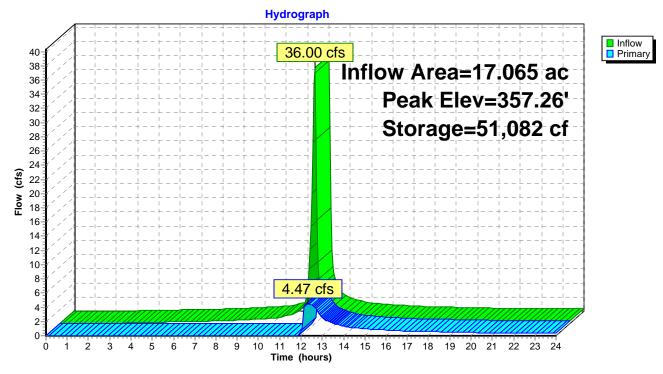
‡

Reach 4R: Grass Channel 4 + Pond

Summary for Pond P5: in Shaws Parking

Inflow Area	=	17.065 ac, 62.38% Impervious, Inflow Depth > 1.40" for 1 Year Storm event	
Inflow =	=	36.00 cfs @ 11.98 hrs, Volume= 1.994 af	
Outflow =	=	4.47 cfs @ 12.32 hrs, Volume= 0.930 af, Atten= 88%, Lag= 20.4 min	
Primary =	=	4.47 cfs @ 12.32 hrs, Volume= 0.930 af	

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 357.26' @ 12.32 hrs Surf.Area= 20,221 sf Storage= 51,082 cf


Plug-Flow detention time= 278.2 min calculated for 0.930 af (47% of inflow) Center-of-Mass det. time= 150.2 min (930.0 - 779.8)

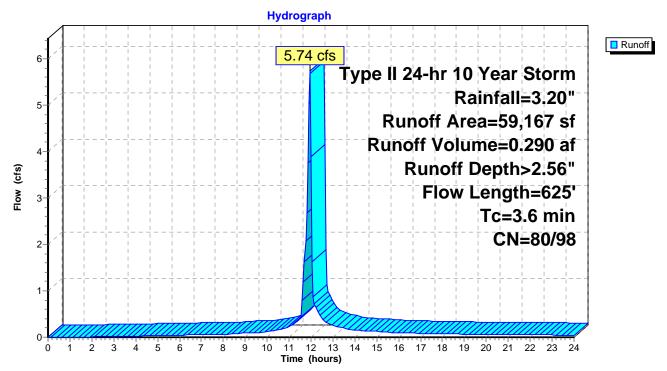
Volume	Inv	ert Avail.Sto	rage	Storage	Description		
#1	354.	50' 168,1	07 cf	Custom	Stage Data (P	rismatic)Listed below	
Elevation Surf.Area		Inc	.Store	Cum.Store			
(fee		(sq-ft)		c-feet)	(cubic-feet)		
354.5	50	16,374	0		0		
356.0	00	18,340	2	26,036	26,036		
358.0	00	21,318	3	39,658	65,694		
360.0	00	24,759	2	46,077	111,771		
362.0	00	31,577	5	56,336	168,107		
Device	Routing	outing Invert		et Devices	6		
#1	Primary	356.10'	2.0" Horiz. 2" ORIFICE/GRATE C= 0.600				
#2	Primary	357.00'	6.0" Horiz. 6" HORIZONTAL ORIFICE/GRATE X9 X 9.00 C= 0.600				
					flow at low hea		
#3	#3 Primary 359.60' 18.0" Horiz. 18" HORIZONTAL ORIFICE/GRATE C= 0.600						
Limited to weir flow at low heads							
Primary OutFlow Max=4.47 cfs @ 12.32 hrs HW=357.26' (Free Discharge)							

-1=2" ORIFICE/GRATE (Orifice Controls 0.11 cfs @ 5.19 fps)

-2=6" HORIZONTAL ORIFICE/GRATE X9 (Orifice Controls 4.36 cfs @ 2.47 fps)

-3=18" HORIZONTAL ORIFICE/GRATE (Controls 0.00 cfs)

Pond P5: in Shaws Parking

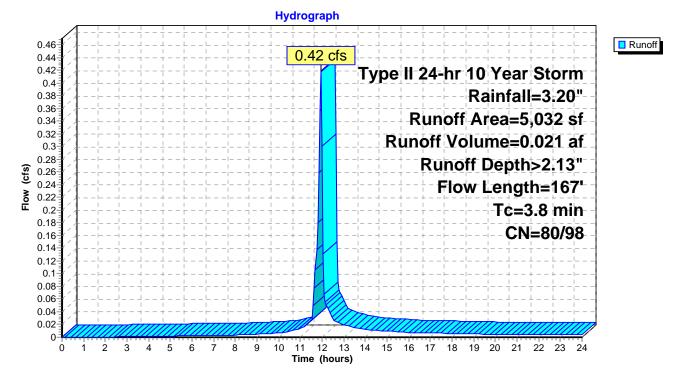

Summary for Subcatchment GC4: Grass Channel 4 On-site Area

Runoff = 5.74 cfs @ 11.94 hrs, Volume= 0.290 af, Depth> 2.56"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

A	vrea (sf)	CN	Description					
	43,853	98	Paved roads w/curbs & sewers, HSG D					
	15,314	80	>75% Grass cover, Good, HSG D					
	59,167	93	Weighted Average					
	15,314	80	25.88% Pervious Area					
	43,853	98	74.12% Impervious Area					
_								
Tc	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)				
0.3	23	0.0730	1.46		Sheet Flow,			
					Smooth surfaces n= 0.011 P2= 2.30"			
0.5	5	0.3400	0.17		Sheet Flow,			
					Grass: Dense n= 0.240 P2= 2.30"			
2.8	597	0.0390	3.55	5.10	Trap/Vee/Rect Channel Flow,			
					Bot.W=5.00' D=0.25' Z= 3.0 '/' Top.W=6.50'			
					n= 0.030 Earth, grassed & winding			
3.6	625	Total						

Subcatchment GC4: Grass Channel 4 On-site Area


Summary for Subcatchment GC5: Grass Channel 5 Area

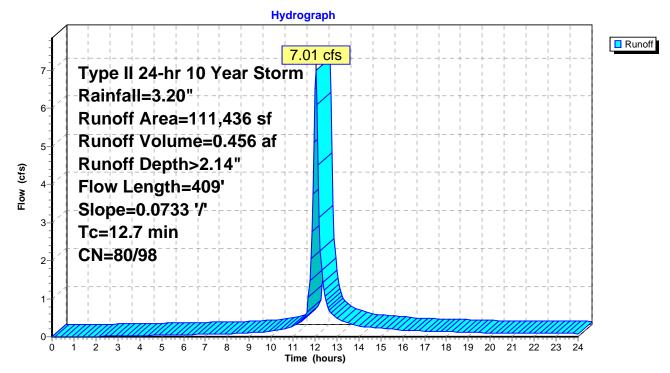
Runoff = 0.42 cfs @ 11.94 hrs, Volume= 0.021 af, Depth> 2.13"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

A	rea (sf)	CN	Description					
	2,349	98	Paved roads w/curbs & sewers, HSG D					
	2,683	80	>75% Grass cover, Good, HSG D					
	5,032	88	Weighted Average					
	2,683	80	53.32% Pervious Area					
	2,349	98	8 46.68% Impervious Area					
_								
Тс	Length	Slope		Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)				
0.6	37	0.0200	0.96		Sheet Flow,			
					Smooth surfaces n= 0.011 P2= 2.30"			
1.1	10	0.2040	0.16		Sheet Flow,			
					Grass: Dense n= 0.240 P2= 2.30"			
2.1	120	0.0017	7 0.97	1.22	Trap/Vee/Rect Channel Flow,			
					Bot.W=4.00' D=0.25' Z= 4.0 '/' Top.W=6.00'			
					n= 0.022 Earth, clean & straight			
3.8	167	Total						

Subcatchment GC5: Grass Channel 5 Area

Summary for Subcatchment OS8a: (new Subcat)

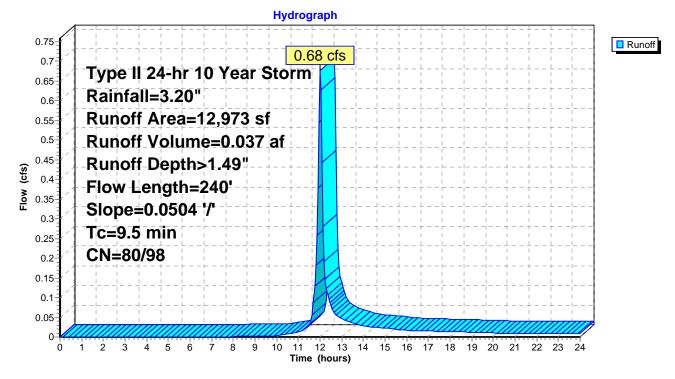

Runoff = 7.01 cfs @ 12.04 hrs, Volume= 0.456 af, Depth> 2.14"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	A	rea (sf)	CN	Description		
		58,467	80	>75% Gras	s cover, Go	bod, HSG D
		45,548	98	Paved park	ing, HSG D)
		7,421	98	Roofs, HSC	δĎ	
	1	11,436	89	Weighted A	verage	
		58,467	80 52.47% Pervious Area			
		52,969	98	47.53% Imp	pervious Ar	ea
	Тс	Length	Slop	e Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft	t) (ft/sec)	(cfs)	
	10.0	100	0.073	3 0.17		Sheet Flow,
						Grass: Dense n= 0.240 P2= 2.30"
	2.7	309	0.073	3 1.90		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	127	400	Total			

12.7 409 Total

Subcatchment OS8a: (new Subcat)

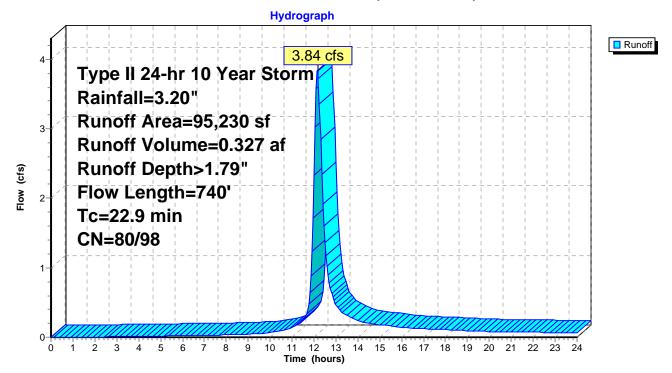

Summary for Subcatchment OS8c: (new Subcat)

Runoff = 0.68 cfs @ 12.01 hrs, Volume= 0.037 af, Depth> 1.49"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	A	rea (sf)	CN I	Description		
		12,191	80 ;	>75% Gras	s cover, Go	bod, HSG D
_		782	98 I	Paved road	s w/curbs &	& sewers, HSG D
		12,973	81	Neighted A	verage	
		12,191	80 9	93.97% Pei	vious Area	
		782	98 (6.03% Impe	ervious Area	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	8.0	100	0.0504	0.21		Sheet Flow,
						Grass: Short n= 0.150 P2= 2.30"
	1.5	140	0.0504	1.57		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	9.5	240	Total			

Subcatchment OS8c: (new Subcat)


Summary for Subcatchment OS8d: (new Subcat)

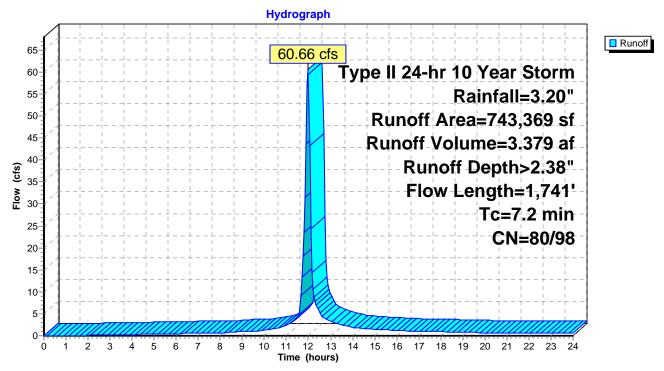
Runoff = 3.84 cfs @ 12.16 hrs, Volume= 0.327 af, Depth> 1.79"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

A	rea (sf)	CN [Description		
	24,055	98 F	Paved road	s w/curbs &	& sewers, HSG D
	70,880	80 >	>75% Gras	s cover, Go	ood, HSG D
	295	98 l	Jnconnecte	ed roofs, HS	SG D
	95,230	85 \	Neighted A	verage	
	70,880	80 7	74.43% Pei	vious Area	
	24,350	98 2	25.57% Imp	pervious Ar	ea
Tc	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
14.8	100	0.0766	0.11		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.30"
2.8	240	0.0796	1.41		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
5.3	400	0.0327	1.27		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
22.9	740	Total			

Subcatchment OS8d: (new Subcat)

Summary for Subcatchment OS8_5: (new Subcat)


Runoff = 60.66 cfs @ 11.98 hrs, Volume= 3.379 af, Depth> 2.38"

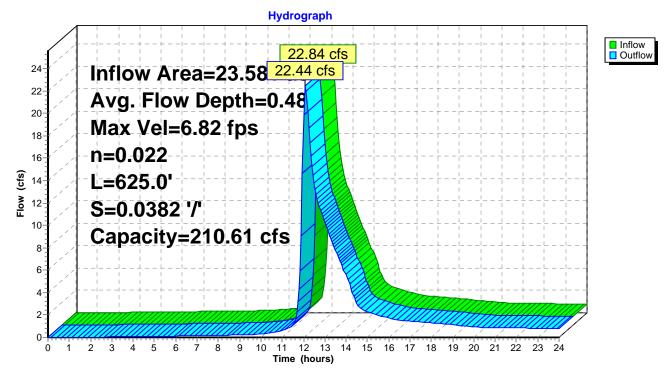
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

A	rea (sf)	CN I	Description		
2	79,624	80 >	>75% Gras	s cover, Go	bod, HSG D
3	99,721	98 I	Paved park	ing, HSG D)
	45,396	98 l	Jnconnecte	ed roofs, HS	SG D
	18,628	98 \	Nater Surfa	ace, HSG D)
7	43,369	91 \	Neighted A	verage	
2	79,624	80 3	87.62% Pe	vious Area	
4	63,745	98 62.38% Impervious Ar			ea
Tc	0				Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
0.6	50	0.0398	1.34		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 2.30"
1.8	427	0.0398	4.05		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
4.8	1,264	0.0498	4.41	3.03	Trap/Vee/Rect Channel Flow,
					Bot.W=2.00' D=0.25' Z= 3.0 '/' Top.W=3.50'
					n= 0.025
-	2 3 7 2 4 Tc (min) 0.6	(min) (feet) 0.6 50 1.8 427	279,624 80 = 399,721 98 F 45,396 98 U 18,628 98 V 743,369 91 V 279,624 80 3 463,745 98 6 Tc Length Slope (min) (feet) (ft/ft) 0.6 50 0.0398 1.8 427 0.0398	279,624 80 >75% Gras 399,721 98 Paved park 45,396 98 Unconnected 18,628 98 Water Surfa 743,369 91 Weighted A 279,624 80 37.62% Per 463,745 98 62.38% Imp Tc Length Slope Velocity (min) (feet) (ft/ft) (ft/sec) 0.6 50 0.0398 1.34 1.8 427 0.0398 4.05	279,624 80 >75% Grass cover, Go 399,721 98 Paved parking, HSG E 45,396 98 Unconnected roofs, HS 18,628 98 Water Surface, HSG E 743,369 91 Weighted Average 279,624 80 37.62% Pervious Area 463,745 98 62.38% Impervious Ar Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 0.6 50 0.0398 1.34 1.8 427 0.0398 4.05

7.2 1,741 Total

Subcatchment OS8_5: (new Subcat)

Summary for Reach 4R: Grass Channel 4 + Pond


Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 6.82 fps, Min. Travel Time= 1.5 min Avg. Velocity = 2.22 fps, Avg. Travel Time= 4.7 min

Peak Storage= 2,076 cf @ 12.05 hrs Average Depth at Peak Storage= 0.48' Bank-Full Depth= 1.50', Capacity at Bank-Full= 210.61 cfs

5.00' x 1.50' deep channel, n= 0.022 Side Slope Z-value= 4.0 '/' Top Width= 17.00' Length= 625.0' Slope= 0.0382 '/' Inlet Invert= 357.60', Outlet Invert= 333.70'

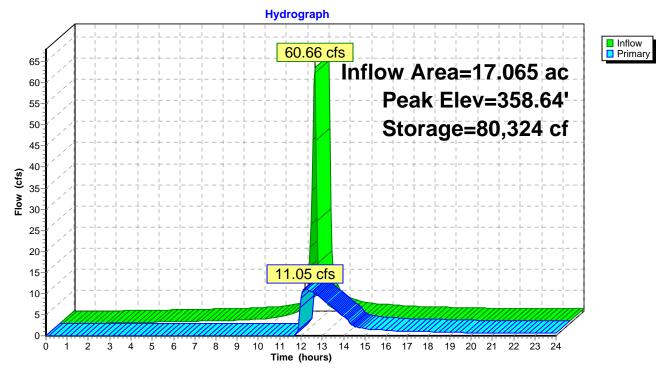
‡

Reach 4R: Grass Channel 4 + Pond

Summary for Pond P5: in Shaws Parking

Inflow Area	1 =	17.065 ac, 62.38% Impervious, Inflow Depth > 2.38" for 10 Year Storm event
Inflow	=	60.66 cfs @ 11.98 hrs, Volume= 3.379 af
Outflow	=	11.05 cfs @ 12.20 hrs, Volume= 2.305 af, Atten= 82%, Lag= 13.1 min
Primary	=	11.05 cfs @ 12.20 hrs, Volume= 2.305 af

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 358.64' @ 12.20 hrs Surf.Area= 22,411 sf Storage= 80,324 cf


Plug-Flow detention time= 205.5 min calculated for 2.305 af (68% of inflow) Center-of-Mass det. time= 103.8 min (875.9 - 772.1)

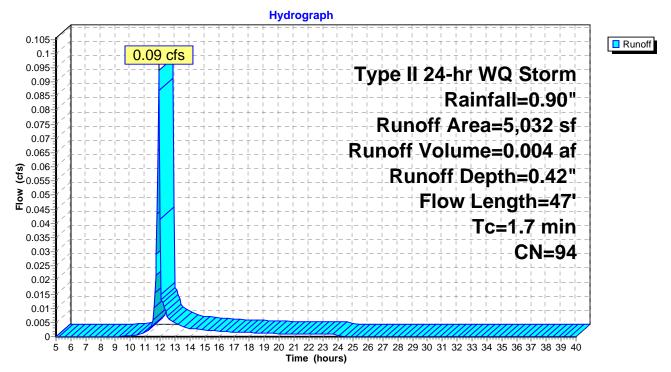
Volume	Inv	ert Avail.Sto	rage	Storage	Description	
#1	354.	50' 168,1	07 cf	Custom	Stage Data (Pi	rismatic)Listed below
Elevatio	on	Surf.Area	Inc	Store	Cum.Store	
(fee		(sq-ft)	(cubic		(cubic-feet)	
354.	,	16,374	(00010	0	0	
356.0		18,340	2	6,036	26,036	
	358.00 21,318			9,658	65,694	
360.0	00	24,759	46,077		111,771	
362.0	00	31,577	5	6,336	168,107	
Device	Routing	Invert	Outle	et Devices	S	
#1	Primary	356.10'	2.0"	Horiz. 2"	ORIFICE/GRA	TE C= 0.600
#2	Primary					ORIFICE/GRATE X9 X 9.00 C= 0.600
#3	Primary	359.60'	18.0"	' Horiz. 1	r flow at low hea 8" HORIZONT r flow at low hea	AL ORIFICE/GRATE C= 0.600
Primary	/ OutFlow	v Max=11.05 cfs	@ 12.	20 hrs H	IW=358.63' (Fr	ee Discharge)

-1=2" ORIFICE/GRATE (Orifice Controls 0.17 cfs @ 7.67 fps)

2=6" HORIZONTAL ORIFICE/GRATE X9 (Orifice Controls 10.88 cfs @ 6.16 fps)

-3=18" HORIZONTAL ORIFICE/GRATE (Controls 0.00 cfs)

Pond P5: in Shaws Parking


Summary for Subcatchment GC 5: Grass Channel 5 Area

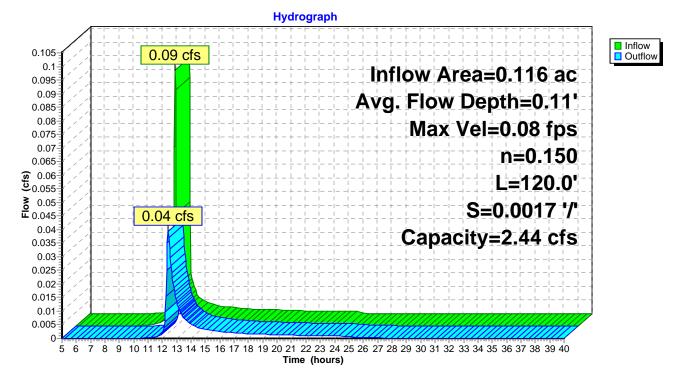
Runoff = 0.09 cfs @ 11.92 hrs, Volume= 0.004 af, Depth= 0.42"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type II 24-hr WQ Storm Rainfall=0.90"

_	A	rea (sf)	CN D	Description		
*		5,032	94 F	aved road	s w/curbs &	& sewers, HSG D
	5,032 100.00% Pervious Area				ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	0.6	37	0.0200	0.96		Sheet Flow,
	1.1	10	0.2040	0.16		Smooth surfaces n= 0.011 P2= 2.30" Sheet Flow, Grass: Dense n= 0.240 P2= 2.30"
	1.7	47	Total			

Subcatchment GC 5: Grass Channel 5 Area

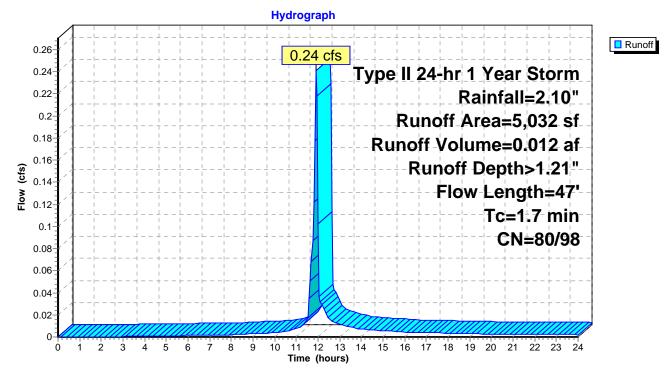
Summary for Reach 5R: Grass Channel 5


Inflow Area = 0.116 ac, 0.00% Impervious, Inflow Depth = 0.42" for WQ Storm event Inflow = 0.09 cfs @ 11.92 hrs, Volume= 0.004 af Outflow = 0.04 cfs @ 12.41 hrs, Volume= 0.004 af, Atten= 58%, Lag= 29.4 min Routing by Stor-Ind+Trans method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Max. Velocity= 0.08 fps, Min. Travel Time= 23.6 min Avg. Velocity = 0.02 fps, Avg. Travel Time= 81.6 min

Peak Storage= 56 cf @ 12.01 hrs Average Depth at Peak Storage= 0.11' Bank-Full Depth= 1.00', Capacity at Bank-Full= 2.44 cfs

4.00' x 1.00' deep channel, n= 0.150 Sheet flow over Short Grass Side Slope Z-value= 4.0 '/' Top Width= 12.00' Length= 120.0' Slope= 0.0017 '/' Inlet Invert= 348.80', Outlet Invert= 348.60'

Reach 5R: Grass Channel 5


Summary for Subcatchment GC 5: Grass Channel 5 Area

Runoff = 0.24 cfs @ 11.91 hrs, Volume= 0.012 af, Depth> 1.21"

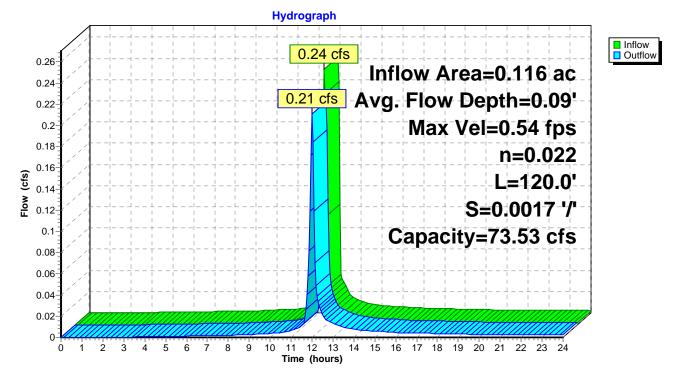
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Storm Rainfall=2.10"

	Area (sf)	CN [Description		
	2,349	98 F	Paved road	s w/curbs &	& sewers, HSG D
	2,683	80 >	>75% Gras	s cover, Go	ood, HSG D
	5,032		Neighted A		
	2,683	80 5	53.32% Pei	vious Area	
	2,349	98 4	46.68% Imp	pervious Ar	ea
To (min)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
0.6	5 37	0.0200	0.96		Sheet Flow,
1.1	10	0.2040	0.16		Smooth surfaces $n= 0.011 P2= 2.30"$ Sheet Flow, Grass: Dense $n= 0.240 P2= 2.30"$
1.7	′ 47	Total			

Subcatchment GC 5: Grass Channel 5 Area

Summary for Reach 5R: Grass Channel 5

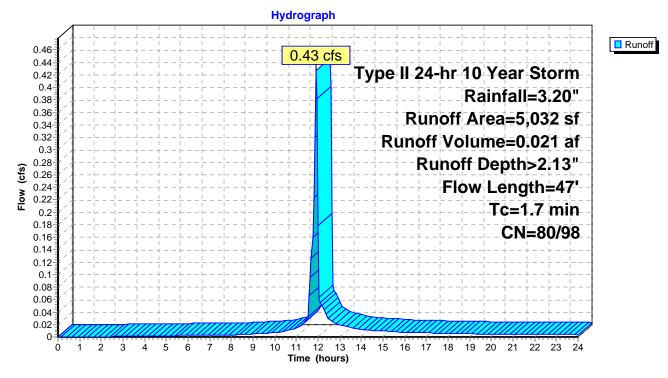
Inflow Area =0.116 ac, 46.68% Impervious, Inflow Depth > 1.21" for 1 Year Storm eventInflow =0.24 cfs @ 11.91 hrs, Volume=0.012 afOutflow =0.21 cfs @ 12.00 hrs, Volume=0.012 af, Atten= 13%, Lag= 5.6 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 0.54 fps, Min. Travel Time= 3.7 min Avg. Velocity = 0.21 fps, Avg. Travel Time= 9.7 min

Peak Storage= 49 cf @ 11.95 hrs Average Depth at Peak Storage= 0.09' Bank-Full Depth= 2.00', Capacity at Bank-Full= 73.53 cfs

4.00' x 2.00' deep channel, n= 0.022 Side Slope Z-value= 4.0 '/' Top Width= 20.00' Length= 120.0' Slope= 0.0017 '/' Inlet Invert= 348.80', Outlet Invert= 348.60'

Reach 5R: Grass Channel 5


Summary for Subcatchment GC 5: Grass Channel 5 Area

0.43 cfs @ 11.91 hrs, Volume= 0.021 af, Depth> 2.13" Runoff =

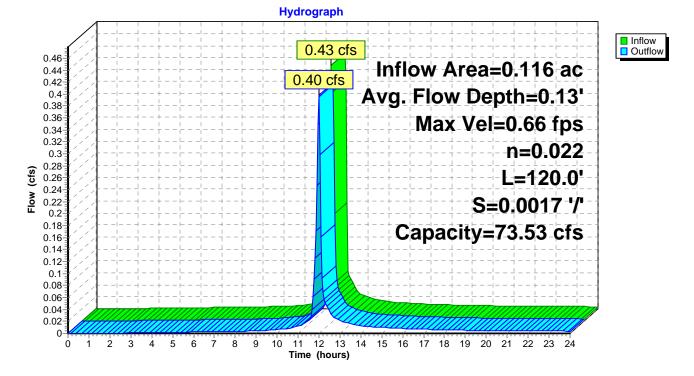
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	A	rea (sf)	CN [Description					
		2,349	98 F	Paved road	s w/curbs &	& sewers, HSG D			
_		2,683	80 >	-75% Gras	s cover, Go	bod, HSG D			
		5,032	88 \	Veighted A	verage				
		2,683	80 5	53.32% Pei	vious Area				
		2,349	98 46.68% Impervious Ar			ea			
	_								
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.6	37	0.0200	0.96		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 2.30"			
	1.1	10	0.2040	0.16		Sheet Flow,			
_						Grass: Dense n= 0.240 P2= 2.30"			
	1.7	47	Total						

Subcatchment GC 5: Grass Channel 5 Area

Summary for Reach 5R: Grass Channel 5

Inflow Area =0.116 ac, 46.68% Impervious, Inflow Depth > 2.13" for 10 Year Storm eventInflow =0.43 cfs @ 11.91 hrs, Volume=0.021 afOutflow =0.40 cfs @ 11.99 hrs, Volume=0.020 af, Atten= 7%, Lag= 4.8 min

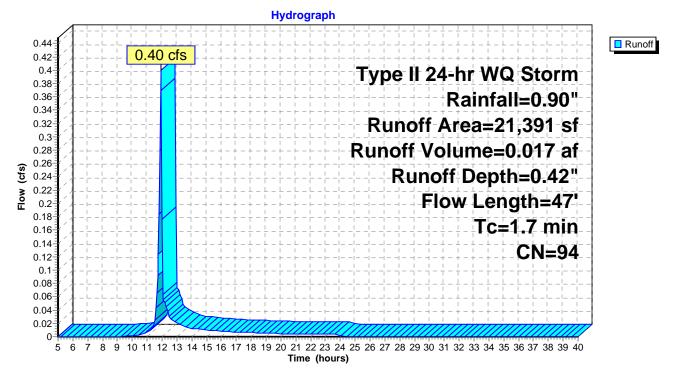

Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 0.66 fps, Min. Travel Time= 3.0 min Avg. Velocity = 0.21 fps, Avg. Travel Time= 9.5 min

Peak Storage= 72 cf @ 11.94 hrs Average Depth at Peak Storage= 0.13' Bank-Full Depth= 2.00', Capacity at Bank-Full= 73.53 cfs

4.00' x 2.00' deep channel, n= 0.022 Side Slope Z-value= 4.0 '/' Top Width= 20.00' Length= 120.0' Slope= 0.0017 '/' Inlet Invert= 348.80', Outlet Invert= 348.60'

‡

Reach 5R: Grass Channel 5


Summary for Subcatchment GC 6: Grass Channel 6 Area

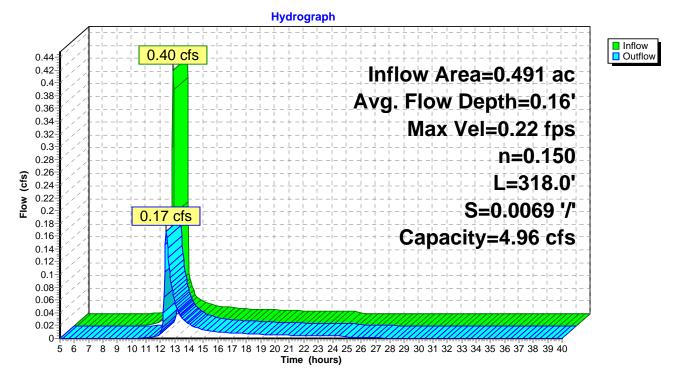
Runoff = 0.40 cfs @ 11.92 hrs, Volume= 0.017 af, Depth= 0.42"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type II 24-hr WQ Storm Rainfall=0.90"

	A	rea (sf)	CN E	Description		
*		21,391	94			
		21,391	1	00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	0.6	37	0.0200	0.96		Sheet Flow,
	1.1	10	0.2040	0.16		Smooth surfaces n= 0.011 P2= 2.30" Sheet Flow, Grass: Dense n= 0.240 P2= 2.30"
	1.7	47	Total			

Subcatchment GC 6: Grass Channel 6 Area

Summary for Reach 6R: Grass Channel 6

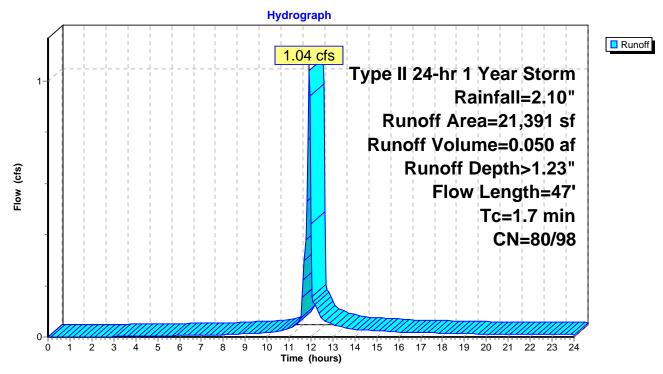

Routing by Stor-Ind+Trans method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Max. Velocity= 0.22 fps, Min. Travel Time= 23.8 min Avg. Velocity = 0.06 fps, Avg. Travel Time= 93.1 min

Peak Storage= 239 cf @ 12.01 hrs Average Depth at Peak Storage= 0.16' Bank-Full Depth= 1.00', Capacity at Bank-Full= 4.96 cfs

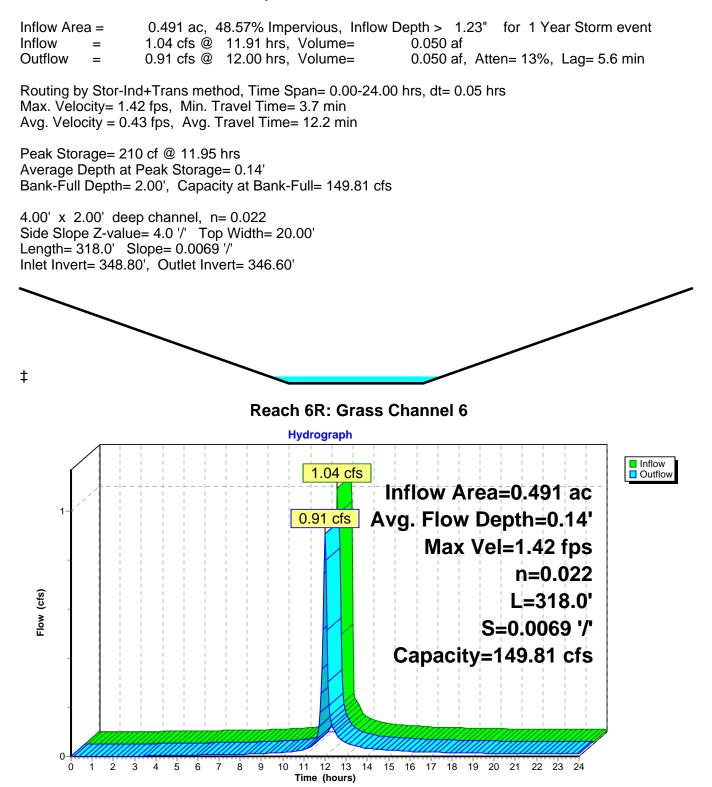
4.00' x 1.00' deep channel, n= 0.150 Sheet flow over Short Grass Side Slope Z-value= 4.0 '/' Top Width= 12.00' Length= 318.0' Slope= 0.0069 '/' Inlet Invert= 348.80', Outlet Invert= 346.60'

‡

Reach 6R: Grass Channel 6


Summary for Subcatchment GC 6: Grass Channel 6 Area

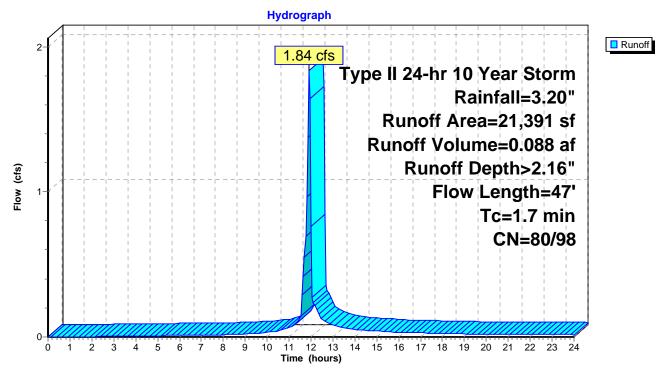
Runoff = 1.04 cfs @ 11.91 hrs, Volume= 0.050 af, Depth> 1.23"


Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Storm Rainfall=2.10"

A	rea (sf)	CN [Description		
	11,001	80 >	75% Gras	s cover, Go	ood, HSG D
	10,390	98 F	Paved road	s w/curbs &	& sewers, HSG D
	21,391	89 V	Veighted A	verage	
	11,001	80 5	51.43% Per	vious Area	
	10,390	10,390 98 48.57% Impervious Ar			ea
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
0.6	37	0.0200	0.96		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 2.30"
1.1	10	0.2040	0.16		Sheet Flow,
					Grass: Dense n= 0.240 P2= 2.30"
1.7	47	Total			

Subcatchment GC 6: Grass Channel 6 Area

Summary for Reach 6R: Grass Channel 6


Summary for Subcatchment GC 6: Grass Channel 6 Area

Runoff = 1.84 cfs @ 11.91 hrs, Volume= 0.088 af, Depth> 2.16"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

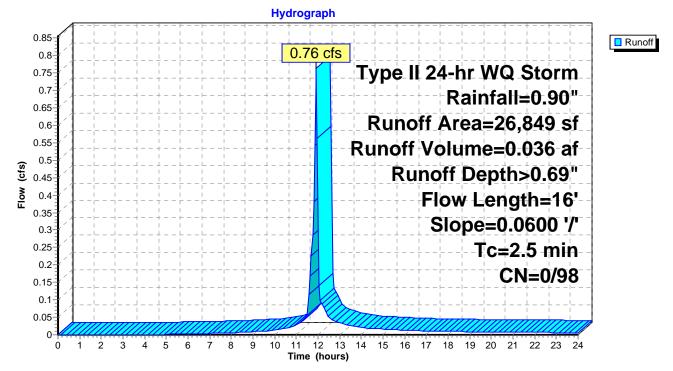
	Area (sf)	CN	Description		
	11,001	80	>75% Gras	s cover, Go	ood, HSG D
	10,390	98	Paved road	s w/curbs &	& sewers, HSG D
	21,391	89	Weighted A	verage	
	11,001	80	51.43% Pei	vious Area	
	10,390	90 98 48.57% Impervious Ar			ea
To (min)		Slope (ft/ft)		Capacity (cfs)	Description
0.6	5 37	0.0200	0.96		Sheet Flow,
1.1	10	0.2040	0.16		Smooth surfaces $n= 0.011 P2= 2.30"$ Sheet Flow, Grass: Dense $n= 0.240 P2= 2.30"$
1.7	4 7	Total			

Subcatchment GC 6: Grass Channel 6 Area

Summary for Reach 6R: Grass Channel 6

Inflow Area = 0.491 ac, 48.57% Impervious, Inflow Depth > 2.16" for 10 Year Storm event Inflow 1.84 cfs @ 11.91 hrs. Volume= 0.088 af = 1.70 cfs @ 11.99 hrs, Volume= Outflow 0.088 af, Atten= 8%, Lag= 4.9 min = Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 1.74 fps, Min. Travel Time= 3.0 min Avg. Velocity = 0.46 fps, Avg. Travel Time= 11.6 min Peak Storage= 311 cf @ 11.94 hrs Average Depth at Peak Storage= 0.20' Bank-Full Depth= 2.00', Capacity at Bank-Full= 149.81 cfs 4.00' x 2.00' deep channel, n= 0.022 Side Slope Z-value= 4.0 '/' Top Width= 20.00' Length= 318.0' Slope= 0.0069 '/' Inlet Invert= 348.80', Outlet Invert= 346.60' ‡ Reach 6R: Grass Channel 6 Hydrograph Inflow
Outflow 1.84 cfs 2 Inflow Area=0.491 ac 1.70 cfs Avg. Flow Depth=0.20' Max Vel=1.74 fps n=0.022Flow (cfs) L=318.0' S=0.0069 '/' Capacity=149.81 cfs 0 ò Ż ġ. 4 5 7 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 6 8 9 10

Time (hours)


Summary for Subcatchment GC 7: Grass Channel 7 Area

Runoff = 0.76 cfs @ 11.93 hrs, Volume= 0.036 af, Depth> 0.69"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr WQ Storm Rainfall=0.90"

	A	rea (sf)	CN	Description								
*		26,849	98									
		26,849	98	98 100.00% Impervious Area								
	Тс	Length	Slope		Capacity	Description						
((min)	(feet)	(ft/ft)) (ft/sec)	(cfs)							
	2.5	16	0.0600) 0.11		Sheet Flow, Grass: Dense	n= 0.240	P2= 2.30"				

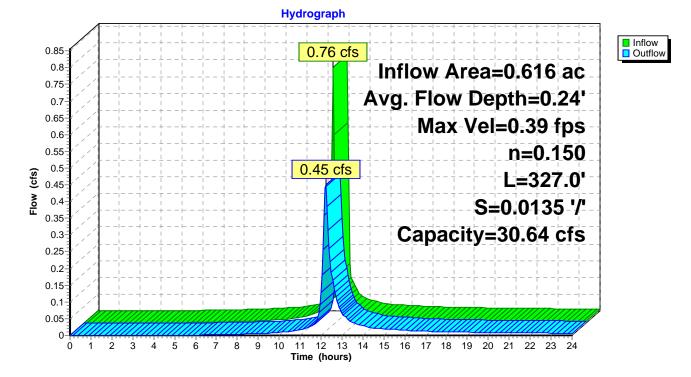
Grass Channels - WQ Storm - Copy

Type II 24-hr WQ Storm Rainfall=0.90" Printed 4/8/2016 LC Page 2

Prepared by {enter your company name here} HydroCAD® 9.10 s/n 02416 © 2010 HydroCAD Software Solutions LLC

Summary for Reach 7R: Grass Channel 7

Inflow Area = 0.616 ac,100.00% Impervious, Inflow Depth > 0.69" for WQ Storm event Inflow = 0.76 cfs @ 11.93 hrs, Volume= 0.036 af Outflow = 0.45 cfs @ 12.23 hrs, Volume= 0.035 af, Atten= 41%, Lag= 18.2 min Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 0.39 fps, Min. Travel Time= 13.9 min


Avg. Velocity = 0.11 fps, Avg. Travel Time= 49.0 min

‡

Peak Storage= 387 cf @ 12.00 hrs Average Depth at Peak Storage= 0.24' Bank-Full Depth= 2.00', Capacity at Bank-Full= 30.64 cfs

4.00' x 2.00' deep channel, n= 0.150 Sheet flow over Short Grass Side Slope Z-value= 4.0 '/' Top Width= 20.00' Length= 327.0' Slope= 0.0135 '/' Inlet Invert= 346.60', Outlet Invert= 342.20'

Reach 7R: Grass Channel 7

2 3

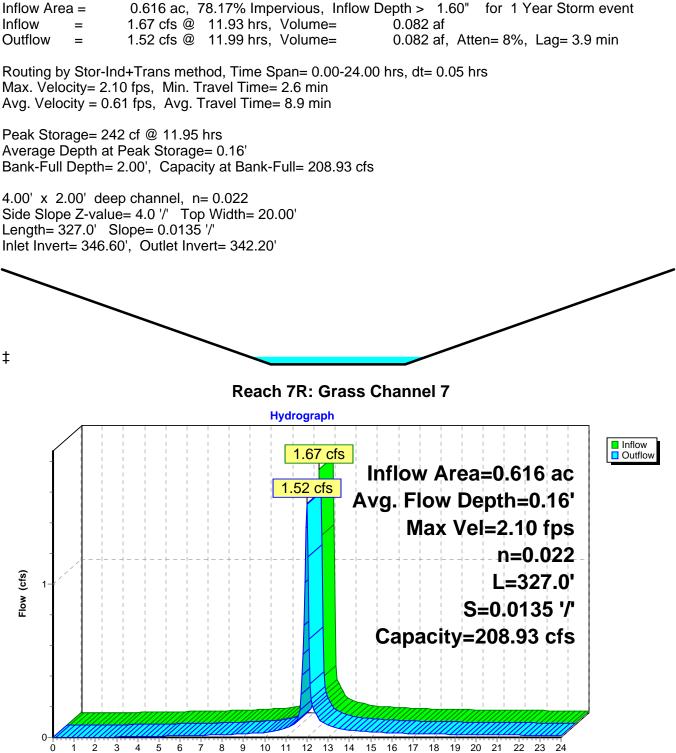
4 5 6 7 8

9 10

0 1

Prepared by {enter your company name here} HydroCAD® 9.10 s/n 02416 © 2010 HydroCAD Software Solutions LLC

Summary for Subcatchment GC 7: Grass Channel 7 Area


Runoff = 1.67 cfs @ 11.93 hrs, Volume= 0.082 af, Depth> 1.60"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Storm Rainfall=2.10"

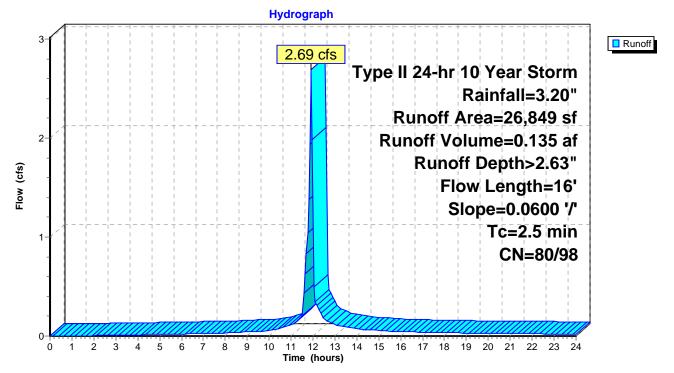
Area (sf)	CN Description									
5,860	80 >75% Grass cover, Good, HSG D									
20,989										
26,849	5,849 94 Weighted Average									
5,860	80 21.83% Pervious Area									
20,989	98 78.17% Impervious Area									
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)									
2.5 16	0.0600 0.11 Sheet Flow, Grass: Dense n= 0.240 P2= 2.30"									
	Subcatchment GC 7: Grass Channel 7 Area									
Flow (cfs)	1.67 cfs Type II 24-hr 1 Year Storm Rainfall=2.10" Runoff Area=26,849 sf Runoff Volume=0.082 af Runoff Depth>1.60" Flow Length=16' Slope=0.0600 '/' Tc=2.5 min CN=80/98									

11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) **Grass Channels - 1yr - 10 yr - Copy** Prepared by {enter your company name here} HydroCAD® 9.10 s/n 02416 © 2010 HydroCAD Software Solutions LLC

Summary for Reach 7R: Grass Channel 7

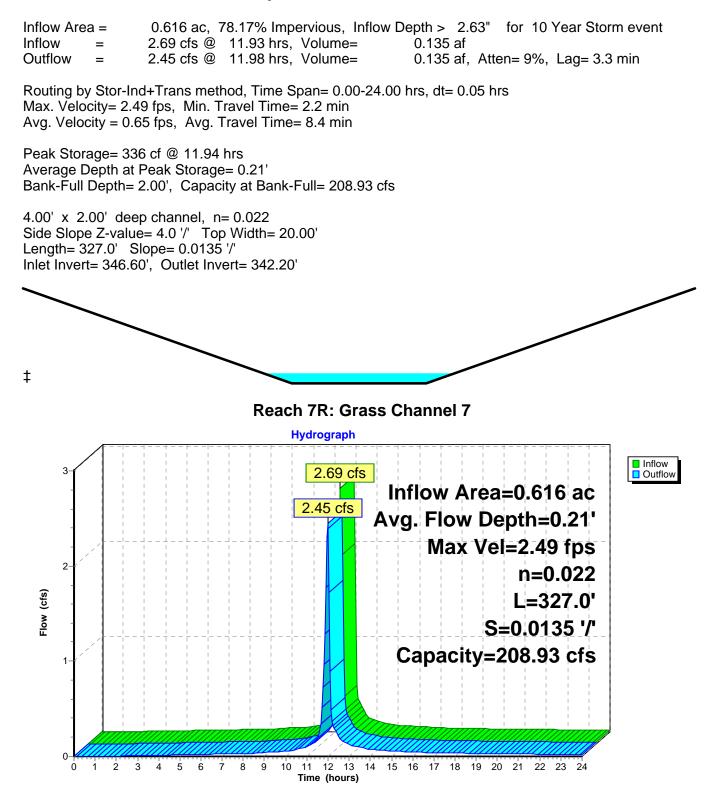
Time (hours)

HydroCAD® 9.10 s/n 02416 © 2010 HydroCAD Software Solutions LLC


Summary for Subcatchment GC 7: Grass Channel 7 Area

Runoff = 2.69 cfs @ 11.93 hrs, Volume= 0.135 af, Depth> 2.63"

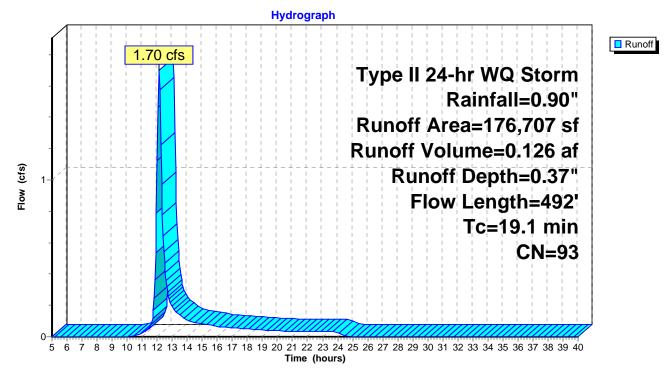
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"


A	rea (sf)	CN	Description								
	5,860	80	>75% Grass cover, Good, HSG D								
	20,989	98	Paved road	Paved roads w/curbs & sewers, HSG D							
	26,849	94	Weighted Average								
	5,860	80	21.83% Per	vious Area							
	20,989	98	98 78.17% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description						
2.5	16	0.0600	0.11		Sheet Flow, Grass: Dense	n= 0.240	P2= 2.30"				

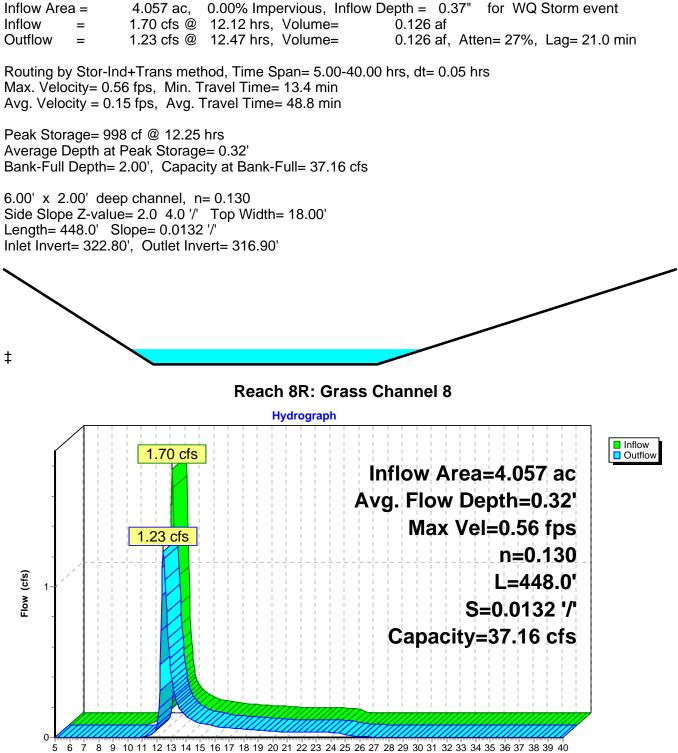
Subcatchment GC 7: Grass Channel 7 Area

Grass Channels - 1yr - 10 yr - Copy Prepared by {enter your company name here} HydroCAD® 9.10 s/n 02416 © 2010 HydroCAD Software Solutions LLC

Summary for Reach 7R: Grass Channel 7


Summary for Subcatchment GC 8: Grass Channel 8 Area

Runoff = 1.70 cfs @ 12.12 hrs, Volume= 0.126 af, Depth= 0.37"


Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type II 24-hr WQ Storm Rainfall=0.90"

_	A	rea (sf)	CN E	Description		
*	1	76,707	93			
	176,707		1	00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	16.3	100	0.0600	0.10		Sheet Flow,
	2.2	160	0.0600	1.22		Woods: Light underbrush n= 0.400 P2= 2.30" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	0.2	123	0.1800	8.61		Shallow Concentrated Flow,
	0.4	109	0.0900	4.50		Paved Kv= 20.3 fps Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
_	19.1	492	Total			

Subcatchment GC 8: Grass Channel 8 Area

Summary for Reach 8R: Grass Channel 8

Time (hours)

Summary for Subcatchment GC 8: Grass Channel 8 Area

Runoff = 3.07 cfs @ 12.11 hrs, Volume= 0.247 af, Depth> 0.73"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Storm Rainfall=2.10"

A	rea (sf)	CN I	Description		
	14,905	98 I	Paved road	s w/curbs &	& sewers, HSG D
	32,918	77	Noods, Go	od, HSG D	
	3,937	80 :	>75% Gras	s cover, Go	ood, HSG D
	29,804	98 I	Paved road	s w/curbs &	& sewers, HSG A
	15,620	98 I	Roofs, HSG	βA	
	46,593	39 :	>75% Gras	s cover, Go	ood, HSG A
	16,315	30	Noods, Go	od, HSG A	
	21	98 I	Paved road	s w/curbs &	& sewers, HSG B
	8,039	98 I	Paved road	s w/curbs &	& sewers, HSG C
	8,555	74 :	>75% Gras	s cover, Go	ood, HSG C
1	76,707	71	Neighted A	verage	
1	08,318	53 6	61.30% Per	vious Area	
	68,389	98 3	38.70% Imp	pervious Ar	ea
Tc	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
16.3	100	0.0600	0.10		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.30"
2.2	160	0.0600	1.22		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.2	123	0.1800	8.61		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
0.4	109	0.0900	4.50		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
19.1	492	Total			

9 10

0-

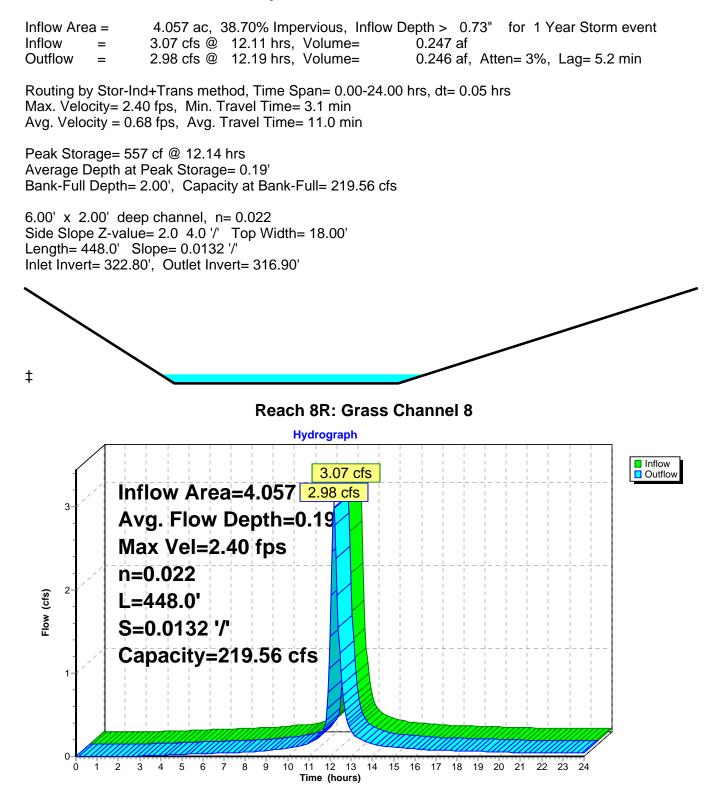
Ó

1 2 3

4 5

6 7 8

 Hydrograph


 Image: Story S

Time (hours)

11 12 13 14 15 16 17 18 19 20 21 22 23 24

Subcatchment GC 8: Grass Channel 8 Area

Summary for Reach 8R: Grass Channel 8

Summary for Subcatchment GC 8: Grass Channel 8 Area

Runoff 4.84 cfs @ 12.11 hrs, Volume= 0.427 af, Depth> 1.26" =

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

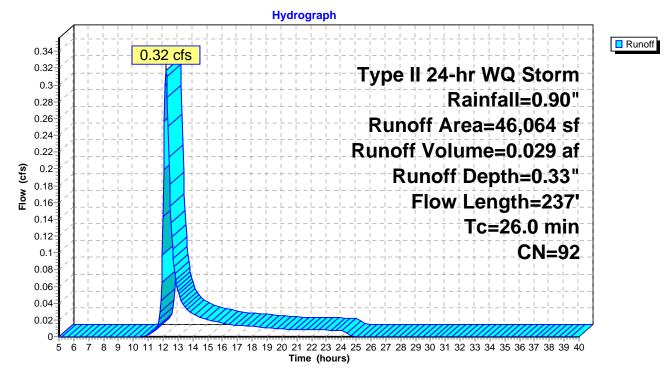
A	rea (sf)	CN	Description				
	14,905	98	Paved road	s w/curbs &	& sewers, HSG D		
	32,918	77	Woods, Go	od, HSG D			
	3,937	80 :	>75% Gras	s cover, Go	ood, HSG D		
	29,804	98	Paved road	s w/curbs &	& sewers, HSG A		
	15,620	98	Roofs, HSG	βA			
	46,593	39 :	>75% Gras	s cover, Go	ood, HSG A		
	16,315	30	Woods, Go	od, HSG A			
	21	98	Paved road	s w/curbs &	& sewers, HSG B		
	8,039	98	Paved road	s w/curbs &	& sewers, HSG C		
	8,555	74 :	>75% Gras	s cover, Go	ood, HSG C		
1	76,707	71	Weighted A	verage			
1	08,318	53	51.30% Pei	vious Area			
	68,389	98 3	38.70% Imp	pervious Are	ea		
Tc	Length	Slope		Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
16.3	100	0.0600	0.10		Sheet Flow,		
					Woods: Light underbrush n= 0.400 P2= 2.30"		
2.2	160	0.0600	1.22		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
0.2	123	0.1800 8.61			Shallow Concentrated Flow,		
					Paved Kv= 20.3 fps		
0.4	109	0.0900	4.50		Shallow Concentrated Flow,		
					Grassed Waterway Kv= 15.0 fps		
19.1	492	Total					

Hydrograph Runoff 4.84 cfs 5 Type II 24-hr 10 Year Storm Rainfall=3.20" Runoff Area=176,707 sf 4 Runoff Volume=0.427 af Runoff Depth>1.26" Flow (cfs) 3-Flow Length=492' Tc=19.1 min 2-CN=53/98 1 0-1 2 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Ś 4 5 6 7 8 Ó Time (hours)

Subcatchment GC 8: Grass Channel 8 Area

Summary for Reach 8R: Grass Channel 8

Inflow Area = 4.057 ac, 38.70% Impervious, Inflow Depth > 1.26" for 10 Year Storm event Inflow 4.84 cfs @ 12.11 hrs. Volume= 0.427 af = 4.72 cfs @ 12.18 hrs, Volume= Outflow 0.426 af, Atten= 3%, Lag= 4.5 min = Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.83 fps, Min. Travel Time= 2.6 min Avg. Velocity = 0.79 fps, Avg. Travel Time= 9.4 min Peak Storage= 750 cf @ 12.14 hrs Average Depth at Peak Storage= 0.25' Bank-Full Depth= 2.00', Capacity at Bank-Full= 219.56 cfs 6.00' x 2.00' deep channel, n= 0.022 Side Slope Z-value= 2.0 4.0 '/' Top Width= 18.00' Length= 448.0' Slope= 0.0132 '/' Inlet Invert= 322.80', Outlet Invert= 316.90' ‡ Reach 8R: Grass Channel 8 Hydrograph Inflow 4.84 cfs Outflow Inflow Area=4.057 4.72 cfs 5 Avg. Flow Depth=0.25 Max Vel=2.83 fps 4n=0.022 Flow (cfs) L=448.0' 3 S=0.0132 '/' 2-Capacity=219.56 cfs 1 0ò Ż ġ. 4 5 Ż 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 6 Time (hours)


Summary for Subcatchment GC 9: Grass Channel 9 Area

Runoff = 0.32 cfs @ 12.21 hrs, Volume= 0.029 af, Depth= 0.33"

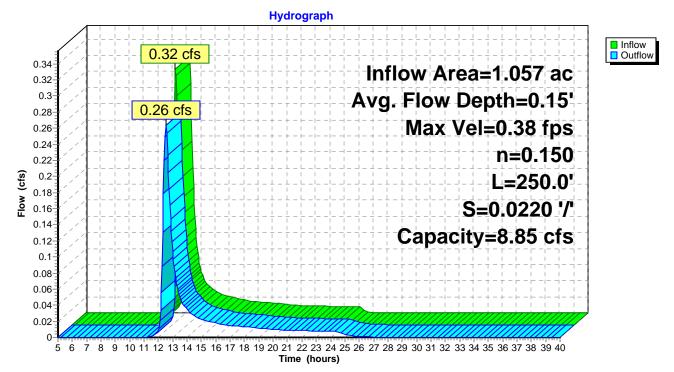
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type II 24-hr WQ Storm Rainfall=0.90"

_	A	rea (sf)	CN [Description		
*		46,064	92			
		46,064	1	100.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	25.3	100	0.0200	0.07		Sheet Flow,
	0.0	2	0.0200	0.71		Woods: Light underbrush n= 0.400 P2= 2.30" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	0.3	61	0.0300	3.52		Shallow Concentrated Flow, Paved Kv= 20.3 fps
	0.4	74	0.0400	3.00		Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
_	26.0	237	Total			· ·

Subcatchment GC 9: Grass Channel 9 Area

Summary for Reach 9R: Grass Channel 9

Inflow Area = 1.057 ac, 0.00% Impervious, Inflow Depth = 0.33" for WQ Storm event Inflow = 0.32 cfs @ 12.21 hrs, Volume= 0.029 afOutflow = 0.26 cfs @ 12.52 hrs, Volume= 0.029 af, Atten= 17%, Lag= 18.4 min

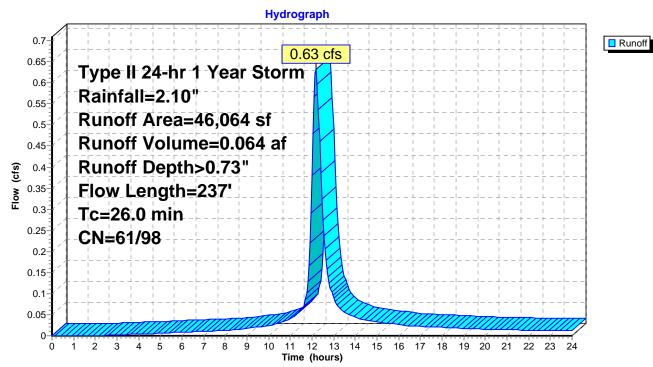

Routing by Stor-Ind+Trans method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Max. Velocity= 0.38 fps, Min. Travel Time= 10.9 min Avg. Velocity = 0.12 fps, Avg. Travel Time= 36.1 min

Peak Storage= 173 cf @ 12.33 hrs Average Depth at Peak Storage= 0.15' Bank-Full Depth= 1.00', Capacity at Bank-Full= 8.85 cfs

4.00' x 1.00' deep channel, n= 0.150 Sheet flow over Short Grass Side Slope Z-value= 4.0 '/' Top Width= 12.00' Length= 250.0' Slope= 0.0220 '/' Inlet Invert= 322.40', Outlet Invert= 316.90'

‡

Reach 9R: Grass Channel 9



Summary for Subcatchment GC 9: Grass Channel 9 Area

Runoff = 0.63 cfs @ 12.18 hrs, Volume= 0.064 af, Depth> 0.73"

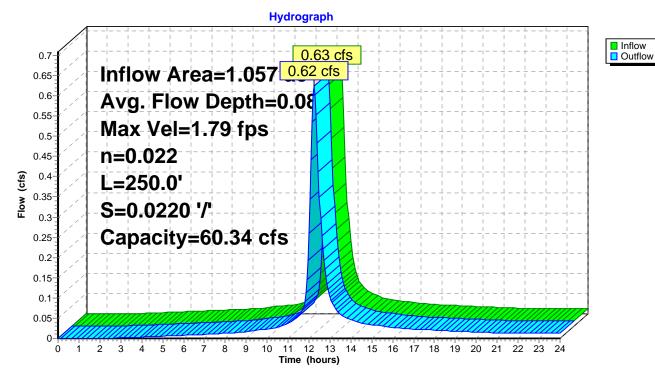
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Storm Rainfall=2.10"

Α	rea (sf)	CN	Description						
	7,905	98	98 Paved roads w/curbs & sewers, HSG A						
	12,115	77	Woods, Go	od, HSG D					
	4,370	80	>75% Gras	s cover, Go	bod, HSG D				
	12,951	39	>75% Gras	s cover, Go	bod, HSG A				
	8,723	98	Paved road	s w/curbs &	& sewers, HSG D				
	46,064	74	Weighted A	verage					
	29,436	61	63.90% Pe	rvious Area					
	16,628	98	36.10% lmp	pervious Ar	ea				
_									
Tc	Length	Slope		Capacity	Description				
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)					
25.3	100	0.0200	0.07		Sheet Flow,				
					Woods: Light underbrush n= 0.400 P2= 2.30"				
0.0	2	0.0200	0.71		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
0.3	61	0.0300	3.52		Shallow Concentrated Flow,				
					Paved Kv= 20.3 fps				
0.4	74	0.0400	3.00		Shallow Concentrated Flow,				
					Grassed Waterway Kv= 15.0 fps				
26.0	237	Total							

Subcatchment GC 9: Grass Channel 9 Area

Summary for Reach 9R: Grass Channel 9

Inflow Area =1.057 ac, 36.10% Impervious, Inflow Depth > 0.73" for 1 Year Storm eventInflow =0.63 cfs @ 12.18 hrs, Volume=0.064 afOutflow =0.62 cfs @ 12.25 hrs, Volume=0.064 af, Atten= 1%, Lag= 4.0 min

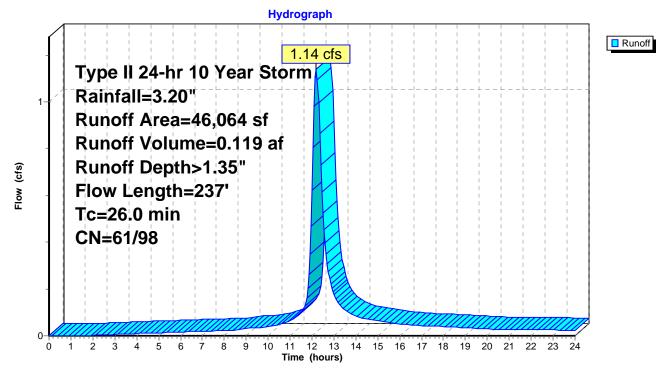

Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 1.79 fps, Min. Travel Time= 2.3 min Avg. Velocity = 0.55 fps, Avg. Travel Time= 7.5 min

Peak Storage= 88 cf @ 12.21 hrs Average Depth at Peak Storage= 0.08' Bank-Full Depth= 1.00', Capacity at Bank-Full= 60.34 cfs

4.00' x 1.00' deep channel, n= 0.022 Side Slope Z-value= 4.0 '/' Top Width= 12.00' Length= 250.0' Slope= 0.0220 '/' Inlet Invert= 322.40', Outlet Invert= 316.90'

‡

Reach 9R: Grass Channel 9



Summary for Subcatchment GC 9: Grass Channel 9 Area

Runoff 1.14 cfs @ 12.20 hrs, Volume= 0.119 af, Depth> 1.35" =

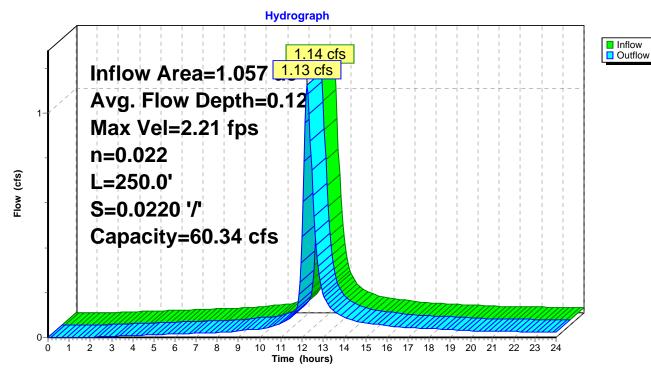
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

A	vrea (sf)	CN	Description							
	7,905	98								
	12,115	77								
	4,370	80	>75% Gras	s cover, Go	ood, HSG D					
	12,951	39	75% Grass cover, Good, HSG A Paved roads w/curbs & sewers, HSG D							
	8,723	98	Paved roads w/curbs & sewers, HSG D							
	46,064	74	Weighted A	verage						
	29,436	61	63.90% Pe	vious Area						
	16,628	98	36.10% lmp	pervious Ar	ea					
_										
Tc	Length	Slope		Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
25.3	100	0.0200	0.07		Sheet Flow,					
					Woods: Light underbrush n= 0.400 P2= 2.30"					
0.0	2	0.0200	0.71		Shallow Concentrated Flow,					
					Woodland Kv= 5.0 fps					
0.3	61	0.0300	3.52		Shallow Concentrated Flow,					
					Paved Kv= 20.3 fps					
0.4	74	0.0400	3.00		Shallow Concentrated Flow,					
					Grassed Waterway Kv= 15.0 fps					
26.0	237	Total								

Subcatchment GC 9: Grass Channel 9 Area

Summary for Reach 9R: Grass Channel 9

Inflow Area =1.057 ac, 36.10% Impervious, Inflow Depth > 1.35" for 10 Year Storm eventInflow =1.14 cfs @12.20 hrs, Volume=0.119 afOutflow =1.13 cfs @12.25 hrs, Volume=0.118 af, Atten= 1%, Lag= 3.3 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.21 fps, Min. Travel Time= 1.9 min Avg. Velocity = 0.65 fps, Avg. Travel Time= 6.4 min

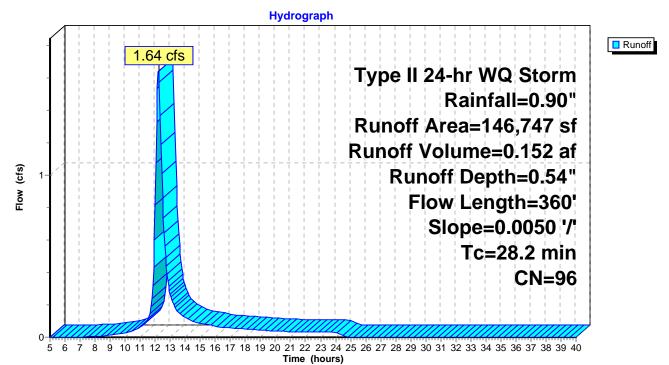
Peak Storage= 128 cf @ 12.22 hrs Average Depth at Peak Storage= 0.12' Bank-Full Depth= 1.00', Capacity at Bank-Full= 60.34 cfs

4.00' x 1.00' deep channel, n= 0.022 Side Slope Z-value= 4.0 '/' Top Width= 12.00' Length= 250.0' Slope= 0.0220 '/' Inlet Invert= 322.40', Outlet Invert= 316.90'

‡

Reach 9R: Grass Channel 9

Summary for Subcatchment GC 10: Grass Channel 10 Area


Runoff 1.64 cfs @ 12.22 hrs, Volume= 0.152 af, Depth= 0.54" =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type II 24-hr WQ Storm Rainfall=0.90"

_	A	rea (sf)	CN I	Description		
	* 1	46,747	96			
-	1	46,747		100.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description
-	1.2	42	0.0050	0.56		Sheet Flow, Smooth surfaces n= 0.011 P2= 2.30"
	19.0	58	0.0050	0.05		Sheet Flow,
	2.8	84	0.0050	0.49		Grass: Dense n= 0.240 P2= 2.30" Shallow Concentrated Flow,
	0.4	34	0.0050	1.44		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow,
	4.8	142	0.0050	0.49		Paved Kv= 20.3 fps Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
-	28.2	360	Total			·

360 Total

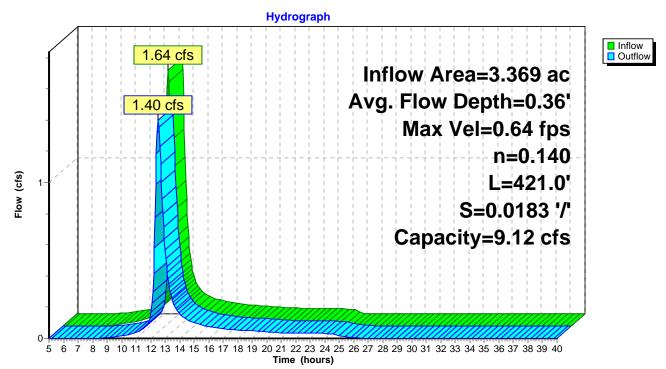
Subcatchment GC 10: Grass Channel 10 Area

Summary for Reach 10R: Grass Channel 10

 Inflow Area =
 3.369 ac,
 0.00% Impervious, Inflow Depth =
 0.54" for WQ Storm event

 Inflow =
 1.64 cfs @
 12.22 hrs, Volume=
 0.152 af

 Outflow =
 1.40 cfs @
 12.52 hrs, Volume=
 0.152 af, Atten=


Routing by Stor-Ind+Trans method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Max. Velocity= 0.64 fps, Min. Travel Time= 10.9 min Avg. Velocity = 0.15 fps, Avg. Travel Time= 47.5 min

Peak Storage= 919 cf @ 12.34 hrs Average Depth at Peak Storage= 0.36' Bank-Full Depth= 1.00', Capacity at Bank-Full= 9.12 cfs

5.00' x 1.00' deep channel, n= 0.140 Side Slope Z-value= 3.0 '/' Top Width= 11.00' Length= 421.0' Slope= 0.0183 '/' Inlet Invert= 317.55', Outlet Invert= 309.83'

Reach 10R: Grass Channel 10

Summary for Subcatchment GC 10: Grass Channel 10 Area

Runoff = 3.40 cfs @ 12.21 hrs, Volume= 0.336 af, Depth> 1.20"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Storm Rainfall=2.10"

Α	vrea (sf)	CN I	Description								
	201	98	Paved road	aved roads w/curbs & sewers, HSG D							
	11,941	98	Paved road	aved roads w/curbs & sewers, HSG A							
	22	80 :	>75% Gras	75% Grass cover, Good, HSG D							
	4,483	39 :	>75% Gras	5% Grass cover, Good, HSG A							
	1,426			% Grass cover, Good, HSG D							
	1,930			aved roads w/curbs & sewers, HSG D							
	57,658				& sewers, HSG A						
	559		Woods, Go	,							
	9,320		Woods, Go								
	36,806				bod, HSG A						
	22,401		Unconnecte		SG A						
1	146,747		Weighted A								
	52,616		35.85% Pe								
	94,131	98 (64.15% lmp	pervious Ar	ea						
Тс	Longth	Slope	Volooitu	Conocity	Description						
(min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description						
	. ,	` <i>`</i> `		(015)	Shoot Flow						
1.2	42	0.0050	0.56		•						
10.0	50		0.05								
19.0	50	0.0030	0.05		,						
28	84	0 0050	0 40								
2.0	04	0.0000	0.43								
04	34	0 0050	1 44								
0.1	01	0.0000			•						
4.8	142	0.0050	0.49								
	· · -				•						
28.2	360	Total			· · · · ·						
1.2 19.0 2.8 0.4 4.8 28.2	34	0.0050 0.0050 0.0050 0.0050 0.0050 Total	0.56 0.05 0.49 1.44		Sheet Flow, Smooth surfaces $n= 0.011 P2= 2.30$ " Sheet Flow, Grass: Dense $n= 0.240 P2= 2.30$ " Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, Paved Kv= 20.3 fps Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps						

Hydrograph Runoff 3.40 cfs Type II 24-hr 1 Year Storm Rainfall=2.10" 3-Runoff Area=146,747 sf Runoff Volume=0.336 af Runoff Depth>1.20" Flow (cfs) 2 Flow Length=360' Slope=0.0050 '/' Tc=28.2 min CN=39/98 1 0-1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 8 Ó Time (hours)

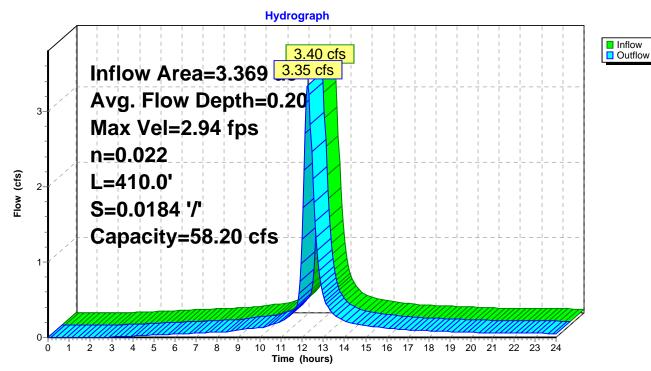
Subcatchment GC 10: Grass Channel 10 Area

Summary for Reach 10R: Grass Channel 10

 Inflow Area =
 3.369 ac, 64.15% Impervious, Inflow Depth > 1.20" for 1 Year Storm event

 Inflow =
 3.40 cfs @ 12.21 hrs, Volume=
 0.336 af

 Outflow =
 3.35 cfs @ 12.27 hrs, Volume=
 0.335 af, Atten= 1%, Lag= 3.9 min

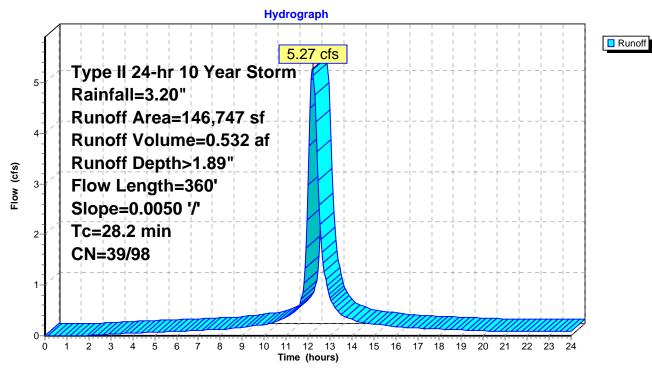

Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.94 fps, Min. Travel Time= 2.3 min Avg. Velocity = 0.81 fps, Avg. Travel Time= 8.4 min

Peak Storage= 469 cf @ 12.23 hrs Average Depth at Peak Storage= 0.20' Bank-Full Depth= 1.00', Capacity at Bank-Full= 58.20 cfs

5.00' x 1.00' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 3.0 '/' Top Width= 11.00' Length= 410.0' Slope= 0.0184 '/' Inlet Invert= 317.39', Outlet Invert= 309.83'

‡

Reach 10R: Grass Channel 10



Summary for Subcatchment GC 10: Grass Channel 10 Area

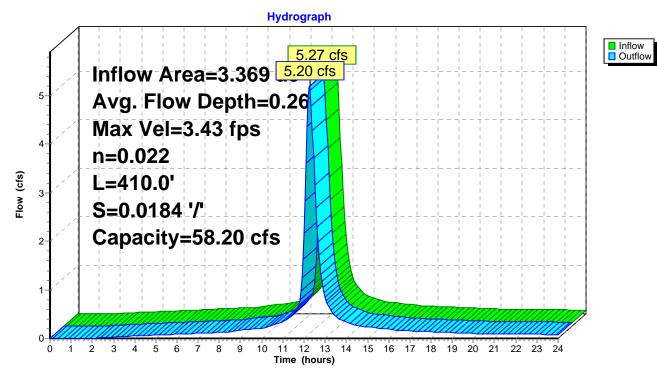
Runoff = 5.27 cfs @ 12.21 hrs, Volume= 0.532 af, Depth> 1.89"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Α	rea (sf)	CN I	Description								
	201	98	Paved road	s w/curbs &	& sewers, HSG D						
	11,941	98	Paved road	ved roads w/curbs & sewers, HSG A 5% Grass cover, Good, HSG D							
	22	80 :	>75% Gras	75% Grass cover, Good, HSG D							
	4,483	39 :	>75% Gras	75% Grass cover, Good, HSG A							
	1,426			75% Grass cover, Good, HSG D							
	1,930				& sewers, HSG D						
	57,658				& sewers, HSG A						
	559		Woods, Go	,							
	9,320		Woods, Go								
	36,806				bod, HSG A						
	22,401		Unconnecte		SG A						
1	46,747		Weighted A								
	52,616		35.85% Pe								
	94,131	98 (64.15% lmp	pervious Ar	ea						
Та	ما بر مر مر ا	Clana	Valasity	Conneitre	Description						
Tc (min)	Length	Slope		Capacity	Description						
(min)	(feet)	<u>(ft/ft)</u>		(cfs)							
1.2	42	0.0050	0.56		Sheet Flow,						
40.0	50	0 0050	0.05		Smooth surfaces $n= 0.011$ P2= 2.30"						
19.0	58	0.0050	0.05		Sheet Flow,						
0.0	0.4	0.0050	0.40		Grass: Dense n= 0.240 P2= 2.30"						
2.8	84	0.0050	0.49		Shallow Concentrated Flow,						
0.4	34	0.0050	1.44		Short Grass Pasture Kv= 7.0 fps						
0.4	34	0.0050	1.44		Shallow Concentrated Flow,						
4.8	142	0.0050	0.49		Paved Kv= 20.3 fps Shallow Concentrated Flow,						
4.0	142	0.0030	0.49		Short Grass Pasture Kv= 7.0 fps						
	260	Total									
28.2	360	Total									

Subcatchment GC 10: Grass Channel 10 Area

Summary for Reach 10R: Grass Channel 10


Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 3.43 fps, Min. Travel Time= 2.0 min Avg. Velocity = 0.96 fps, Avg. Travel Time= 7.1 min

Peak Storage= 625 cf @ 12.23 hrs Average Depth at Peak Storage= 0.26' Bank-Full Depth= 1.00', Capacity at Bank-Full= 58.20 cfs

5.00' x 1.00' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 3.0 '/' Top Width= 11.00' Length= 410.0' Slope= 0.0184 '/' Inlet Invert= 317.39', Outlet Invert= 309.83'

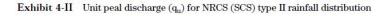
‡

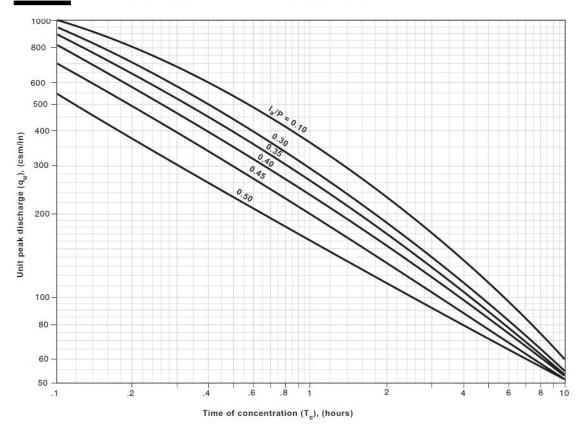
Reach 10R: Grass Channel 10

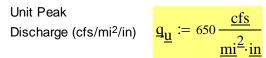
Grass Channel 1

Sta. A -0+74.9 LT. - Sta. AL1+85.2, LT. Length: 270 ft Side Slopes: 1:4 Bottom Width: 4 ft Long Slope: 2.7%

Calculate Water Quality Volume (WQv)


 $\underline{sf} := (1\underline{ft}) \cdot (1\underline{ft})$ $\underline{cf} := (1\underline{ft}) \cdot (1\underline{ft}) \cdot (1\underline{ft})$ $\underline{\mathrm{cfs}} := \frac{(1\underline{\mathrm{cf}})}{(1\mathrm{s})}$ $A_{\text{A}} := 53370 \cdot \underline{\text{sf}} = 1.914 \times 10^{-3} \cdot \underline{\text{mi}}^2$ Drainage Area (sf) $\underline{\mathbf{A}}_{\mathbf{I}} := 15116 \cdot \underline{\mathbf{sf}} = 5.422 \times 10^{-4} \cdot \underline{\mathbf{mi}}^2$ Impervious Area (sf) $\underline{\mathbf{A}}_{\mathbf{P}} := 38254 \cdot \underline{\mathbf{s}}_{\mathbf{f}} = 1.372 \times 10^{-3} \cdot \underline{\mathbf{m}}_{\mathbf{i}}^{2}$ Pervious Area (sf) $\underline{\mathbf{I}} := \left(\frac{\underline{\mathbf{A}}_{\underline{\mathbf{I}}}}{\underline{\mathbf{A}}}\right) \cdot 100 = 28.323$ % Impervious Area 90 % Rainfall event (in.) $P := 0.9 \cdot in$ $\underline{\mathbf{R}}_{\mathbf{V}} := 0.05 + 0.009 \cdot \underline{\mathbf{I}} = 0.305$ Volumetric runoff coefficient Water Quality Volume (cf) $\underline{WQv} := \underline{P} \cdot \underline{R}_{V} \cdot \underline{A} = 1.22 \times 10^{3} \cdot \underline{cf}$ Calculate Runoff Volume (Qa) Runoff Volume (in.) $\underline{\mathbf{Q}}_{\mathbf{a}} := \underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{\mathbf{v}} = 0.274 \cdot \underline{\mathbf{in}}$ $\mathbf{Q}_{\mathbf{a}\mathbf{k}} := \underline{\mathrm{if}}\left(\underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{\mathbf{V}} < 0.2\underline{\mathrm{in}}, 0.2\underline{\mathrm{in}}, \underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{\underline{\mathbf{V}}}\right) = 0.274 \cdot \underline{\mathrm{in}}$ Calculate Curve Number (CN) $\underline{\mathbf{CN}} := \frac{1000 \cdot \underline{\mathbf{in}}}{\left[10 \cdot \underline{\mathbf{in}} + 5 \cdot \underline{\mathbf{P}} + 10 \cdot \underline{\mathbf{Q}}_{\underline{\mathbf{a}}} - 10 \left(\underline{\mathbf{Q}}_{\underline{\mathbf{a}}}^2 + 1.25 \cdot \underline{\mathbf{Q}}_{\underline{\mathbf{a}}} \cdot \underline{\mathbf{P}}\right)^{\left(\frac{1}{2}\right)^2}}\right]$ Curve Number


= 91


Calculate Initial Abstraction (Ia)

Potential Maximum Soil
Moisture Retention (in.) $\underline{S}_{w} := \left(\frac{1000\underline{in}}{\underline{CN}}\right) - 10\underline{in} = 1.047 \cdot \underline{in}$ Initial Abstraction (in.) $\underline{I}_{\underline{a}} := 0.2 \cdot \underline{S} = 0.209 \cdot \underline{in}$ $\frac{I}{\underline{a}}}{\underline{P}} = 0.233$ Time of Concentration
from HydroCAD (hr) $\underline{I}_{\underline{c}} := 18.2\underline{\min} = 0.303 \cdot \underline{hr}$

Use I_a/P and t_c to determine Unit Peak Discharge from the graph below:

Calculate Peak Discharge (Qwq)

Peak Discharge (cfs)

$$\mathbf{Q}_{\underline{\mathbf{W}}\mathbf{q}} := \left(\underline{\mathbf{q}}_{\underline{\mathbf{u}}}\right) \cdot \left(\underline{\mathbf{A}}\right) \cdot \left(\underline{\mathbf{Q}}_{\underline{\mathbf{a}}}\right) = 0.341 \cdot \underline{\mathbf{cfs}}$$

Input Peak Discharge and channel characteristics to find depth, velocity, and required channel length (peak discharge for 1 and 10 yr storms comes from HydroCAD):

Trapezoidal Channel Calculations - Grass Channel 1										
	STA. A -0+74.9,LT STA. AL 1+85.2, LT.									
	WQv	WQv 1 Yr 10 Yr								
Peak Discharge	0.341	1.25	2.44	cfs						
Bottom W	4	4	4	ft						
Side Slope	4	4	4	1:X						
Back Slope	4	4	4	1:X						
Long Slope	2.7	2.7	2.7	%						
Length	270	270	270	ft						
]	RESULTS								
Depth (in):	1.97	4.085	5.43	in						
''n'':	0.15	0.148725	0.12855							
Area	0.764	1.825	2.629	ft ²						
Velocity	0.4	0.7	0.9	ft/s						
10 minute	267.637	ft								
length required:	81.597	m								

Results are generated from a tabulated Manning's Equation based on the Peak Discharge and channel dimensions.

Grass Channel 4

Sta. 13+51.6, LT. - Sta. 403+07.5, LT. Length: 625 ft Side Slopes: 1:4 Bottom Width: 5 ft Long Slope: 3.8%

Calculate Water Quality Volume (WQv) - On-site Area

 $\underline{sf} := (1\underline{ft}) \cdot (1\underline{ft})$ $\underline{cf} := (1\underline{ft}) \cdot (1\underline{ft}) \cdot (1\underline{ft})$ $\underline{\mathrm{cfs}} := \frac{(1\underline{\mathrm{cf}})}{(1\mathrm{s})}$ $A_{\text{A}} := 59167 \cdot \underline{\text{sf}} = 2.122 \times 10^{-3} \cdot \underline{\text{mi}}^2$ Drainage Area (sf) $\underline{\mathbf{A}}_{\mathbf{I}} := 43853 \cdot \underline{\mathbf{sf}} = 1.573 \times 10^{-3} \cdot \underline{\mathbf{mi}}^2$ Impervious Area (sf) $\underline{\mathbf{A}}_{\mathbf{P}} := 15314 \cdot \underline{\mathbf{s}}_{\mathbf{f}} = 5.493 \times 10^{-4} \cdot \underline{\mathbf{m}}_{\mathbf{i}}^{2}$ Pervious Area (sf) $\underline{\mathbf{I}} := \left(\frac{\underline{\mathbf{A}}_{\underline{\mathbf{I}}}}{\underline{\mathbf{A}}}\right) \cdot 100 = 74.117$ % Impervious Area 90 % Rainfall event (in.) $P := 0.9 \cdot in$ $\underline{\mathbf{R}}_{\mathbf{V}} := 0.05 + 0.009 \cdot \underline{\mathbf{I}} = 0.717$ Volumetric runoff coefficient Water Quality Volume (cf) <u>WQv</u> := $\underline{P} \cdot \underline{R}_{V} \cdot \underline{A} = 3.182 \times 10^{3} \cdot \underline{cf}$ Calculate Runoff Volume (Qa) Runoff Volume (in.) $\underline{\mathbf{Q}}_{a} := \underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{v} = 0.645 \cdot \underline{\mathbf{in}}$ $\mathbf{Q}_{\mathbf{a}} := \underline{\mathrm{if}} \left(\underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{\mathbf{V}} < 0.2 \underline{\mathrm{in}}, 0.2 \underline{\mathrm{in}}, \underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{\mathbf{V}} \right) = 0.645 \cdot \underline{\mathrm{in}}$ Calculate Curve Number (CN)

Curve Number $\underline{CN} := \frac{1000 \cdot \underline{in}}{\left[10 \cdot \underline{in} + 5 \cdot \underline{P} + 10 \cdot \underline{Q}_{\underline{a}} - 10\left(\underline{Q}_{\underline{a}}^{2} + 1.25 \cdot \underline{Q}_{\underline{a}} \cdot \underline{P}\right)^{\left(\frac{1}{2}\right)}\right]} = 97$

Calculate Water Quality Volume (WQv) - On-site Area from GC 5

 $\underline{sf} := (1\underline{ft}) \cdot (1\underline{ft})$ $\underline{cf} := (1\underline{ft}) \cdot (1\underline{ft}) \cdot (1\underline{ft})$ $\underline{cfs} := \frac{(1\underline{cf})}{(1\underline{s})}$ $\underline{\mathbf{A}} := 5032 \cdot \underline{\mathbf{sf}} = 1.805 \times 10^{-4} \cdot \underline{\mathbf{mi}}^2$ Drainage Area (sf) $\mathbf{A}_{\mathbf{I}} := 2349 \cdot \underline{\mathbf{sf}} = 8.426 \times 10^{-5} \cdot \underline{\mathbf{mi}}^2$ Impervious Area (sf) $\underline{\mathbf{A}}_{\mathbf{R}} := 2683 \cdot \underline{\mathbf{sf}} = 9.624 \times 10^{-5} \cdot \underline{\mathbf{mi}}^2$ Pervious Area (sf) $\underline{\mathbf{I}} := \left(\frac{\underline{\mathbf{A}}_{\underline{\mathbf{I}}}}{\underline{\mathbf{A}}}\right) \cdot 100 = 46.681$ % Impervious Area 90 % Rainfall event (in.) $\underline{\mathbf{P}} := 0.9 \cdot \underline{\mathbf{in}}$ $R_{\rm WM} := 0.05 + 0.009 \cdot \underline{I} = 0.47$ Volumetric runoff coefficient Water Quality Volume (cf) $WQV := \underline{P} \cdot \underline{R}_{V} \cdot \underline{A} = 177.427 \cdot \underline{cf}$ Calculate Runoff Volume (Q_a) Runoff Volume (in.) $\underline{\mathbf{Q}}_{\mathbf{A}} := \underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{\mathbf{V}} = 0.423 \cdot \underline{\mathbf{in}}$ $\mathbf{Q}_{\mathbf{a}} := \underline{\mathrm{if}} \left(\underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{\mathbf{V}} < 0.2 \underline{\mathrm{in}}, 0.2 \underline{\mathrm{in}}, \underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{\mathbf{V}} \right) = 0.423 \cdot \underline{\mathrm{in}}$ Calculate Curve Number (CN) $\underline{\mathbf{CN}} := \frac{1000 \cdot \underline{\mathbf{in}}}{\left[10 \cdot \underline{\mathbf{in}} + 5 \cdot \underline{\mathbf{P}} + 10 \cdot \underline{\mathbf{Q}}_{\underline{\mathbf{a}}} - 10 \left(\underline{\mathbf{Q}_{\underline{\mathbf{a}}}}^2 + 1.25 \cdot \underline{\mathbf{Q}}_{\underline{\mathbf{a}}} \cdot \underline{\mathbf{P}}\right)^{\left(\frac{1}{2}\right)}\right]}$ Curve Number

Calculate Water Quality Volume (WQv) - Off-site Area from OS8a

 $\underline{sf} := (1\underline{ft}) \cdot (1\underline{ft})$ $\underline{cf} := (1\underline{ft}) \cdot (1\underline{ft}) \cdot (1\underline{ft})$ $\underline{cfs} := \frac{(1\underline{cf})}{(1\underline{s})}$ $A_{\text{M}} := 111436 \cdot \underline{\text{sf}} = 3.997 \times 10^{-3} \cdot \underline{\text{mi}}^2$ Drainage Area (sf) $\underline{\mathbf{A}}_{\underline{\mathbf{L}}} := 52969 \cdot \underline{\mathbf{sf}} = 1.9 \times 10^{-3} \cdot \underline{\mathbf{mi}}^2$ Impervious Area (sf) $\mathbf{A}_{\mathbf{R}} := 58467 \cdot \underline{\mathbf{sf}} = 2.097 \times 10^{-3} \cdot \underline{\mathbf{mi}}^2$ Pervious Area (sf) $\underline{\mathbf{I}} := \left(\frac{\underline{\mathbf{A}}_{\underline{\mathbf{I}}}}{\underline{\mathbf{A}}}\right) \cdot 100 = 47.533$ % Impervious Area 90 % Rainfall event (in.) $\underline{\mathbf{P}} := 0.9 \cdot \underline{\mathbf{in}}$ $\mathbf{R}_{\mathbf{W}} := 0.05 + 0.009 \cdot \mathbf{I} = 0.478$ Volumetric runoff coefficient Water Quality Volume (cf) $\underline{W}\underline{O}\underline{V} := \underline{P} \cdot \underline{R}_{V} \cdot \underline{A} = 3.993 \times 10^{3} \cdot \underline{cf}$ Calculate Runoff Volume (Qa) $\underline{\mathbf{Q}}_{\underline{\mathbf{Q}}} := \underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{\underline{\mathbf{V}}} = 0.43 \cdot \underline{\mathbf{in}}$ Runoff Volume (in.) $\mathbf{Q}_{\mathbf{a}} := \underline{\mathrm{if}} \left(\underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{\mathbf{V}} < 0.2 \underline{\mathrm{in}}, 0.2 \underline{\mathrm{in}}, \underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{\mathbf{V}} \right) = 0.43 \cdot \underline{\mathrm{in}}$ Calculate Curve Number (CN) $\underline{CN} := \frac{1000 \cdot \underline{in}}{\left[10 \cdot \underline{in} + 5 \cdot \underline{P} + 10 \cdot \underline{Q_a} - 10 \left(\underline{Q_a}^2 + 1.25 \cdot \underline{Q_a} \cdot \underline{P}\right)^{\left(\frac{1}{2}\right)}\right]}$ Curve Number

Grass Channel 4

Calculate Water Quality Volume (WQv) - Off-site Area from OS8c

$\underline{sf} := (1\underline{ft}) \cdot (1\underline{ft})$					
$\underline{cf}_{\underline{cf}} := (1\underline{ft}) \cdot (1\underline{ft}) \cdot (1\underline{ft})$					
$cfs := \frac{(1cf)}{(1s)}$					
$\frac{\text{CIS}}{(1\underline{s})}$. – $(1\underline{s})$					
Drainage Area (sf)	$A_{\text{ww}} := 12973 \cdot \underline{\text{sf}} = 4.653 \times 10^{-4} \cdot \underline{\text{mi}}^2$				
Impervious Area (sf)	$\underline{\mathbf{A}}_{\underline{\mathbf{L}}} := 782 \cdot \underline{\mathbf{sf}} = 2.805 \times 10^{-5} \cdot \underline{\mathbf{mi}}^2$				
Pervious Area (sf)	$\underline{A}_{\underline{\mathbf{R}}} := 12191 \cdot \underline{\mathbf{sf}} = 4.373 \times 10^{-4} \cdot \underline{\mathbf{mi}}^2$				
% Impervious Area	$\underline{\mathbf{I}}_{MV} := \left(\frac{\underline{\mathbf{A}}_{\underline{\mathbf{I}}}}{\underline{\mathbf{A}}}\right) \cdot 100 = 6.028$				
90 % Rainfall event (in.)	$\mathbf{P}_{vvv} \coloneqq 0.9 \cdot \underline{\mathrm{in}}$				
Volumetric runoff coefficient	$\mathbf{R}_{\underline{\mathbf{W}}} := 0.05 + 0.009 \cdot \mathbf{I} = 0.104$				
Water Quality Volume (cf)	$\underline{WOv} := \underline{P} \cdot \underline{R}_{\underline{V}} \cdot \underline{A} = 101.434 \cdot \underline{cf}$				
Calculate Runoff Volu	<u>me (Q_a)</u>				
Runoff Volume (in.)	$\underline{\mathbf{Q}}_{\underline{\mathbf{u}}} := \underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{\underline{\mathbf{V}}} = 0.094 \cdot \underline{\mathbf{in}}$				
	$\mathbf{Q}_{\underline{\mathbf{W}}} := \underline{\mathrm{if}} \left(\underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{\underline{\mathbf{V}}} < 0.2 \underline{\mathrm{in}}, 0.2 \underline{\mathrm{in}}, \underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{\underline{\mathbf{V}}} \right) = 0.2 \cdot \underline{\mathrm{in}}$				
Calculate Curve Nur	nber (CN)				
Curve Number	$\underline{CN} := \frac{1000 \cdot \underline{in}}{\left[10 \cdot \underline{in} + 5 \cdot \underline{P} + 10 \cdot \underline{Q}_{\underline{a}} - 10\left(\underline{Q}_{\underline{a}}^{2} + 1.25 \cdot \underline{Q}_{\underline{a}} \cdot \underline{P}\right)^{\left(\frac{1}{2}\right)}\right]} = 88$				
	$\lfloor \cdots \cdots \cdots \cdots \underline{a} \cdots (\underline{\mathbf{x}}\underline{a} \cdots \underline{\mathbf{x}}\underline{a} \cdot \cdots \cdot \underline{\mathbf{x}}\underline{a} \cdot \underline{\mathbf{x}} \cdot $				

Calculate Water Quality Volume (WQv) - Off-site Area from OS8d

$$\begin{split} & \underbrace{sf_{\alpha}} := (1\underline{f}_{U}) \cdot (1\underline{f}_{U}) \\ & \underbrace{cf_{\alpha}} := (1\underline{f}_{U}) \cdot (1\underline{f}_{U}) \cdot (1\underline{f}_{U}) \\ & \underbrace{cf_{\alpha}} := (1\underline{f}_{U}) \cdot (1\underline{f}_{U}) \\ & \underbrace{cf_$$

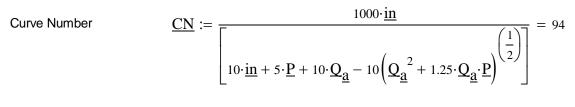
Calculate Water Quality Volume (WQv) - Off-site Area from OS8_5

 $\underline{sf} := (1\underline{ft}) \cdot (1\underline{ft})$ $\underline{cf} := (1\underline{ft}) \cdot (1\underline{ft}) \cdot (1\underline{ft})$ $\underline{cfs} := \frac{(1\underline{cf})}{(1\underline{s})}$ $\underline{\mathbf{A}} := 743369 \cdot \underline{\mathbf{sf}} = 0.027 \cdot \underline{\mathbf{mi}}^2$ Drainage Area (sf) $\underline{\mathbf{A}}_{\mathbf{I}} := 463745 \cdot \underline{\mathbf{sf}} = 0.017 \cdot \underline{\mathbf{mi}}^2$ Impervious Area (sf) $\mathbf{A}_{\mathbf{R}} := 279624 \cdot \underline{\mathrm{sf}} = 0.01 \cdot \underline{\mathrm{mi}}^2$ Pervious Area (sf) $\underline{\mathbf{I}} := \left(\frac{\underline{\mathbf{A}}_{\underline{\mathbf{I}}}}{\underline{\mathbf{A}}}\right) \cdot 100 = 62.384$ % Impervious Area 90 % Rainfall event (in.) $\underline{\mathbf{P}} := 0.9 \cdot \underline{\mathbf{in}}$ $R_{\rm WM} := 0.05 + 0.009 \cdot \underline{I} = 0.611$ Volumetric runoff coefficient Water Quality Volume (cf) $WQV := \underline{P} \cdot \underline{R}_{V} \cdot \underline{A} = 3.409 \times 10^{4} \cdot \underline{cf}$ Calculate Runoff Volume (Qa) Runoff Volume (in.) $\underline{\mathbf{Q}}_{\mathbf{A}} := \underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{\mathbf{V}} = 0.55 \cdot \underline{\mathbf{in}}$ $\mathbf{Q}_{\mathbf{a}\mathbf{b}} := \underline{\mathrm{if}}\left(\underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{\mathbf{V}} < 0.2\underline{\mathrm{in}}, 0.2\underline{\mathrm{in}}, \underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{\mathbf{V}}\right) = 0.55 \cdot \underline{\mathrm{in}}$ Calculate Curve Number (CN) $\underline{\mathbf{CN}} := \frac{1000 \cdot \underline{\mathbf{in}}}{\left[10 \cdot \underline{\mathbf{in}} + 5 \cdot \underline{\mathbf{P}} + 10 \cdot \underline{\mathbf{Q}}_{\underline{\mathbf{a}}} - 10 \left(\underline{\mathbf{Q}}_{\underline{\mathbf{a}}}^2 + 1.25 \cdot \underline{\mathbf{Q}}_{\underline{\mathbf{a}}} \cdot \underline{\mathbf{P}}\right)^{\left(\frac{1}{2}\right)}\right]}$ Curve Number

Input Peak Discharge and channel characteristics to find depth, velocity, and required channel length (peak discharge comes from HydroCAD):

Trapezoidal Channel Calculations - Grass Channel									
STA. 13+51.6, LT STA. 403+07.5, LT.									
	WQv 1 Yr 10 Yr								
Peak Discharge	2.12	8.91	22.44	cfs					
Bottom W	5	5	5	ft					
Side Slope	4	4	4	1:X					
Back Slope	4	4	4	1:X					
Long Slope	3.8	3.8	3.8	%					
Length	625	625	625	ft					
	R	ESULTS							
Depth (in):	4.4	7.665	9.895	in					
''n'':	0.144	0.095025	0.061575						
Area	2.371	4.826	6.843	ft ²					
Velocity	0.9	1.8	3.3	ft/s					
10 minute	536.457	ft							
length required:	163.554	m							

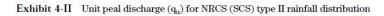
Results are generated from a tabulated Manning's Equation based on the Peak Discharge and channel dimensions.

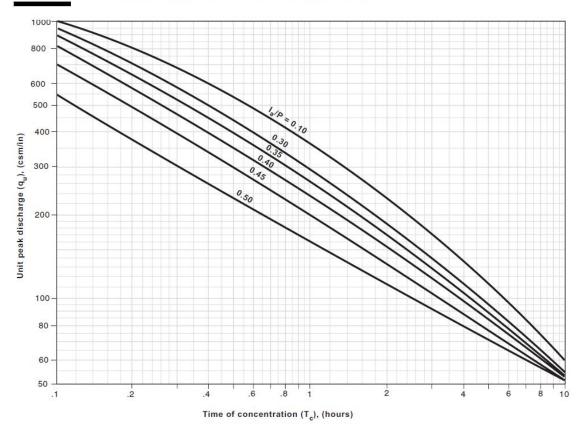

Grass Channel 5

Sta. 18+55.5, LT. - Sta. 19+75.0, LT. Length: 120 ft Side Slopes: 1:4 Bottom Width: 4 ft Long Slope: 0.2%

Calculate Water Quality Volume (WQv)

 $\underline{sf} := (1\underline{ft}) \cdot (1\underline{ft})$ $\underline{cf} := (1\underline{ft}) \cdot (1\underline{ft}) \cdot (1\underline{ft})$ $\underline{\mathrm{cfs}} := \frac{(1\underline{\mathrm{cf}})}{(1\mathrm{s})}$ $\underline{\mathbf{A}} := 5032 \cdot \underline{\mathbf{sf}} = 1.805 \times 10^{-4} \cdot \underline{\mathbf{mi}}^2$ Drainage Area (sf) $\underline{\mathbf{A}}_{\underline{\mathbf{I}}} := 2349 \cdot \underline{\mathbf{sf}} = 8.426 \times 10^{-5} \cdot \underline{\mathbf{mi}}^2$ Impervious Area (sf) $\underline{\mathbf{A}}_{\mathbf{P}} := 2683 \cdot \underline{\mathbf{sf}} = 9.624 \times 10^{-5} \cdot \underline{\mathbf{mi}}^2$ Pervious Area (sf) $\underline{\mathbf{I}} := \left(\frac{\underline{\mathbf{A}}_{\underline{\mathbf{I}}}}{\underline{\mathbf{A}}}\right) \cdot 100 = 46.681$ % Impervious Area 90 % Rainfall event (in.) $P := 0.9 \cdot in$ $\underline{\mathbf{R}}_{\mathbf{V}} := 0.05 + 0.009 \cdot \underline{\mathbf{I}} = 0.47$ Volumetric runoff coefficient Water Quality Volume (cf) $\underline{WQv} := \underline{P} \cdot \underline{R}_{v} \cdot \underline{A} = 177.427 \cdot \underline{cf}$ Calculate Runoff Volume (Qa) Runoff Volume (in.) $\underline{\mathbf{Q}}_{\mathbf{a}} := \underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{\mathbf{V}} = 0.423 \cdot \underline{\mathbf{in}}$ $\underline{\mathbf{Q}}_{a} := \underline{\mathrm{if}} \left(\underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{v} < 0.2 \underline{\mathrm{in}}, 0.2 \underline{\mathrm{in}}, \underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{v} \right) = 0.423 \cdot \underline{\mathrm{in}}$


Calculate Curve Number (CN)



Calculate Initial Abstraction (Ia)

Potential Maximum Soil
Moisture Retention (in.) $\underline{\mathbf{S}} := \left(\frac{1000\underline{\mathrm{in}}}{\underline{\mathrm{CN}}}\right) - 10\underline{\mathrm{in}} = 0.638 \cdot \underline{\mathrm{in}}$ Initial Abstraction (in.) $\underline{\mathbf{I}}_{\underline{\mathbf{a}}} := 0.2 \cdot \underline{\mathbf{S}} = 0.128 \cdot \underline{\mathrm{in}}$ $\frac{\underline{\mathbf{I}}_{\underline{\mathbf{a}}}}{\underline{\mathbf{P}}} = 0.142$ Time of Concentration
from HydroCAD (hr) $\underline{\mathbf{I}}_{\underline{\mathbf{c}}} := 1.7\underline{\mathrm{min}} = 0.028 \cdot \underline{\mathrm{hr}}$

Use I_a/P and t_c to determine Unit Peak Discharge from the graph below:

Unit Peak Discharge (cfs/mi²/in)

$$\underline{q}_{\underline{u}} := 1000 \frac{\underline{cfs}}{\underline{mi}^2 \cdot \underline{in}}$$

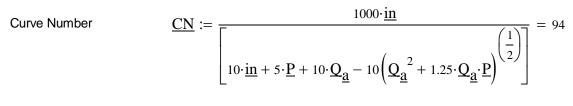
Calculate Peak Discharge (Qwg)

Peak Discharge (cfs)

 $\mathbf{Q}_{\underline{\mathbf{wq}}} := \left(\underline{\mathbf{q}}_{\underline{\mathbf{u}}}\right) \cdot \left(\underline{\mathbf{A}}\right) \cdot \left(\underline{\mathbf{Q}}_{\underline{\mathbf{a}}}\right) = 0.076 \cdot \underline{\mathbf{cfs}}$

Input Peak Discharge and channel characteristics to find depth, velocity, and required channel length (peak discharge for 1 and 10 yr storms comes from HydroCAD):

Trapezoida	l Channel	Calcula	ations - G	rass Chan				
	STA. 18+55.5, LT STA. 19+75.0, LT.							
	WQv	1 Yr	10 Yr					
Peak Discharge	0.076	0.21	0.4	cfs				
Bottom W	4	4	4	ft				
Side Slope	4	4	4	1:X				
Back Slope	4	4	4	1:X				
Long Slope	0.2	0.2	0.2	%				
Length	120	120	120	ft				
	R	ESULTS						
Depth (in):	1.755	3.135	4.39	in				
''n'':	0.15	0.15	0.14415					
Area	0.671	1.318	1.999	ft ²				
Velocity	0.1	0.2	0.2	ft/s				
10 minute	68.003	ft						
length required:	20.733	m						

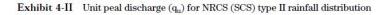

Results are generated from a tabulated Manning's Equation based on the Peak Discharge and channel dimensions.

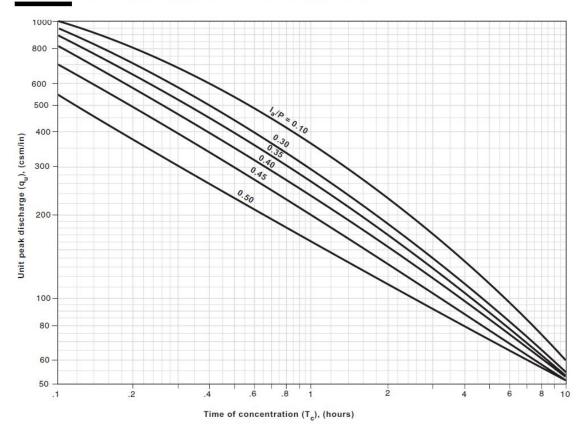
Grass Channel 6

Sta. 19+75.0, LT. - Sta. 22+93.3, LT. Length: 318 ft Side Slopes: 1:4 Bottom Width: 4 ft Long Slope: 0.7%

Calculate Water Quality Volume (WQv)

 $\underline{sf} := (1\underline{ft}) \cdot (1\underline{ft})$ $\underline{cf} := (1\underline{ft}) \cdot (1\underline{ft}) \cdot (1\underline{ft})$ $\underline{\mathrm{cfs}} := \frac{(1\underline{\mathrm{cf}})}{(1\mathrm{s})}$ $\underline{\mathbf{A}} := 21392 \cdot \underline{\mathbf{sf}} = 7.673 \times 10^{-4} \cdot \underline{\mathbf{mi}}^2$ Drainage Area (sf) $\underline{\mathbf{A}}_{\mathbf{I}} := 10391 \cdot \underline{\mathbf{sf}} = 3.727 \times 10^{-4} \cdot \underline{\mathbf{mi}}^2$ Impervious Area (sf) $\underline{\mathbf{A}}_{\mathbf{P}} := 11001 \cdot \underline{\mathbf{s}} \underline{\mathbf{f}} = 3.946 \times 10^{-4} \cdot \underline{\mathbf{m}} \underline{\mathbf{i}}^2$ Pervious Area (sf) $\underline{\mathbf{I}} := \left(\frac{\underline{\mathbf{A}}_{\underline{\mathbf{I}}}}{\underline{\mathbf{A}}}\right) \cdot 100 = 48.574$ % Impervious Area 90 % Rainfall event (in.) $P := 0.9 \cdot in$ $\underline{\mathbf{R}}_{\mathbf{V}} \coloneqq 0.05 + 0.009 \cdot \underline{\mathbf{I}} = 0.487$ Volumetric runoff coefficient Water Quality Volume (cf) $\underline{WQv} := \underline{P} \cdot \underline{R}_{v} \cdot \underline{A} = 781.612 \cdot \underline{cf}$ Calculate Runoff Volume (Q_a) Runoff Volume (in.) $\underline{\mathbf{Q}}_{\mathbf{a}} := \underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{\mathbf{V}} = 0.438 \cdot \underline{\mathbf{in}}$ $\underline{\mathbf{Q}}_{a} := \underline{\mathrm{if}} \left(\underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{v} < 0.2 \underline{\mathrm{in}}, 0.2 \underline{\mathrm{in}}, \underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{v} \right) = 0.438 \cdot \underline{\mathrm{in}}$ Calculate Curve Number (CN)




1

Calculate Initial Abstraction (Ia)

Potential Maximum Soil
Moisture Retention (in.) $\underline{\mathbf{S}} := \left(\frac{1000\underline{\mathbf{in}}}{\underline{\mathbf{CN}}}\right) - 10\underline{\mathbf{in}} = 0.605 \cdot \underline{\mathbf{in}}$ Initial Abstraction (in.) $\underline{\mathbf{I}}_{\underline{\mathbf{a}}} := 0.2 \cdot \underline{\mathbf{S}} = 0.121 \cdot \underline{\mathbf{in}}$ $\frac{\underline{\mathbf{I}}_{\underline{\mathbf{a}}}}{\underline{\mathbf{P}}} = 0.134$ Time of Concentration
from HydroCAD (hr) $\underline{\mathbf{I}}_{\underline{\mathbf{c}}} := 1.7\underline{\mathbf{min}} = 0.028 \cdot \underline{\mathbf{hr}}$

Use I_a/P and t_c to determine Unit Peak Discharge from the graph below:

Unit Peak Discharge (cfs/mi²/in)

$$\underline{q}_{\underline{u}} := 1000 \frac{\underline{cfs}}{\underline{mi}^2 \cdot \underline{in}}$$

Calculate Peak Discharge (Qwq)

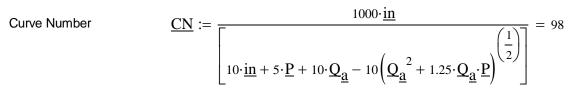
 $\text{Peak Discharge (cfs)} \quad \underline{Q}_{\underline{Wq}} := \left(\underline{q}_{\underline{u}}\right) \cdot \left(\underline{A}\right) \cdot \left(\underline{Q}_{\underline{a}}\right) = 0.336 \cdot \underline{cfs}$

Input Peak Discharge and channel characteristics to find depth, velocity, and required channel length (peak discharge for 1 and 10 yr storms comes from HydroCAD) :

Trapezoidal Channel Calculations - Grass Channel									
	STA. 1	9+75.0, LT	STA. 22+9	3.3, LT.					
	WQv 1 Yr 10 Yr								
Peak Discharge	0.336	0.91	1.7	cfs					
Bottom W	4	4	4	ft					
Side Slope	4	4	4	1:X					
Back Slope	4	4	4	1:X					
Long Slope	0.7	0.7	0.7	%					
Length	318	318	318	ft					
	R	ESULTS							
Depth (in):	2.87	4.775	6.135	in					
''n'':	0.15	0.138375	0.117975						
Area	1.185	2.225	3.091	ft ²					
Velocity	0.3	0.4	0.6	ft/s					
10 minute	170.059	ft							
length required:	51.847	m							

Results are generated from a tabulated Manning's Equation based on the Peak Discharge and channel dimensions.

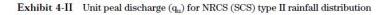
Mathcad Calculations Mathcad Calculations Colchester DDI

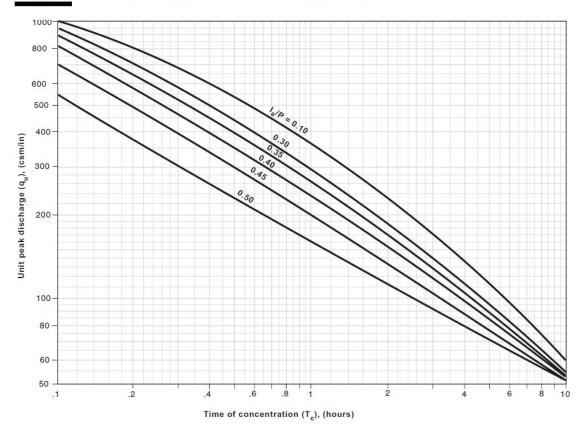

Grass Channel 7

Sta. 22+97.8, LT. - Sta. 26+28.1, LT. Length: 327 ft Side Slopes: 1:4 Bottom Width: 4 ft Long Slope: 1.3%

Calculate Water Quality Volume (WQv)

 $\underline{sf} := (1\underline{ft}) \cdot (1\underline{ft})$ $\underline{cf} := (1\underline{ft}) \cdot (1\underline{ft}) \cdot (1\underline{ft})$ $\underline{\mathrm{cfs}} := \frac{(1\underline{\mathrm{cf}})}{(1\mathrm{s})}$ $A_{\text{M}} := 26849 \cdot \underline{\text{sf}} = 9.631 \times 10^{-4} \cdot \underline{\text{mi}}^2$ Drainage Area (sf) $\underline{\mathbf{A}}_{\mathbf{I}} := 20989 \cdot \underline{\mathbf{sf}} = 7.529 \times 10^{-4} \cdot \underline{\mathbf{mi}}^2$ Impervious Area (sf) $\underline{\mathbf{A}}_{\underline{\mathbf{P}}} := 5860 \cdot \underline{\mathbf{sf}} = 2.102 \times 10^{-4} \cdot \underline{\mathbf{mi}}^2$ Pervious Area (sf) $\underline{\mathbf{I}} := \left(\frac{\underline{\mathbf{A}}_{\underline{\mathbf{I}}}}{\underline{\mathbf{A}}}\right) \cdot 100 = 78.174$ % Impervious Area 90 % Rainfall event (in.) $P := 0.9 \cdot in$ $\underline{\mathbf{R}}_{\mathbf{V}} := 0.05 + 0.009 \cdot \underline{\mathbf{I}} = 0.754$ Volumetric runoff coefficient Water Quality Volume (cf) $\underline{WQv} := \underline{P} \cdot \underline{R}_{V} \cdot \underline{A} = 1.517 \times 10^{3} \cdot \underline{cf}$ Calculate Runoff Volume (Qa) Runoff Volume (in.) $\underline{\mathbf{Q}}_{\mathbf{a}} := \underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{\mathbf{V}} = 0.678 \cdot \underline{\mathbf{in}}$ $\underline{Q}_{\text{rescala}} := \underline{\mathrm{if}}\left(\underline{\mathrm{P}}\cdot\underline{\mathrm{R}}_{\underline{\mathrm{V}}} < 0.2\underline{\mathrm{in}}, 0.2\underline{\mathrm{in}}, \underline{\mathrm{P}}\cdot\underline{\mathrm{R}}_{\underline{\mathrm{V}}}\right) = 0.678 \cdot \underline{\mathrm{in}}$


Calculate Curve Number (CN)



Calculate Initial Abstraction (Ia)

Potential Maximum Soil
Moisture Retention (in.) $\underline{S}_{w} := \left(\frac{1000\underline{in}}{\underline{CN}}\right) - 10\underline{in} = 0.223 \cdot \underline{in}$ Initial Abstraction (in.) $\underline{I}_{\underline{a}} := 0.2 \cdot \underline{S} = 0.045 \cdot \underline{in}$ $\frac{I}{\underline{a}}}{\underline{P}} = 0.05$ Time of Concentration
from HydroCAD (hr) $\underline{I}_{\underline{c}} := 2.5\underline{\min} = 0.042 \cdot \underline{hr}$

Use I_a/P and t_c to determine Unit Peak Discharge from the graph below:

Unit Peak Discharge (cfs/mi²/in)

$$\underline{q}_{\underline{u}} := 1000 \frac{\underline{cfs}}{\underline{mi}^2 \cdot \underline{in}}$$

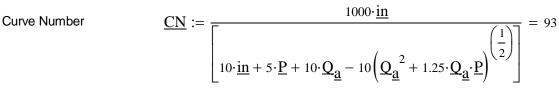
Calculate Peak Discharge (Qwq)

Peak Discharge (cfs)

$$\underline{\mathbf{Q}}_{\underline{\mathbf{W}}\underline{\mathbf{q}}} := \left(\underline{\mathbf{q}}_{\underline{\mathbf{u}}}\right) \cdot \left(\underline{\mathbf{A}}\right) \cdot \left(\underline{\mathbf{Q}}_{\underline{\mathbf{a}}}\right) = 0.653 \cdot \underline{\mathbf{cfs}}$$

Input Peak Discharge and channel characteristics to find depth, velocity, and required channel length (peak discharge for 1 and 10 yr storms comes from HydroCAD):

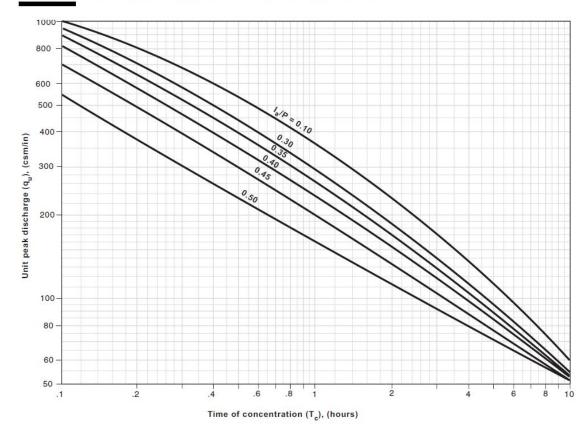
Trapezoidal Channel Calculations - Grass Channel									
	STA. 2	2+97.8, LT	STA. 26+28	8.1, LT.					
	WQv 1 Yr 10 Yr								
Peak Discharge	0.653	1.52	2.45	cfs					
Bottom W	4	4	4	ft					
Side Slope	4	4	4	1:X					
Back Slope	4	4	4	1:X					
Long Slope	1.3	1.3	1.3	%					
Length	327	327	327	ft					
	R	ESULTS							
Depth (in):	3.505	5.2	6.265	in					
''n'':	0.15	0.132	0.116025						
Area	1.510	2.484	3.179	ft ²					
Velocity	0.4	0.6	0.8	ft/s					
10 minute	259.542	ft							
length required:	79.129	m							

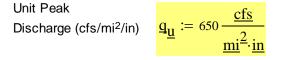

Results are generated from a tabulated Manning's Equation based on the Peak Discharge and channel dimensions.

Grass Channel 8

Sta. 39+19.3, LT. - Sta. 43+67.4, LT. Length: 448 ft Side Slopes: 1:4 Bottom Width: 4 ft Long Slope: 1.3%

Calculate Water Quality Volume (WQv)


 $\underline{sf} := (1\underline{ft}) \cdot (1\underline{ft})$ $\underline{cf} := (1\underline{ft}) \cdot (1\underline{ft}) \cdot (1\underline{ft})$ $\underline{\mathrm{cfs}} := \frac{(1\underline{\mathrm{cf}})}{(1\mathrm{s})}$ <u>A</u> := $176707 \cdot sf = 6.338 \times 10^{-3} \cdot mi^{2}$ Drainage Area (sf) $\underline{\mathbf{A}}_{\underline{\mathbf{I}}} := 68389 \cdot \underline{\mathbf{sf}} = 2.453 \times 10^{-3} \cdot \underline{\mathbf{mi}}^2$ Impervious Area (sf) $\underline{\mathbf{A}}_{\mathbf{P}} := 108318 \cdot \underline{\mathbf{s}}_{\mathbf{f}} = 3.885 \times 10^{-3} \cdot \underline{\mathbf{m}}_{\mathbf{i}}^{2}$ Pervious Area (sf) $\underline{\mathbf{I}} := \left(\frac{\underline{\mathbf{A}}_{\underline{\mathbf{I}}}}{\underline{\mathbf{A}}}\right) \cdot 100 = 38.702$ % Impervious Area 90 % Rainfall event (in.) $P := 0.9 \cdot in$ $\underline{\mathbf{R}}_{\mathbf{V}} := 0.05 + 0.009 \cdot \underline{\mathbf{I}} = 0.398$ Volumetric runoff coefficient Water Quality Volume (cf) <u>WQv</u> := $\underline{P} \cdot \underline{R}_{v} \cdot \underline{A} = 5.279 \times 10^{3} \cdot \underline{cf}$ Calculate Runoff Volume (Qa) Runoff Volume (in.) $\underline{\mathbf{Q}}_{a} := \underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{v} = 0.358 \cdot \underline{\mathbf{in}}$ $\underline{\mathbf{Q}}_{a} := \underline{\mathrm{if}} \left(\underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{v} < 0.2 \underline{\mathrm{in}}, 0.2 \underline{\mathrm{in}}, \underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{v} \right) = 0.358 \cdot \underline{\mathrm{in}}$ Calculate Curve Number (CN)


Calculate Initial Abstraction (Ia)

Potential Maximum Soil
Moisture Retention (in.) $\underline{\mathbf{S}} := \left(\frac{1000\underline{\mathbf{in}}}{\underline{\mathbf{CN}}}\right) - 10\underline{\mathbf{in}} = 0.792 \cdot \underline{\mathbf{in}}$ Initial Abstraction (in.) $\underline{\mathbf{I}}_{\underline{\mathbf{a}}} := 0.2 \cdot \underline{\mathbf{S}} = 0.158 \cdot \underline{\mathbf{in}}$ $\frac{\underline{\mathbf{I}}_{\underline{\mathbf{a}}}}{\underline{\mathbf{P}}} = 0.176$ Time of Concentration
from HydroCAD (hr) $\underline{\mathbf{I}}_{\underline{\mathbf{c}}} := 19.1\underline{\mathbf{min}} = 0.318 \cdot \underline{\mathbf{hr}}$

Use I_a/P and t_c to determine Unit Peak Discharge from the graph below:

 $\label{eq:exhibit 4-II} \ \ \, \mbox{Unit peal discharge } (q_u) \ \, \mbox{for NRCS } (SCS) \ \mbox{type II rainfall distribution}$

Calculate Peak Discharge (Qwq)

 $\text{Peak Discharge (cfs)} \quad \underline{Q}_{\underline{Wq}} := \left(\underline{q}_{\underline{u}}\right) \cdot (\underline{A}) \cdot \left(\underline{Q}_{\underline{a}}\right) = 1.477 \cdot \underline{cfs}$

Input Peak Discharge and channel characteristics to find depth, velocity, and required channel length (peak discharge for 1 and 10 yr storms comes from HydroCAD):

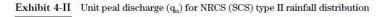
Trapezoidal Channel Calculations - Grass Channel 8								
STA. 39+19.3, LT STA. 43+67.4, LT.								
	WQv	1 Yr	10 Yr					
Peak Discharge	1.477	2.98	4.72	cfs				
Bottom W	6	6	6	ft				
Side Slope	4	4	4	1:X				
Back Slope	2	2	2	1:X				
Long Slope	1.3	1.3	1.3	%				
Length	448	448	448	ft				
	R	ESULTS						
Depth (in):	4.49	6.05	7.18	in				
''n'':	0.14265	0.11925	0.1023					
Area	2.665002083	3.787552	4.664008333	ft ²				
Velocity	0.6	0.8	1.0	ft/s				
10 minute	332.533	ft						
length required:	101.382	m						

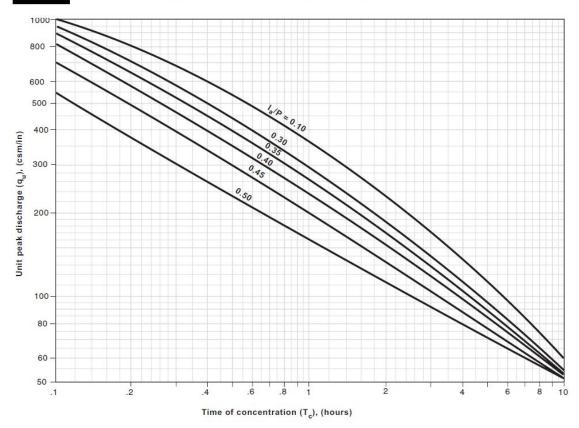
Results are generated from a tabulated Manning's Equation based on the Peak Discharge and channel dimensions.

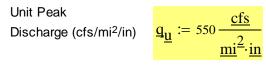
Grass Channel 9

Sta. 800+43.1, LT. - Sta. 802+85.0, LT. Length: 250 ft Side Slopes: 1:4 Bottom Width: 4 ft Long Slope: 2.2%

Calculate Water Quality Volume (WQv)


 $\underline{sf} := (1\underline{ft}) \cdot (1\underline{ft})$ $\underline{cf} := (1\underline{ft}) \cdot (1\underline{ft}) \cdot (1\underline{ft})$ $\underline{\mathrm{cfs}} := \frac{(1\underline{\mathrm{cf}})}{(1\mathrm{s})}$ $\underline{\mathbf{A}} := 46064 \cdot \underline{\mathbf{sf}} = 1.652 \times 10^{-3} \cdot \underline{\mathbf{mi}}^2$ Drainage Area (sf) $\underline{\mathbf{A}}_{\underline{\mathbf{I}}} := 16628 \cdot \underline{\mathbf{sf}} = 5.964 \times 10^{-4} \cdot \underline{\mathbf{mi}}^2$ Impervious Area (sf) $\underline{\mathbf{A}}_{\mathbf{P}} := 29436 \cdot \underline{\mathbf{s}}_{\mathbf{f}} = 1.056 \times 10^{-3} \cdot \underline{\mathbf{m}}_{\mathbf{i}}^{2}$ Pervious Area (sf) $\underline{\mathbf{I}} := \left(\frac{\underline{\mathbf{A}}_{\underline{\mathbf{I}}}}{\underline{\mathbf{A}}}\right) \cdot 100 = 36.098$ % Impervious Area 90 % Rainfall event (in.) $P := 0.9 \cdot in$ $\underline{\mathbf{R}}_{\mathbf{V}} := 0.05 + 0.009 \cdot \underline{\mathbf{I}} = 0.375$ Volumetric runoff coefficient Water Quality Volume (cf) <u>WQv</u> := $\underline{P} \cdot \underline{R}_{v} \cdot \underline{A} = 1.295 \times 10^{3} \cdot \underline{cf}$ Calculate Runoff Volume (Qa) Runoff Volume (in.) $\underline{\mathbf{Q}}_{\mathbf{a}} := \underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{\mathbf{V}} = 0.337 \cdot \underline{\mathbf{in}}$ $\underline{\mathbf{Q}}_{a} := \underline{\mathrm{if}} \left(\underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{v} < 0.2 \underline{\mathrm{in}}, 0.2 \underline{\mathrm{in}}, \underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{v} \right) = 0.337 \cdot \underline{\mathrm{in}}$ Calculate Curve Number (CN)


Curve Number $\underline{CN} := \frac{1000 \cdot \underline{in}}{\left[10 \cdot \underline{in} + 5 \cdot \underline{P} + 10 \cdot \underline{Q}_{\underline{a}} - 10\left(\underline{Q}_{\underline{a}}^{2} + 1.25 \cdot \underline{Q}_{\underline{a}} \cdot \underline{P}\right)^{\left(\frac{1}{2}\right)}\right]} = 92$


Calculate Initial Abstraction (Ia)

Potential Maximum Soil
Moisture Retention (in.) $\underline{\mathbf{S}} := \left(\frac{1000\underline{\mathrm{in}}}{\underline{\mathrm{CN}}}\right) - 10\underline{\mathrm{in}} = 0.85 \cdot \underline{\mathrm{in}}$ Initial Abstraction (in.) $\underline{\mathbf{I}}_{\underline{\mathbf{a}}} := 0.2 \cdot \underline{\mathbf{S}} = 0.17 \cdot \underline{\mathrm{in}}$ $\frac{\underline{\mathbf{I}}_{\underline{\mathbf{a}}}}{\underline{\mathbf{P}}} = 0.189$ Time of Concentration
from HydroCAD (hr) $\underline{\mathbf{I}}_{\underline{\mathbf{c}}} := 26\underline{\mathrm{min}} = 0.433 \cdot \underline{\mathrm{hr}}$

Use I_a/P and t_c to determine Unit Peak Discharge from the graph below:

Calculate Peak Discharge (Qwg)

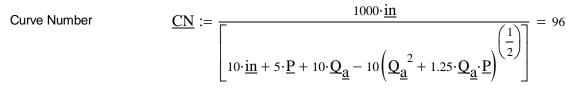
$$\text{Peak Discharge (cfs)} \quad \underline{Q}_{\underline{Wq}} := \left(\underline{q}_{\underline{u}}\right) \cdot \left(\underline{A}\right) \cdot \left(\underline{Q}_{\underline{a}}\right) = 0.307 \cdot \underline{cfs}$$

Input Peak Discharge and channel characteristics to find depth, velocity, and required channel length (peak discharge for 1 and 10 yr storms comes from HydroCAD):

Trapezoidal Channel Calculations - Grass Channel 9					
STA. 800+43.1, LT STA. 802+85.0, LT.					
	WQv	1 Yr	10 Yr		
Peak Discharge	0.307	0.62	1.13	cfs	
Bottom W	4	4	4	ft	
Side Slope	4	4	4	1:X	
Back Slope	4	4	4	1:X	
Long Slope	2.2	2.2	2.2	%	
Length	250	250	250	ft	
	R	ESULTS			
Depth (in):	1.965	2.94	4.09	in	
''n'':	0.15	0.15	0.14865		
Area	0.762	1.220	1.828	ft ²	
Velocity	0.4	0.5	0.6	ft/s	
10 minute	241.651	ft			
length required:	73.674	m			

Results are generated from a tabulated Manning's Equation based on the Peak Discharge and channel dimensions.

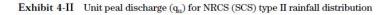
Mathcad Calculations Colchester DDI HES NH 5600(14)

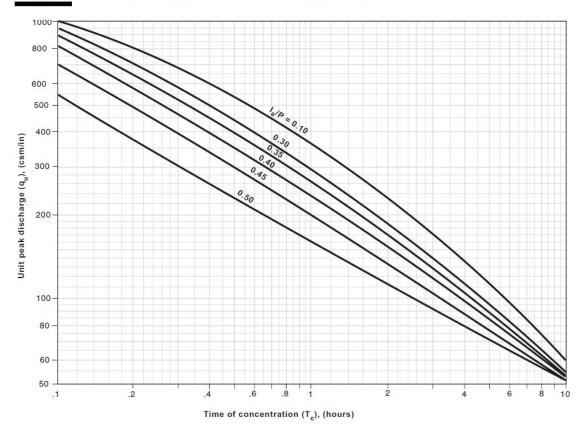

Grass Channel 10

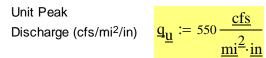
Sta. 44+77.2, LT. - Sta. 48+92.1, LT. Length: 421 ft Side Slopes: 1:3 Bottom Width: 5 ft Long Slope: 1.8%

Calculate Water Quality Volume (WQv)

 $\underline{sf} := (1\underline{ft}) \cdot (1\underline{ft})$ $\underline{cf} := (1\underline{ft}) \cdot (1\underline{ft}) \cdot (1\underline{ft})$ $\underline{\mathrm{cfs}} := \frac{(1\underline{\mathrm{cf}})}{(1\mathrm{s})}$ <u>A</u> := $146747 \cdot sf = 5.264 \times 10^{-3} \cdot mi^{2}$ Drainage Area (sf) $\underline{\mathbf{A}}_{\underline{\mathbf{I}}} := 94131 \cdot \underline{\mathbf{sf}} = 3.376 \times 10^{-3} \cdot \underline{\mathbf{mi}}^2$ Impervious Area (sf) $\underline{\mathbf{A}}_{\mathbf{P}} := 52616 \cdot \underline{\mathbf{s}}_{\mathbf{f}} = 1.887 \times 10^{-3} \cdot \underline{\mathbf{m}}_{\mathbf{i}}^{2}$ Pervious Area (sf) $\underline{\mathbf{I}} := \left(\frac{\underline{\mathbf{A}}_{\underline{\mathbf{I}}}}{\underline{\mathbf{A}}}\right) \cdot 100 = 64.145$ % Impervious Area 90 % Rainfall event (in.) $P := 0.9 \cdot in$ $\underline{\mathbf{R}}_{\mathbf{V}} := 0.05 + 0.009 \cdot \underline{\mathbf{I}} = 0.627$ Volumetric runoff coefficient Water Quality Volume (cf) <u>WQv</u> := $\underline{P} \cdot \underline{R}_{v} \cdot \underline{A} = 6.904 \times 10^{3} \cdot \underline{cf}$ Calculate Runoff Volume (Qa) Runoff Volume (in.) $\underline{\mathbf{Q}}_{\mathbf{a}} := \underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{\mathbf{V}} = 0.565 \cdot \underline{\mathbf{in}}$ $\underline{\mathbf{Q}}_{a} := \underline{\mathrm{if}} \left(\underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{v} < 0.2 \underline{\mathrm{in}}, 0.2 \underline{\mathrm{in}}, \underline{\mathbf{P}} \cdot \underline{\mathbf{R}}_{v} \right) = 0.565 \cdot \underline{\mathrm{in}}$

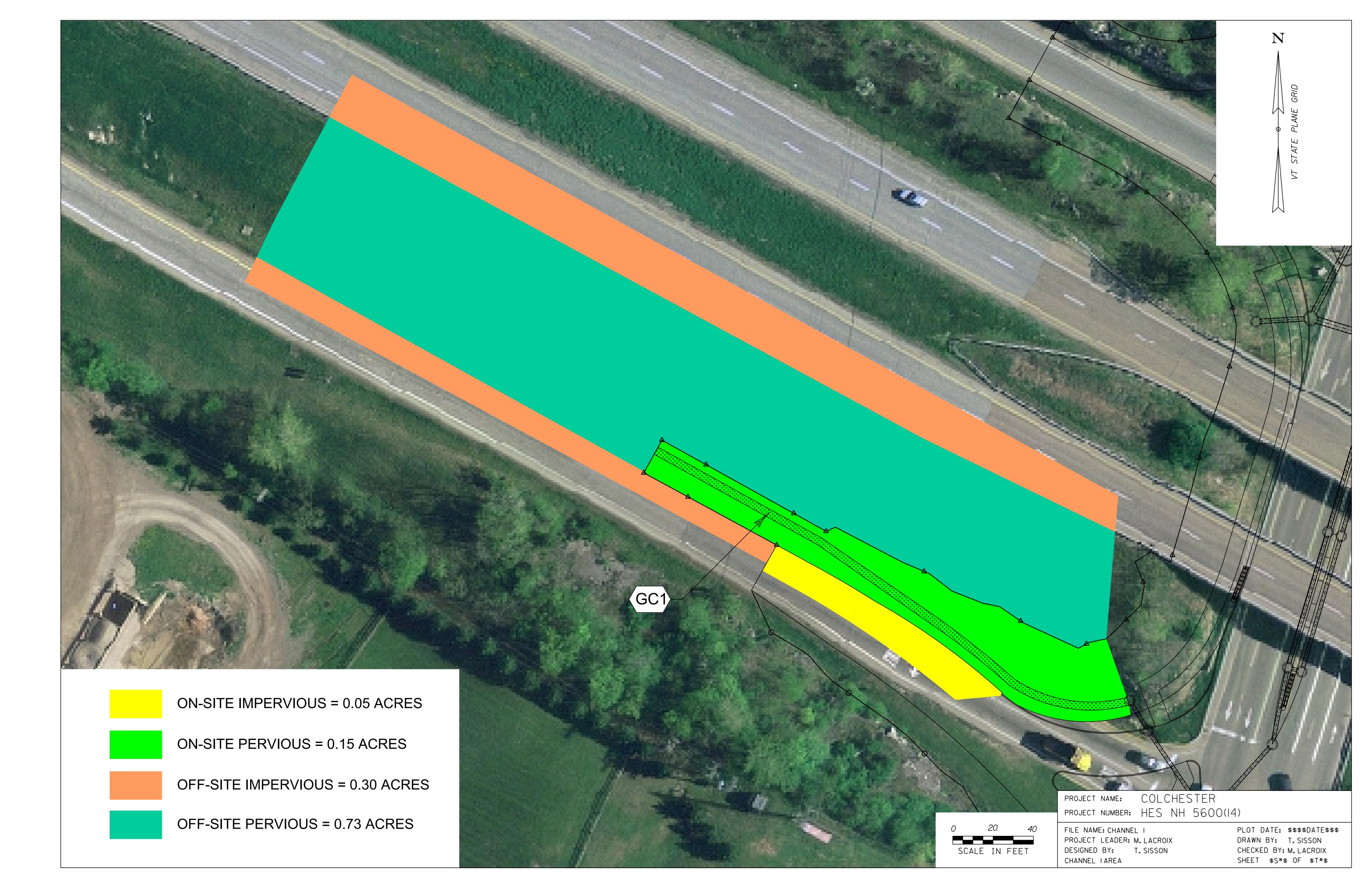

Calculate Curve Number (CN)

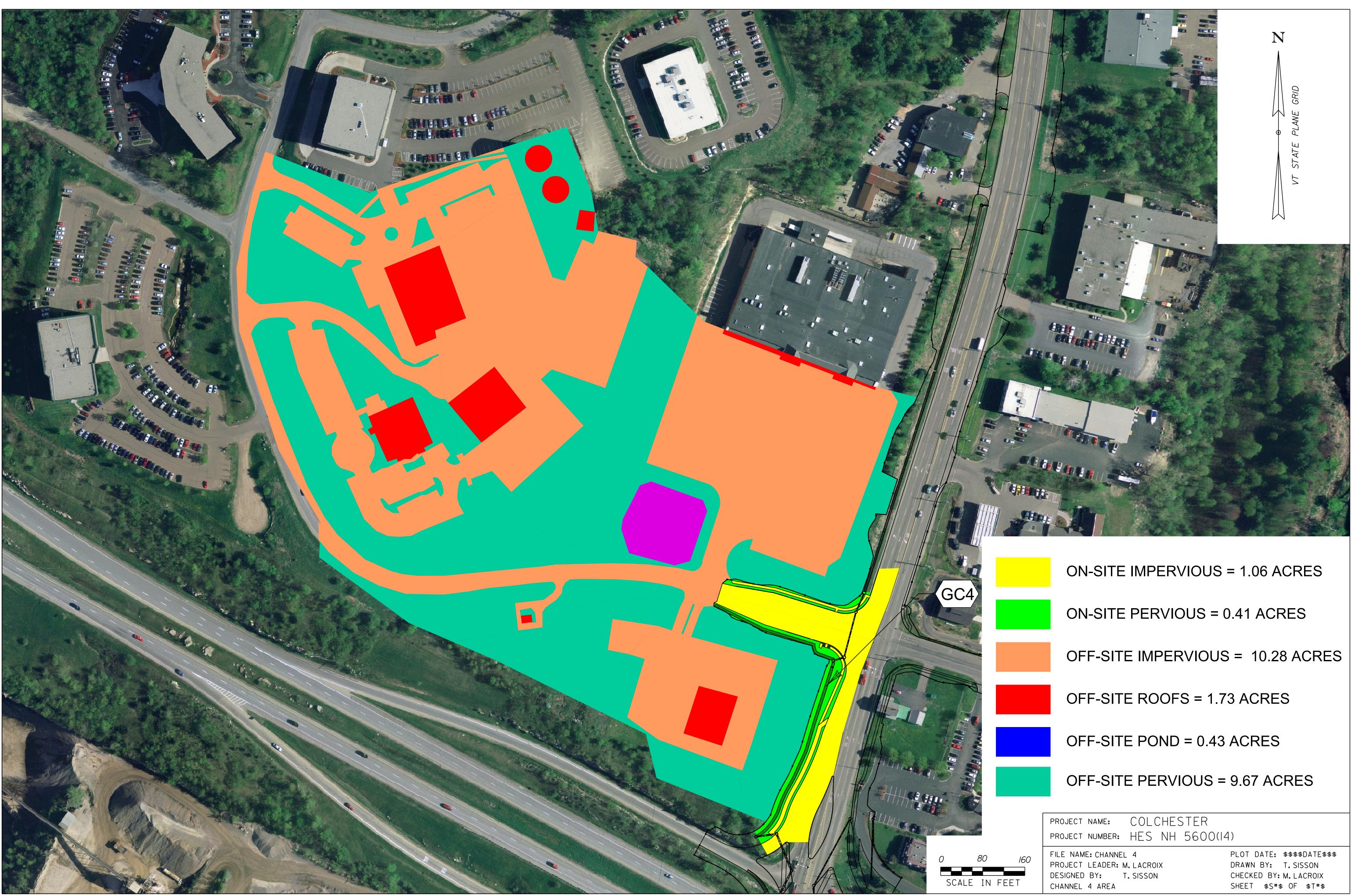



Calculate Initial Abstraction (Ia)

Potential Maximum Soil
Moisture Retention (in.) $\underline{\mathbf{S}} := \left(\frac{1000\underline{\mathrm{in}}}{\underline{\mathrm{CN}}}\right) - 10\underline{\mathrm{in}} = 0.379 \cdot \underline{\mathrm{in}}$ Initial Abstraction (in.) $\underline{\mathbf{I}}_{\underline{\mathbf{a}}} := 0.2 \cdot \underline{\mathbf{S}} = 0.076 \cdot \underline{\mathrm{in}}$ $\frac{\underline{\mathbf{I}}_{\underline{\mathbf{a}}}}{\underline{\mathbf{P}}} = 0.084$ Time of Concentration
from HydroCAD (hr) $\underline{\mathbf{I}}_{\underline{\mathbf{c}}} := 28.2\underline{\mathrm{min}} = 0.47 \cdot \underline{\mathrm{hr}}$

Use I_a/P and t_c to determine Unit Peak Discharge from the graph below:

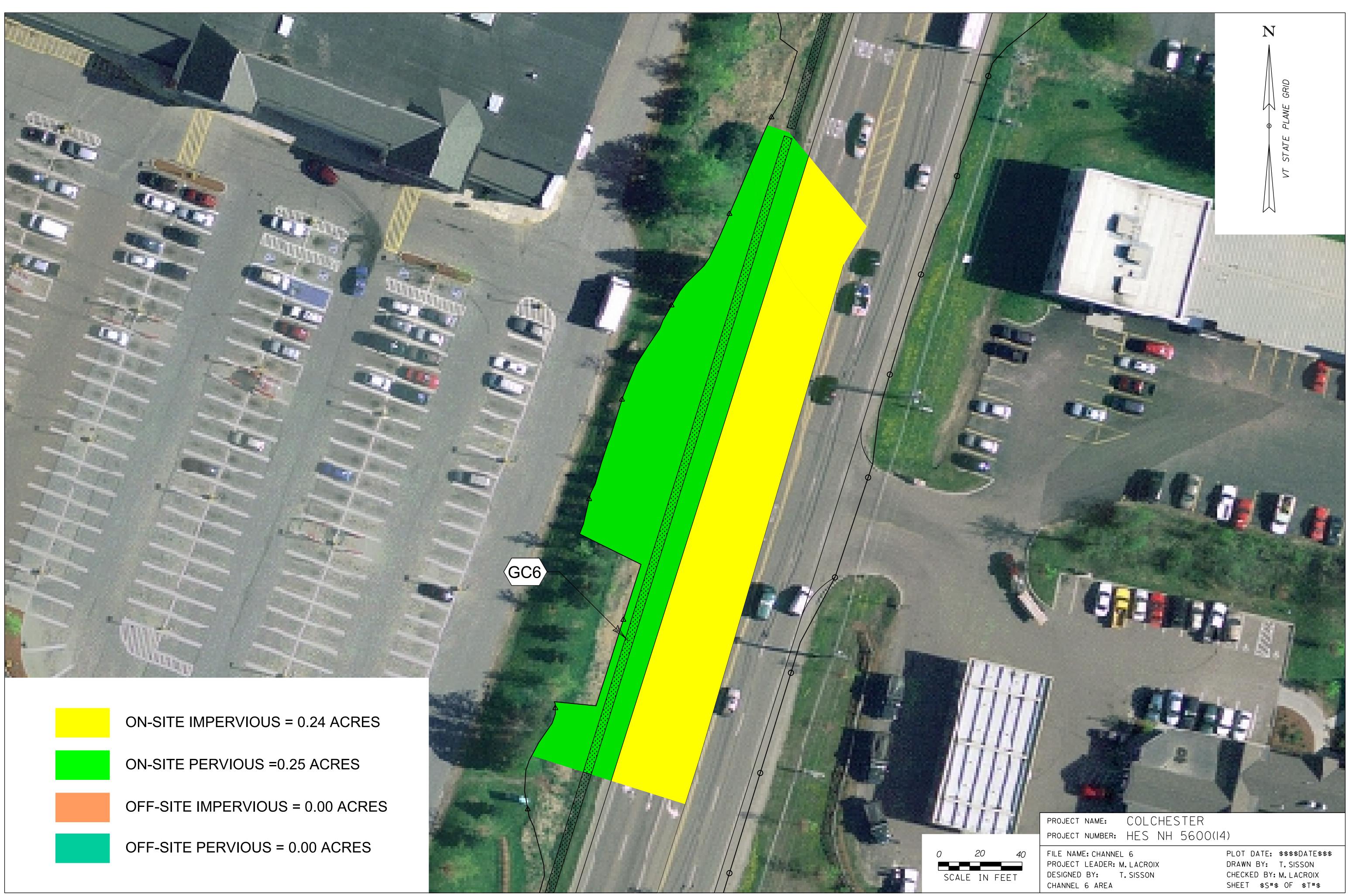

Calculate Peak Discharge (Qwg)

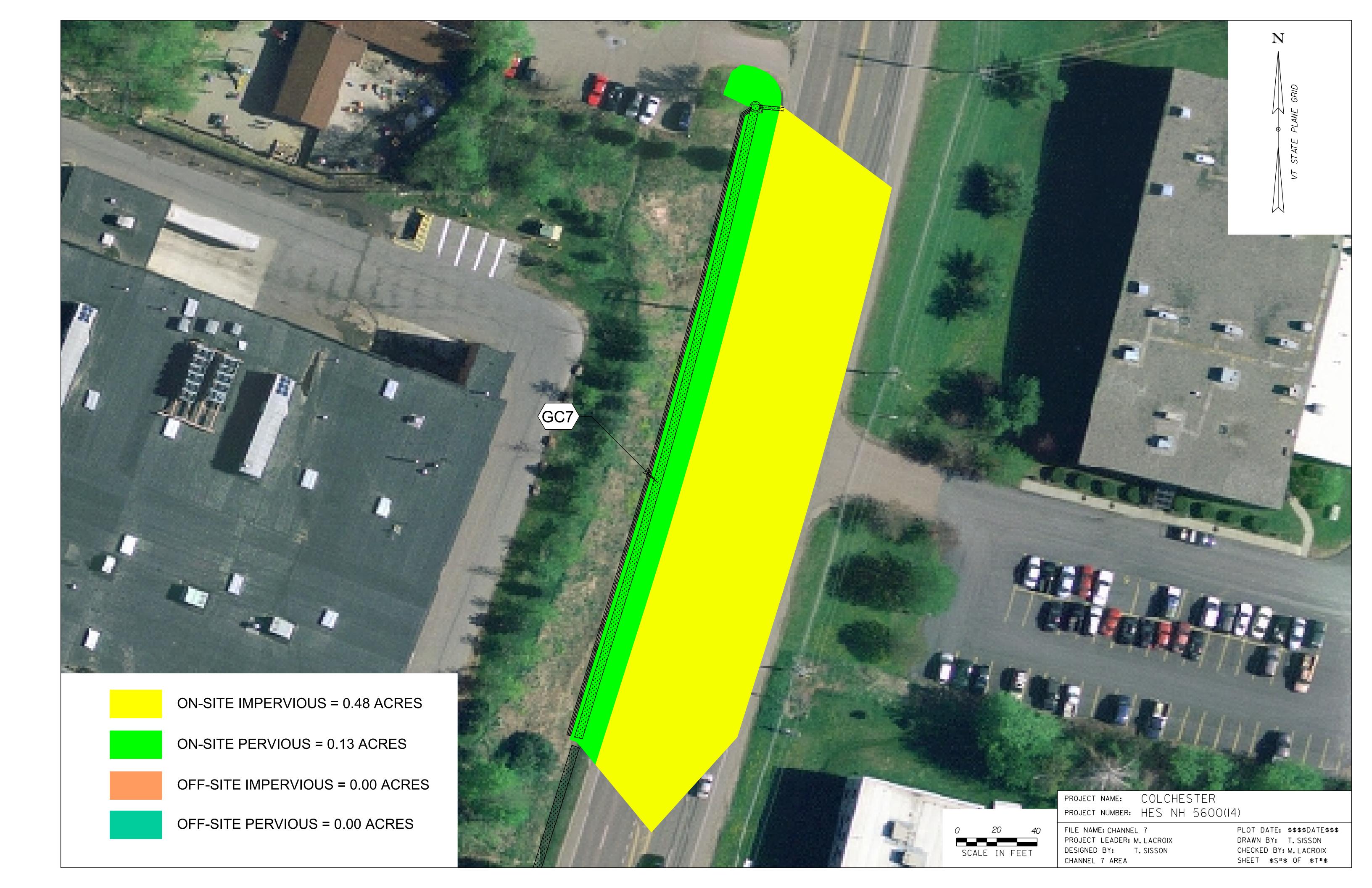

$$\text{Peak Discharge (cfs)} \quad \underline{Q}_{\underline{Wq}} := \left(\underline{q}_{\underline{u}}\right) \cdot \left(\underline{A}\right) \cdot \left(\underline{Q}_{\underline{a}}\right) = 1.635 \cdot \underline{cfs}$$

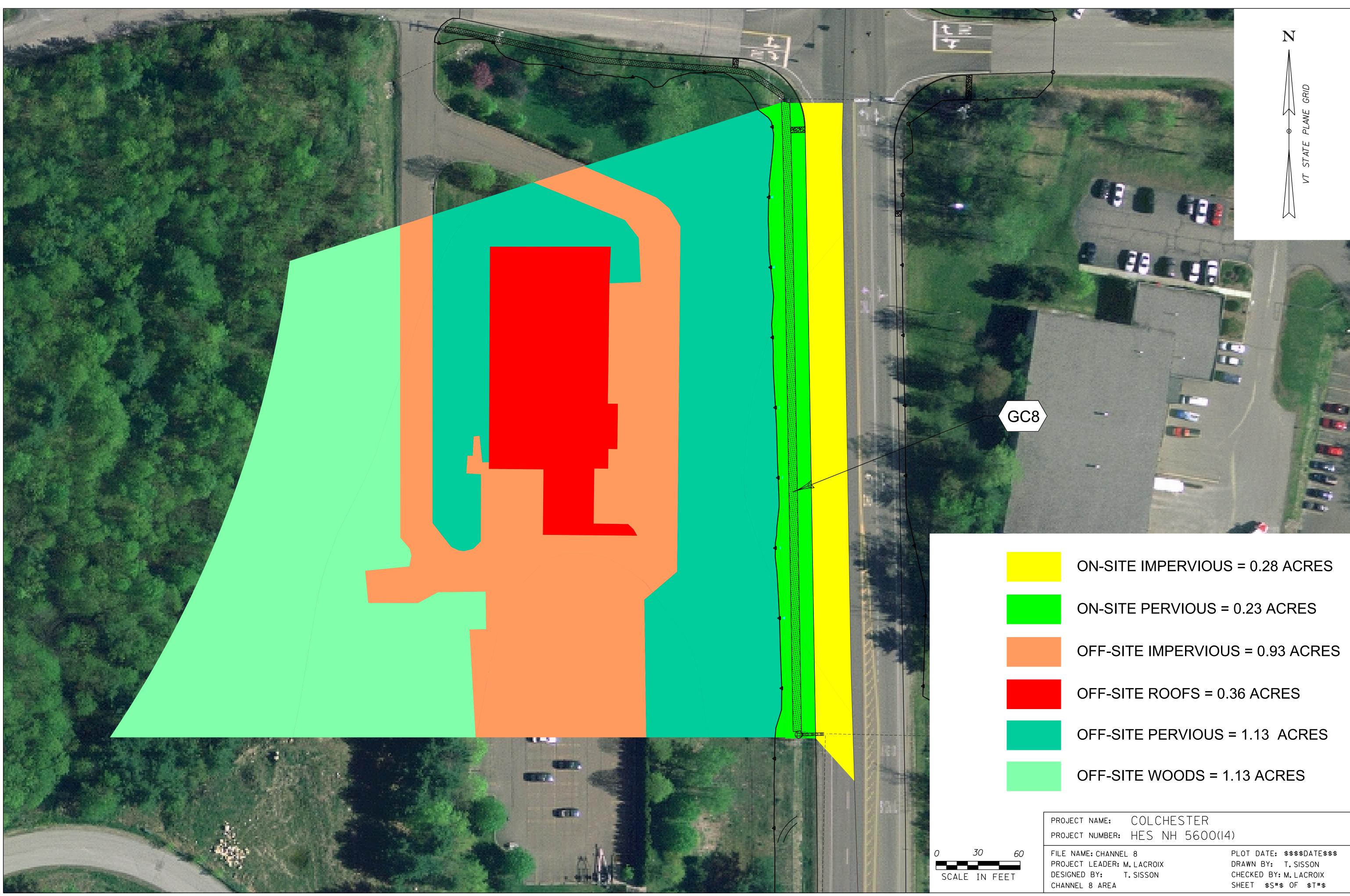
Input Peak Discharge and channel characteristics to find depth, velocity, and required channel length (peak discharge for 1 and 10 yr storms comes from HydroCAD):

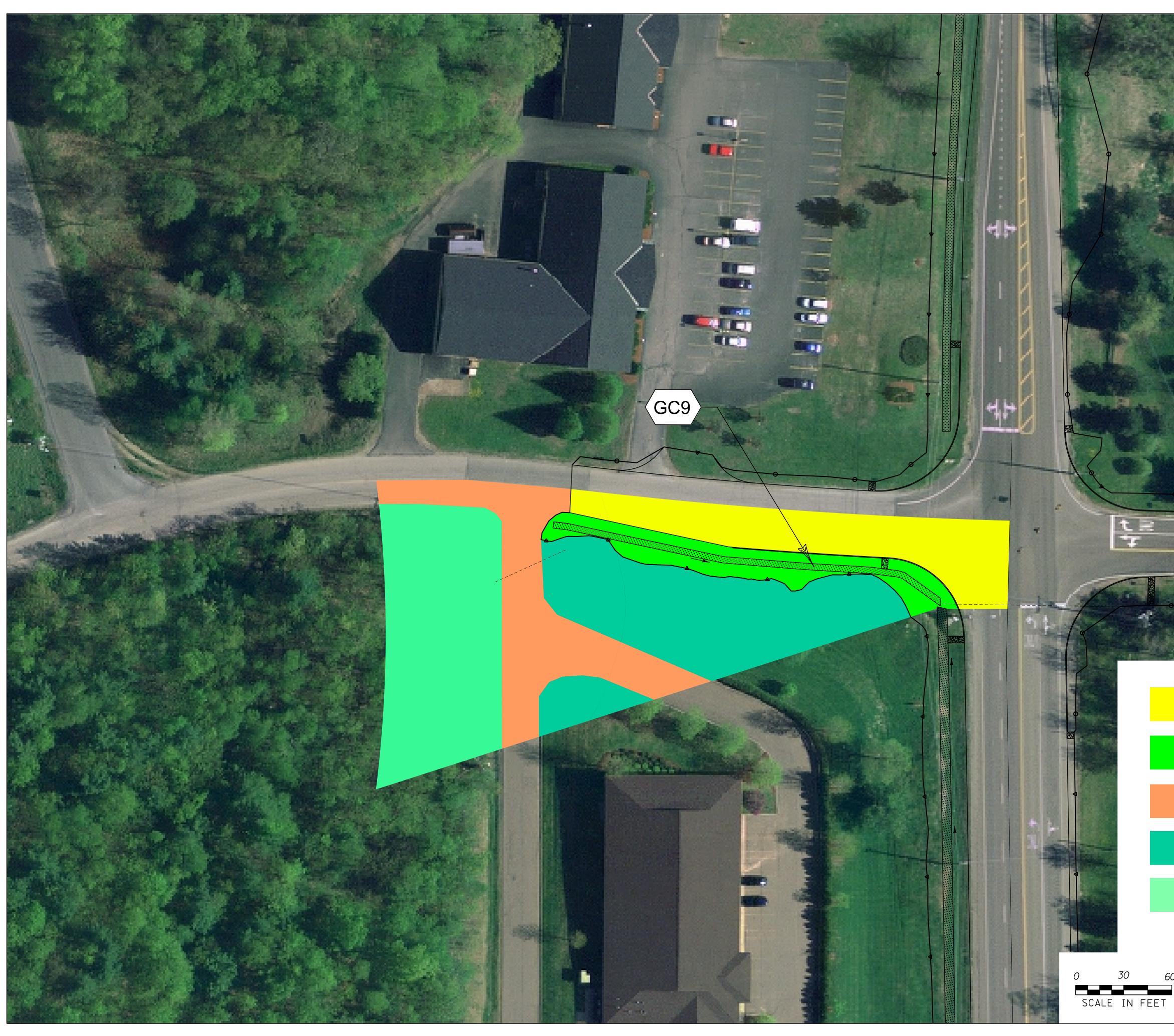
Trapezoidal Channel Calculations - Grass Channel 10					
STA. 44+77.2, LT STA. 48+92.1, LT.					
	WQv	1 Yr	10 Yr		
Peak Discharge	1.635	3.35	5.2	cfs	
Bottom W	5	5	5	ft	
Side Slope	3	3	3	1:X	
Back Slope	3	3	3	1:X	
Long Slope	1.8	1.8	1.8	%	
Length	421	421	421	ft	
	<u>R</u>]	ESULTS			
Depth (in):	4.705	6.32	7.405	in	
''n'':	0.139425	0.1152	0.098925		
Area	2.422	3.465	4.228	ft ²	
Velocity	0.7	1.0	1.2	ft/s	
10 minute	405.103	ft			
length required:	123.507	m			

Results are generated from a tabulated Manning's Equation based on the Peak Discharge and channel dimensions.






	ON-SITE IMPERVIOUS	S = 1.06 ACRES
	ON-SITE PERVIOUS =	= 0.41 ACRES
	OFF-SITE IMPERVIOU	JS = 10.28 ACRES
	OFF-SITE ROOFS = 1	.73 ACRES
	OFF-SITE POND = 0.4	3 ACRES
	OFF-SITE PERVIOUS	= 9.67 ACRES
160	PROJECT NAME: COLCHESTER PROJECT NUMBER: HES NH 5600 FILE NAME: CHANNEL 4	(4) PLOT DATE: \$\$\$DATE\$\$\$
	PROJECT LEADER: M. LACROIX	DRAWN BY: T. SISSON



GC8				
	ON-SITE IMPER	VIOUS = 0.28 ACRES		
	ON-SITE PERVI	OUS = 0.23 ACRES		
	OFF-SITE IMPERVIOUS = 0.93 ACRES			
	OFF-SITE ROOFS = 0.36 ACRES			
	OFF-SITE PERV	IOUS = 1.13 ACRES		
	OFF-SITE WOOI	DS = 1.13 ACRES		
	PROJECT NAME: COLCHES			
60 FEET	FILE NAME: CHANNEL 8 PROJECT LEADER: M.LACROIX DESIGNED BY: T.SISSON CHANNEL 8 AREA	PLOT DATE: \$\$\$\$DATE\$\$\$ DRAWN BY: T.SISSON CHECKED BY:M.LACROIX SHEET \$S#\$ OF \$T#\$		

A A STATE PLANE GRD
ON-SITE IMPERVIOUS = 0.18 ACRES
ON-SITE PERVIOUS = 0.10 ACRES
OFF-SITE IMPERVIOUS = 0.20 ACRES
OFF-SITE PERVIOUS = 0.30 ACRES
OFF-SITE WOODS = 0.28 ACRES

PROJECT NAME: COLCHESTER project number: HES NH 5600(14) 60

FILE NAME: CHANNEL 9 PLOT DATE: \$\$\$\$DATE\$\$\$ PROJECT LEADER: M.LACROIX DRAWN BY: T.SISSON DESIGNED BY: T. SISSON CHANNEL 9 AREA CHECKED BY: M. LACROIX SHEET \$S#\$ OF \$T#\$

ON-SITE IMPERVIOUS = 0.28 ACRES
ON-SITE PERVIOUS = 0.10 ACRES
OFF-SITE IMPERVIOUS = 1.37 ACRES
OFF-SITE ROOFS = 0.51 ACRES
OFF-SITE PERVIOUS = 0.88 ACRES
OFF-SITE WOODS = 0.23 ACRES
PROJECT NAME: COLCHESTER PROJECT NUMBER: HES NH 5600(14)

PROJECT NUMBER: HES INH 360001	7)
FILE NAME: CHANNEL IO	PLOT DATE: \$\$\$\$DATE
PROJECT LEADER: M.LACROIX	DRAWN BY: T.SISSON
DESIGNED BY: T.SISSON	CHECKED BY: M. LACROIX
CHANNEL IO AREA	SHEET \$S#\$ OF \$T#\$
	FILE NAME: CHANNEL IO PROJECT LEADER: M. LACROIX DESIGNED BY: T. SISSON

Project:	Colchester	
	HES NH 5600 (14)	
	Stormwater Treatment	
Practice:	Dry Pond	
	Sta. 36+80.00 – Sta. 38+90.00, RT.	

Dry Pond Description: The pond is located from Station 36+80 to Station 38+90 on the right side of US Route 7 between Hercules Drive and Champlain Drive.

Channel Protection Volume		
One-Year Storm (inches):	2.1	
Pond Drainage Area (acres):	11.159	
Curve Number:	87	
Required Channel Protection Volume (ac-ft):	0.904	
Required Channel Protection Volume (cf):	39,378	
Req'd 12-Hour Extended Release Discharge Rate (cfs):	0.897	

The design requirement for the channel protection standard focuses on storage volume and discharge release rate (flow). As summarized in the tables below, the dry pond as designed meets the required volume and flows of the one-year storm event.

Dry Pond Design Criteria		
Pond Bottom Elevation:	316.00'	
Pond Side Slopes:	4:1	
Primary Discharge Elevation:	316.00'	
Overflow Structure Elevation (CPv):	317.99'	
Emergency Spillway Elevation:	319.00'	
Top of Berm:	321.50'	

One-Year Storm in Dry Pond		
Discharge at Primary Low Flow Outlet (cfs):	0.32	
Storage in Pond (ac-ft):	0.466	
Storage in Pond (cf):	20,312	

10-Year Storm in Dry Pond		
Peak Elevation in Pond:	319.00′	
Storage in Pond (ac-ft):	0.796	
Storage in Pond (cf):	34,654	

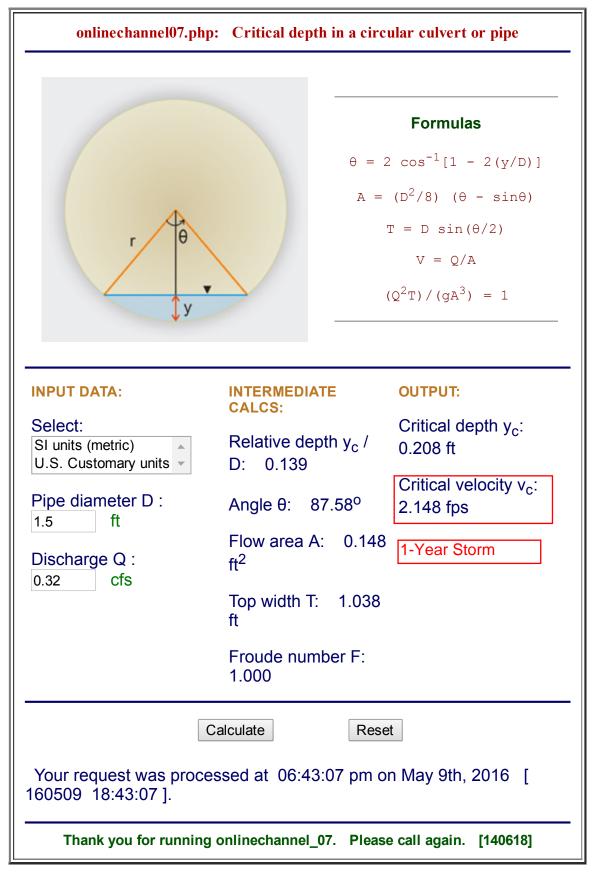
100-Year Storm in Dry Pond	
Peak Elevation in Pond:	319.79'
Storage in Pond (ac-ft):	1.091
Storage in Pond (cf):	47,535

All discharge velocities are anticipated to be well below the 9.2 ft/s velocity threshold for a Type II stone channel as per the VTrans Hydraulics Manual. Type II Stone, per the Vermont Agency of Transportation Standard Specification for Constructions, is required to be between 2 and 36 inches in length and at least 50 percent of the volume of stone in place shall have a least dimension of 12 inches.

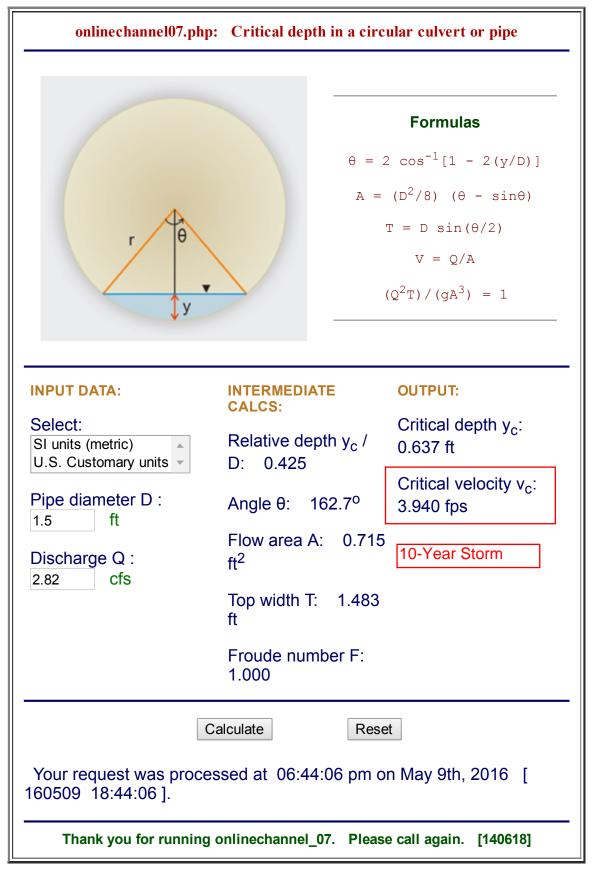
The calculated one-year storm in the barrel is velocity is 2.15 ft/s; the 10-year storm in the barrel is 3.94 ft/s and the 100-year storm is 8.52 ft/s. The velocities were calculated using the critical depth of the barrel during these storm events. The flow velocities of the spillway were calculated to be 0.22 ft/s for the 10-year storm and 3.04 ft/s for the 100-year storm.

All storm events up to and including the 100-year event will have at minimum 1.0' of freeboard measured from the peak pond elevation from the event to the top of the pond berm.

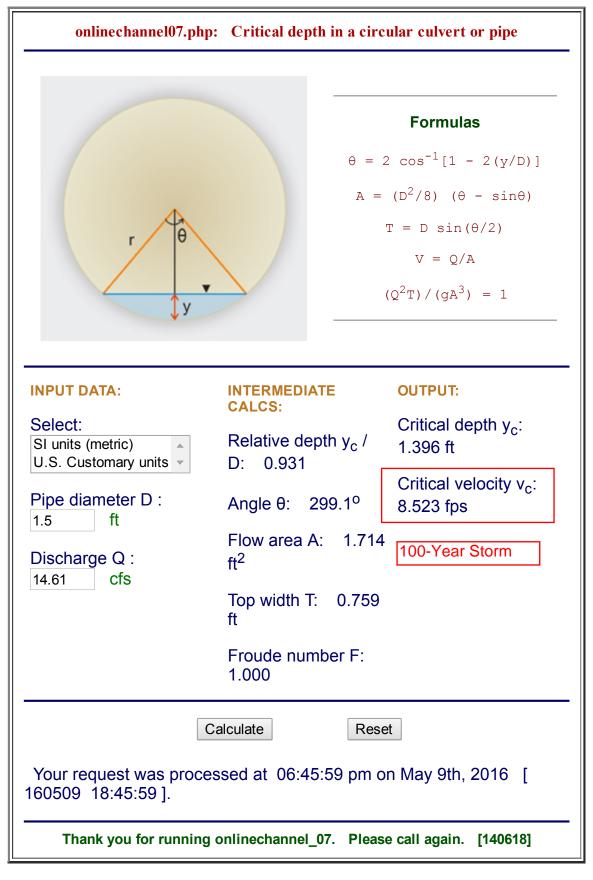
The pond has a hazard classification of "A" due to its storage height product, the volume in acrefeet below the spillway multiplied by the pond depth, being less than 3,000. Soil Conservation District small pond approval is not required due to the embankment height of less than 6 feet and the storage volume below the emergency spillway of less than 40,000 cubic feet.

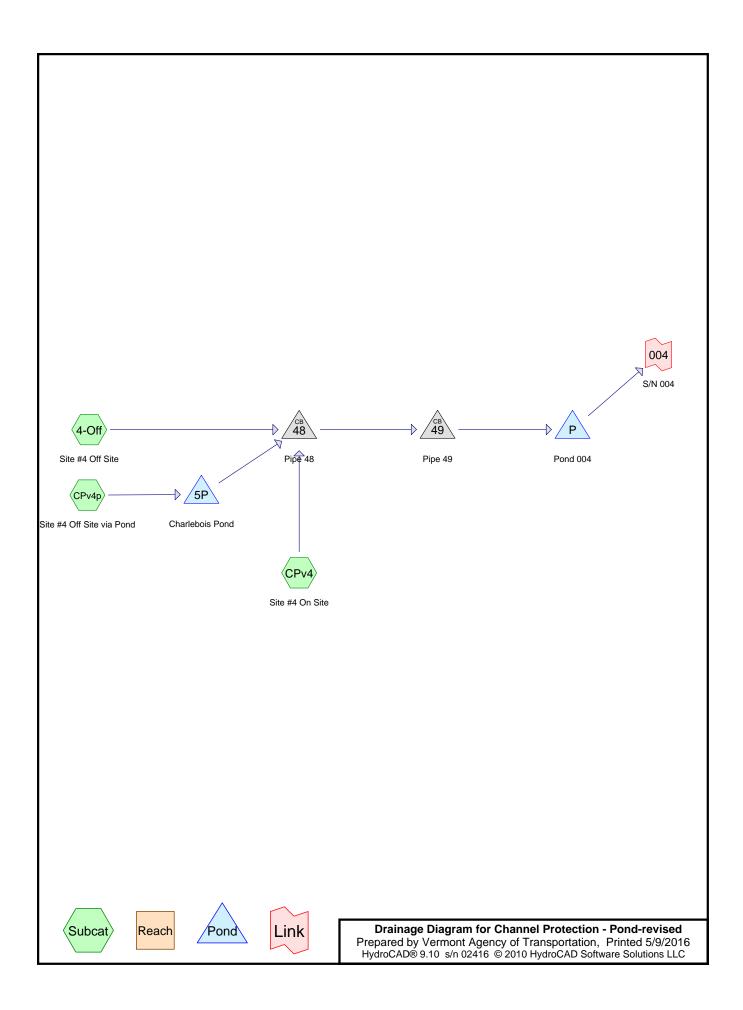

A stone lined pilot channel will be constructed in the bottom of the pond to guide stormwater to the during low flow conditions.

The inlet to the pond will have scour protection at its outlet for 10-year storm.


The pond's drain was designed so that a less than 24-hour drawdown time of the volume will occur.

In the area near the pond, ledge is estimated to be approximately 13 feet below existing grade. This depth was interpolated from nearby roadway boring information. No geotechnical investigation occurred at the pond proper.


A maintenance road was designed to accommodate a vehicle to access the outlet areas of the pond. This road will be 12' wide and will have enough area at the end of it for a vehicle to turn around.



Channel Protection - Pond-revised

Prepared by Vermont Agency of Transportation HydroCAD® 9.10 s/n 02416 © 2010 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.022	39	>75% Grass cover, Good, HSG A (CPv4)
0.562	61	>75% Grass cover, Good, HSG B (CPv4)
3.832	79	Woods, Fair, HSG D (4-Off)
0.692	80	>75% Grass cover, Good, HSG D (CPv4)
0.717	84	50-75% Grass cover, Fair, HSG D (4-Off)
2.838	98	Paved parking, HSG D (4-Off, CPv4p)
0.026	98	Paved roads w/curbs & sewers, HSG A (CPv4)
0.475	98	Paved roads w/curbs & sewers, HSG B (CPv4)
0.004	98	Paved roads w/curbs & sewers, HSG C (CPv4)
1.169	98	Paved roads w/curbs & sewers, HSG D (CPv4)
0.357	98	Roofs, HSG D (4-Off)
0.465	98	Water Surface, HSG A (CPv4, CPv4p)
11.159		TOTAL AREA

Channel Protection - Pond-revised

Soil Listing (all nodes)

Are	a Soil	Su	bcatchment
(acres	s) Grou	up Nu	Imbers
0.51	3 HSG	GA CF	Pv4, CPv4p
1.03	7 HSC	GB CF	Pv4
0.00	4 HSG	GC CF	Pv4
9.60	5 HSG	GD 4-0	Off, CPv4, CPv4p
0.00	0 Othe	ər	
11.15	9	тс	OTAL AREA

Channel Protection - Pond-revised

Prepared by Vermont Agency of Transportation	
HydroCAD® 9.10 s/n 02416 © 2010 HydroCAD Software Solutions LLC	

Line	e#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Fill (inches)
	1	CPv4	0.00	0.00	61.0	0.0311	0.025	18.0	0.0	0.0
	2	CPv4	0.00	0.00	125.0	0.0649	0.025	18.0	0.0	0.0
	3	5P	331.00	330.00	45.5	0.0220	0.012	15.0	0.0	0.0
	4	48	322.75	320.05	75.0	0.0360	0.013	30.0	0.0	0.0
	5	49	319.00	316.00	28.0	0.1071	0.013	30.0	0.0	0.0
	6	Р	315.25	315.00	39.0	0.0064	0.013	18.0	0.0	0.0

Pipe Listing (all nodes)

Channel Protection - Pond-revise Prepared by Vermont Agency of Tran HydroCAD® 9.10 s/n 02416 © 2010 Hydr	nsportation Printed 5/9/2016
Runof	.00-360.00 hrs, dt=0.02 hrs, 18001 points f by SCS TR-20 method, UH=SCS r-Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment 4-Off: Site #4 Off Site	Runoff Area=256,290 sf 22.68% Impervious Runoff Depth=0.82" Flow Length=1,296' Tc=13.3 min CN=84 Runoff=6.49 cfs 0.400 af
Subcatchment CPv4: Site #4 On Site	Runoff Area=139,067 sf 60.03% Impervious Runoff Depth=0.98" Flow Length=1,397' Tc=5.3 min CN=87 Runoff=5.76 cfs 0.262 af
	e via Runoff Area=90,708 sf 100.00% Impervious Runoff Depth=1.87" =467' Slope=0.0200 '/' Tc=2.7 min CN=98 Runoff=6.73 cfs 0.325 af
Pond 5P: Charlebois Pond	Peak Elev=333.11' Storage=0.245 af Inflow=6.73 cfs 0.325 af Outflow=0.11 cfs 0.243 af
Pond 48: Pipe 48 30.0" Ro	Peak Elev=324.11' Inflow=10.81 cfs 0.904 af ound Culvert n=0.013 L=75.0' S=0.0360 '/' Outflow=10.81 cfs 0.904 af
Pond 49: Pipe 49 30.0" Ro	Peak Elev=320.36' Inflow=10.81 cfs 0.904 af ound Culvert n=0.013 L=28.0' S=0.1071 '/' Outflow=10.81 cfs 0.904 af
Pond P: Pond 004	Peak Elev=317.99' Storage=20,312 cf Inflow=10.81 cfs 0.904 af Outflow=0.32 cfs 0.904 af
Link 004: S/N 004	Inflow=0.32 cfs 0.904 af Primary=0.32 cfs 0.904 af
Total Runoff Area = 11.	159 ac Runoff Volume = 0.987 af Average Runoff Depth = 1.06

Total Runoff Area = 11.159 acRunoff Volume = 0.987 afAverage Runoff Depth = 1.06"52.20% Pervious = 5.825 ac47.80% Impervious = 5.333 ac

Summary for Subcatchment 4-Off: Site #4 Off Site

Runoff 6.49 cfs @ 12.06 hrs, Volume= 0.400 af, Depth= 0.82" =

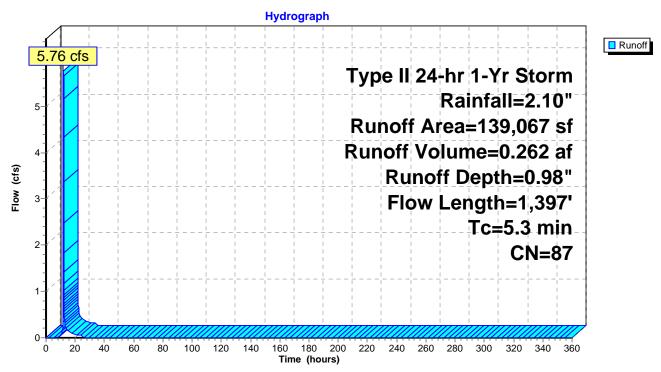
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-360.00 hrs, dt= 0.02 hrs Type II 24-hr 1-Yr Storm Rainfall=2.10"

_	А	rea (sf)	CN E	Description		
	1	66,925	79 V	Voods, Fai	r, HSG D	
		15,537	98 F	Roofs, HSG	6 D	
		31,236	84 5	0-75% Gra	ass cover, F	Fair, HSG D
_		42,592	<u>98</u> F	aved park	<u>ing, HSG D</u>	
	2	56,290	84 V	Veighted A	verage	
	1	98,161	7	7.32% Per	vious Area	
		58,129	2	2.68% Imp	pervious Ar	ea
	_				- ·	
	ŢĊ	Length	Slope	Velocity	Capacity	Description
-	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.0	58	0.0200	0.99		Shallow Concentrated Flow,
	0.5	00	0 0000	0.07		Short Grass Pasture Kv= 7.0 fps
	0.5	92	0.0200	2.87		Shallow Concentrated Flow,
	4 4	05	0.0200	0.00		Paved Kv= 20.3 fps
	1.4	85	0.0200	0.99		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
	0.7	114	0.0200	2.87		Shallow Concentrated Flow,
	0.7	117	0.0200	2.07		Paved $Kv = 20.3 \text{ fps}$
	1.0	61	0.0200	0.99		Shallow Concentrated Flow,
	1.0	01	0.0200	0.00		Short Grass Pasture Kv= 7.0 fps
	0.6	109	0.0200	2.87		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	0.6	44	0.0300	1.21		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	4.7	442	0.0500	1.57		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	2.8	291	0.1200	1.73		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	12 2	1 206	Total			

13.3 1,296 Total

Hydrograph Runoff 6.49 cfs Type II 24-hr 1-Yr Storm 6 Rainfall=2.10" Runoff Area=256,290 sf 5-Runoff Volume=0.400 af Flow (cfs) Runoff Depth=0.82" 4-Flow Length=1,296' 3-Tc=13.3 min **CN=84** 2-1 0 20 120 140 160 180 200 Ó 40 60 80 100 220 240 260 280 300 320 340 360 Time (hours)

Subcatchment 4-Off: Site #4 Off Site


HydroCAD® 9.10 s/n 02416 © 2010 HydroCAD Software Solutions LLC

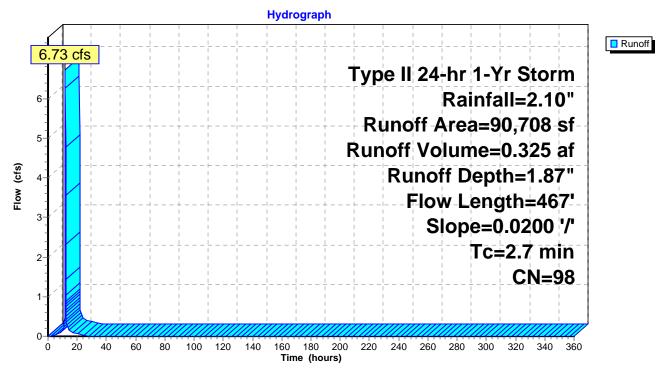
Summary for Subcatchment CPv4: Site #4 On Site

Runoff = 5.76 cfs @ 11.97 hrs, Volume= 0.262 af, Depth= 0.98"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-360.00 hrs, dt= 0.02 hrs Type II 24-hr 1-Yr Storm Rainfall=2.10"

A	rea (sf)	CN I	Description				
	30,144	80 :	80 >75% Grass cover, Good, HSG D				
	50,922	98 I	Paved road	s w/curbs &	& sewers, HSG D		
	0	74 :	>75% Gras	s cover, Go	ood, HSG C		
	174	98 I	Paved road	s w/curbs &	& sewers, HSG C		
	24,481	61 :	>75% Gras	s cover, Go	ood, HSG B		
	20,691	98 I	Paved road	s w/curbs &	& sewers, HSG B		
	958	39 :	>75% Gras	s cover, Go	ood, HSG A		
	1,133				& sewers, HSG A		
	10,564	98	Water Surfa	ace, 0% imp	o, HSG A		
1	39,067	87 \	Weighted A	verage			
	66,147	4	47.56% Per	vious Area			
	72,920	Ę	52.44% Imp	pervious Are	ea		
_							
Tc	Length	Slope		Capacity	Description		
(min)	(feet)	(ft/ft)		(cfs)			
1.2	67	0.0147	0.91		Sheet Flow, Sheet Flow		
					Smooth surfaces n= 0.011 P2= 2.10"		
0.3	68	0.0413	4.13		Shallow Concentrated Flow, Shallow Pave 1		
		0 0004	4.00	~~~~	Paved Kv= 20.3 fps		
1.5	444	0.0091	4.86	38.91	Channel Flow, Grass Channel 1		
					Area= 8.0 sf Perim= 12.2' r= 0.66'		
0.0	04	0.0044	F 4 F	0.00	n= 0.022 Earth, clean & straight		
0.2	61	0.0311	5.45	9.63			
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'		
4.0	<u></u>	0.04.04	E 0.4	40.00	n= 0.025 Corrugated metal		
1.8	632	0.0131	5.84	46.68	Channel Flow, Channel 2 Area= 8.0 sf Perim= 12.2' r= 0.66'		
0.3	125	0.0649	7.87	13.92	n= 0.022 Earth, clean & straight		
0.5	125	0.0049	1.01	13.92	Pipe Channel, Culvert 2 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'		
					n=0.025 Corrugated metal		
5 0	1 207	Total					
5.3	1,397	Total					

Subcatchment CPv4: Site #4 On Site


Summary for Subcatchment CPv4p: Site #4 Off Site via Pond

Runoff = 6.73 cfs @ 11.93 hrs, Volume= 0.325 af, Depth= 1.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-360.00 hrs, dt= 0.02 hrs Type II 24-hr 1-Yr Storm Rainfall=2.10"

A	vrea (sf)	CN	Description		
	81,022	98	Paved park	ing, HSG D)
	9,686	98	Water Surfa	ace, HSG A	N
	90,708	98	Weighted A	verage	
	90,708		100.00% In	npervious A	vrea
Тс	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)	
2.7	467	0.0200	2.87		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps

Subcatchment CPv4p: Site #4 Off Site via Pond

Summary for Pond 5P: Charlebois Pond

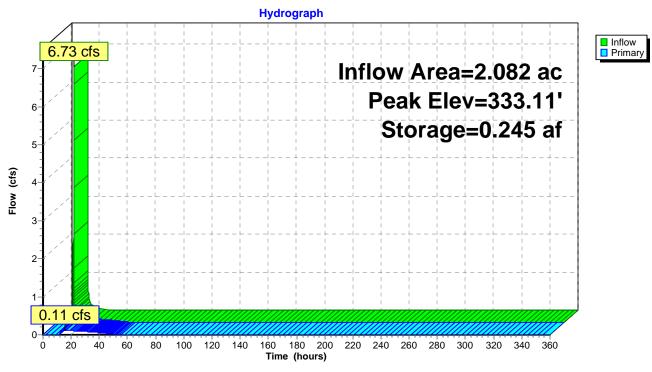
Inflow Area	a =	2.082 ac,100.00% Impervious, Inflow Depth = 1.87" for 1-Yr Storm event
Inflow	=	6.73 cfs @ 11.93 hrs, Volume= 0.325 af
Outflow	=	0.11 cfs @ 15.78 hrs, Volume= 0.243 af, Atten= 98%, Lag= 230.9 min
Primary	=	0.11 cfs @ 15.78 hrs, Volume= 0.243 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-360.00 hrs, dt= 0.02 hrs Peak Elev= 333.11' @ 15.78 hrs Surf.Area= 0.105 ac Storage= 0.245 af

Plug-Flow detention time= 975.5 min calculated for 0.243 af (75% of inflow) Center-of-Mass det. time= 886.1 min (1,645.5 - 759.4)

Volume	Invert	Avail.Stora	age Stora	age Description	
#1	327.00'	0.351	af Cust	om Stage Data	(Prismatic)Listed below (Recalc)
Elevatio (fee			c.Store re-feet)	Cum.Store (acre-feet)	
327.0	0 0.	003	0.000	0.000	
328.0	0 0.	009	0.006	0.006	
329.0	0 0.	018	0.014	0.020	
330.0		029	0.024	0.043	
331.0		050	0.039	0.082	
332.0		075	0.062	0.145	
333.0		102	0.088	0.233	
334.0	0 0.	132	0.117	0.351	
Device	Routing	Invert	Outlet De	evices	
#1	Primary	331.00'	15.0" Ro	ound Culvert	
#2 #3	Device 1 Primary	331.00' 333.50'	Inlet / Ou n= 0.012 1.7" Vert 36.0" x 3	tlet Invert= 331.0 Steel, smooth . Orifice/Grate	ce/Grate C= 0.600

Primary OutFlow Max=0.11 cfs @ 15.78 hrs HW=333.11' TW=323.01' (Dynamic Tailwater)


-1=Culvert (Passes 0.11 cfs of 7.20 cfs potential flow)

1-2=Orifice/Grate (Orifice Controls 0.11 cfs @ 6.88 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

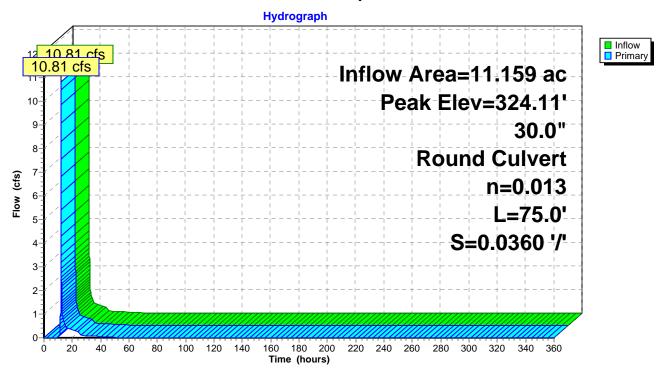
HydroCAD® 9.10 s/n 02416 © 2010 HydroCAD Software Solutions LLC

Channel Protection - Pond-revised Type Prepared by Vermont Agency of Transportation HydroCAD® 9.10 s/n 02416 © 2010 HydroCAD Software Solutions LLC

Summary for Pond 48: Pipe 48

 Inflow Area =
 11.159 ac, 47.80% Impervious, Inflow Depth =
 0.97" for 1-Yr Storm event

 Inflow =
 10.81 cfs @
 12.00 hrs, Volume=
 0.904 af


 Outflow =
 10.81 cfs @
 12.00 hrs, Volume=
 0.904 af, Atten= 0%, Lag= 0.0 min

 Primary =
 10.81 cfs @
 12.00 hrs, Volume=
 0.904 af

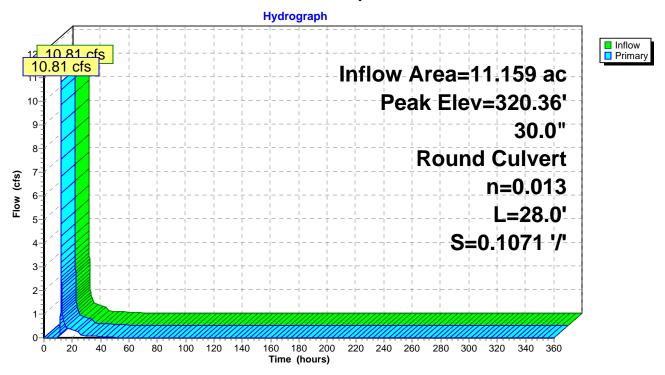
Routing by Dyn-Stor-Ind method, Time Span= 0.00-360.00 hrs, dt= 0.02 hrs Peak Elev= 324.11' @ 12.00 hrs Flood Elev= 326.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	322.75'	30.0" Round Culvert L= 75.0' Ke= 0.500
			Inlet / Outlet Invert= 322.75' / 320.05' S= 0.0360 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=10.78 cfs @ 12.00 hrs HW=324.11' TW=320.36' (Dynamic Tailwater) -1=Culvert (Inlet Controls 10.78 cfs @ 3.96 fps)

Pond 48: Pipe 48

Channel Protection - Pond-revised *Typ* Prepared by Vermont Agency of Transportation HydroCAD® 9.10 s/n 02416 © 2010 HydroCAD Software Solutions LLC


Summary for Pond 49: Pipe 49

Inflow Area =11.159 ac, 47.80% Impervious, Inflow Depth =0.97" for 1-Yr Storm eventInflow =10.81 cfs @12.00 hrs, Volume=0.904 afOutflow =10.81 cfs @12.00 hrs, Volume=0.904 af, Atten= 0%, Lag= 0.0 minPrimary =10.81 cfs @12.00 hrs, Volume=0.904 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-360.00 hrs, dt= 0.02 hrs Peak Elev= 320.36' @ 12.00 hrs Flood Elev= 324.50'

Device	Routing	Invert	Outlet Devices	
#1	Primary	319.00'	30.0" Round Culvert L= 28.0' Ke= 0.500 Inlet / Outlet Invert= 319.00' / 316.00' S= 0.1071 '/' Cc= 0.900	
			n= 0.013 Corrugated PE, smooth interior	

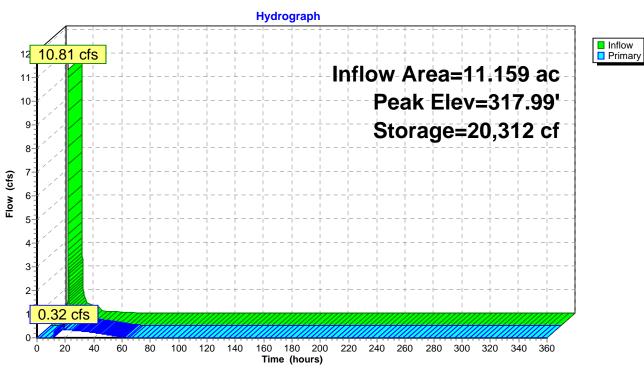
Primary OutFlow Max=10.78 cfs @ 12.00 hrs HW=320.36' TW=316.77' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 10.78 cfs @ 3.96 fps)

Pond 49: Pipe 49

Summary for Pond P: Pond 004

Inflow Area	=	11.159 ac, 47.80% Impervious, Inflow Depth = 0.97" for 1-Yr Storm event
Inflow	=	10.81 cfs @ 12.00 hrs, Volume= 0.904 af
Outflow	=	0.32 cfs @ 19.18 hrs, Volume= 0.904 af, Atten= 97%, Lag= 431.3 min
Primary	=	0.32 cfs @ 19.18 hrs, Volume= 0.904 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-360.00 hrs, dt= 0.02 hrs Peak Elev= 317.99' @ 19.18 hrs Surf.Area= 0 sf Storage= 20,312 cf


Plug-Flow detention time= 858.4 min calculated for 0.904 af (100% of inflow) Center-of-Mass det. time= 853.5 min (1,914.2 - 1,060.7)

Volume	Invert	Avail.Sto	rage Storage Description	
#1	316.00'	87,67	79 cf Custom Stage DataListed below	
			-	
Elevatio		n.Store		
(fee	t) (cub	<u>ic-feet)</u>		
316.0		0		
317.0		8,893		
317.5		13,961		
318.5		26,849		
319.0		34,580		
320.0		51,060		
321.0		68,835		
322.0	0	87,679		
Device	Routing	Invert	Outlet Devices	
#1	Primary	319.00'	10.0' long Spillway 2 End Contraction(s) 2.0' Crest Height	
#2	Device 4	318.80'	24.0" x 24.0" Horiz. Overflow C= 0.600	
			Limited to weir flow at low heads	
#3	Device 4	316.00'	3.0" Vert. Low Flow C= 0.600	
#4	Primary	315.25'	18.0" Round Culvert	
			L= 39.0' CPP, mitered to conform to fill, Ke= 0.700	
			Inlet / Outlet Invert= 315.25' / 315.00' S= 0.0064 '/' Cc= 0.900	
			n= 0.013 Corrugated PE, smooth interior	
Primary OutFlow Max=0.32 cfs @ 19.18 hrs HW=317.99' TW=0.00' (Dynamic Tailwater) 1=Spillway (Controls 0.00 cfs) 1=Culvert (Passes 0.32 cfs of 10.60 cfs potential flow)				

-4=Culvert (Passes 0.32 cfs of 10.60 cfs potential flow)

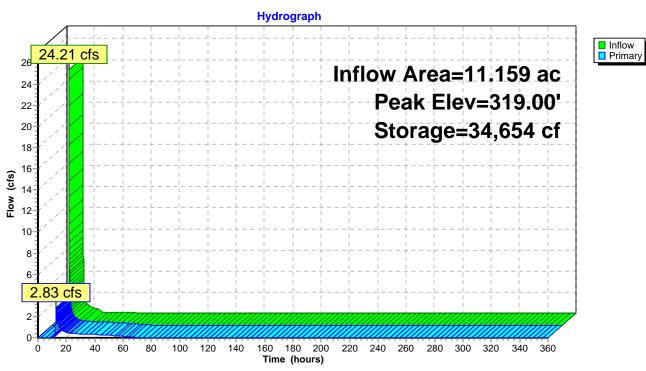
2=Overflow (Controls 0.00 cfs)

-3=Low Flow (Orifice Controls 0.32 cfs @ 6.58 fps)

Pond P: Pond 004

Summary for Pond P: Pond 004

Inflow Area	=	11.159 ac, 47.80% Impervious, Inflow Depth = 1.90" for 10-Yr Storm event
Inflow :	=	24.21 cfs @ 12.01 hrs, Volume= 1.767 af
Outflow :	=	2.83 cfs @ 12.64 hrs, Volume= 1.766 af, Atten= 88%, Lag= 38.1 min
Primary :	=	2.83 cfs @ 12.64 hrs, Volume= 1.766 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-360.00 hrs, dt= 0.02 hrs Peak Elev= 319.00' @ 12.64 hrs Surf.Area= 0 sf Storage= 34,654 cf

Plug-Flow detention time= 804.0 min calculated for 1.766 af (100% of inflow) Center-of-Mass det. time= 802.1 min (1,792.9 - 990.9)

Volume	Invert	Avail.Sto	rage	Storage Description
#1	316.00'	87,6	79 cf	Custom Stage DataListed below
-	•	0.		
Elevatio		m.Store		
(feet		<u>pic-feet)</u>		
316.0	-	0		
317.0		8,893		
317.5	-	13,961		
318.5		26,849		
319.0		34,580		
320.0		51,060		
321.0		68,835		
322.0	0	87,679		
Device	Routing	Invert	Outlet	Devices
#1	Primary	319.00'	10.0'	long Spillway 2 End Contraction(s) 2.0' Crest Height
#2	Device 4	318.80'		x 24.0" Horiz. Overflow C= 0.600
			Limite	d to weir flow at low heads
#3	Device 4	316.00'	3.0" \	/ert. Low Flow C= 0.600
#4	Primary	315.25'	18.0"	Round Culvert
			L= 39	.0' CPP, mitered to conform to fill, Ke= 0.700
				Outlet Invert= 315.25' / 315.00' S= 0.0064 '/' Cc= 0.900
			n= 0.0	013 Corrugated PE, smooth interior
Primary OutFlow Max=2.83 cfs @ 12.64 hrs HW=319.00' TW=0.00' (Dynamic Tailwater)				
1=Spillway (Weir Controls 0.01 cfs @ 0.22 fps)				
4=Culvert (Passes 2.82 cfs of 13.01 cfs potential flow)				

2=Overflow (Weir Controls 2.42 cfs @ 1.48 fps)

-3=Low Flow (Orifice Controls 0.40 cfs @ 8.17 fps)

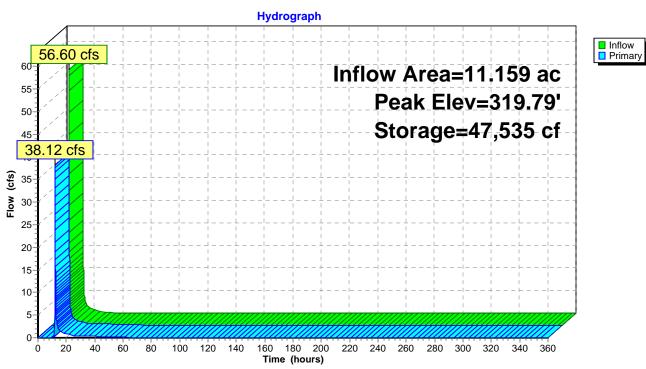
Pond P: Pond 004

Summary for Pond P: Pond 004

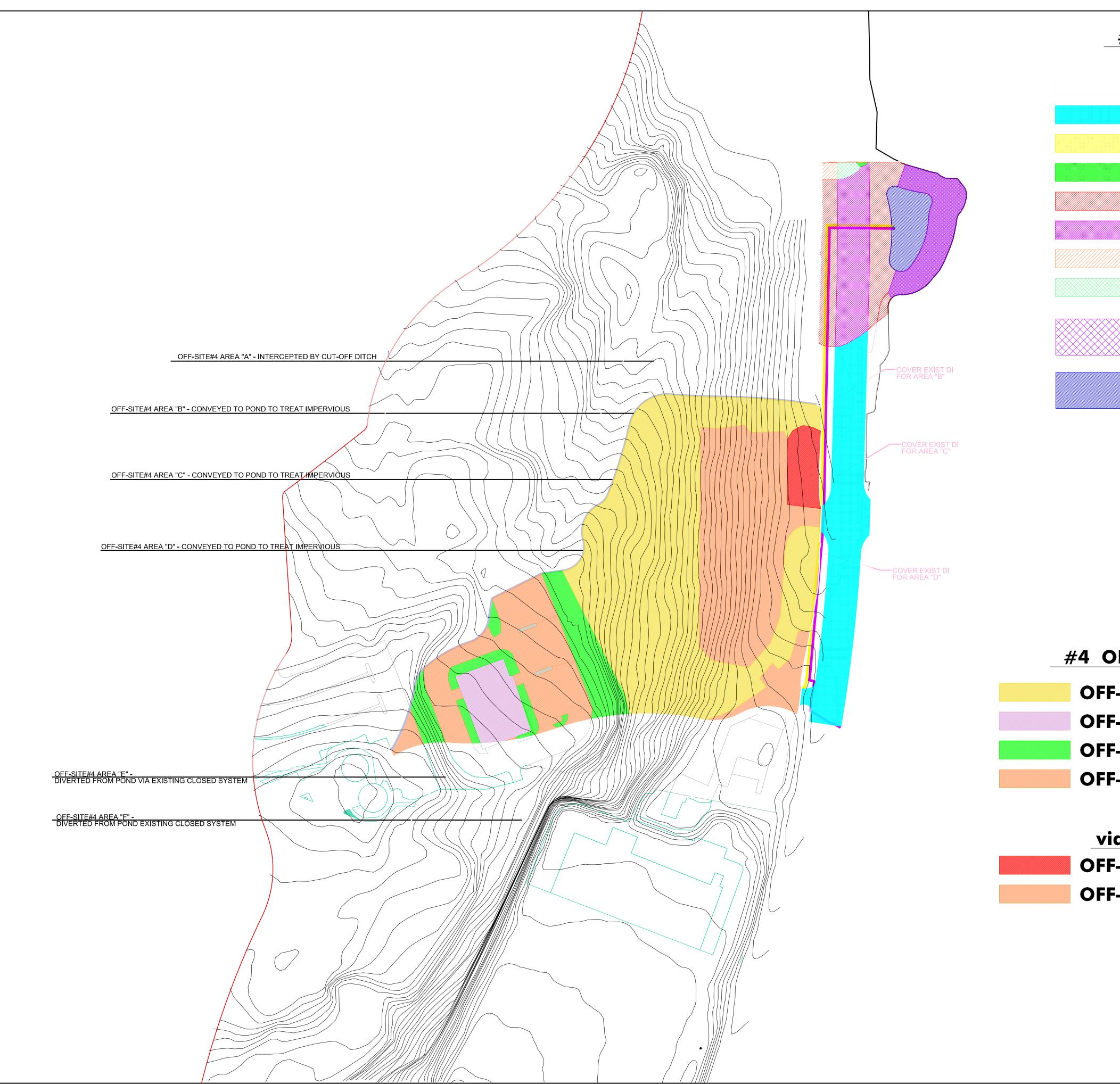
Inflow Area =	11.159 ac,	47.80% Impervious, Inflow	Depth = 3.73" for 100-Yr Stor	m event
Inflow =	56.60 cfs @	11.98 hrs, Volume=	3.471 af	
Outflow =	38.12 cfs @	12.08 hrs, Volume=	3.471 af, Atten= 33%, Lag= 5	5.9 min
Primary =	38.12 cfs @	12.08 hrs, Volume=	3.471 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-360.00 hrs, dt= 0.02 hrs Peak Elev= 319.79' @ 12.08 hrs Surf.Area= 0 sf Storage= 47,535 cf

Plug-Flow detention time= 431.4 min calculated for 3.471 af (100% of inflow) Center-of-Mass det. time= 429.9 min (1,326.6 - 896.7)


Volume	Invert	Avail.Sto	rage Storage Description
#1	316.00'	87,67	79 cf Custom Stage DataListed below
Elevatio		m.Store	
(fee	et) (cub	<u>pic-feet)</u>	
316.0		0	
317.0		8,893	
317.5		13,961	
318.5		26,849	
319.0		34,580	
320.0	-	51,060	
321.0		68,835	
322.0	00	87,679	
Device	Routing	Invert	Outlet Devices
#1	Primary	319.00'	10.0' long Spillway 2 End Contraction(s) 2.0' Crest Height
#2	Device 4	318.80'	24.0" x 24.0" Horiz. Overflow C= 0.600
<i>"</i> -	Device 1	010.00	Limited to weir flow at low heads
#3	Device 4	316.00'	3.0" Vert. Low Flow $C = 0.600$
#4	Primary	315.25'	18.0" Round Culvert
		0.0.20	L= 39.0' CPP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 315.25' / 315.00' S= 0.0064 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior
			<u> </u>
Primary	OutFlow M	lax=38.11 cfs	@ 12.08 hrs HW=319.79' TW=0.00' (Dynamic Tailwater)
_ ·			50 cfs @ 3.04 fps)
	Ivort (Inlet (Controls 14 61	1 cfs @ 8 27 fps

-4=Culvert (Inlet Controls 14.61 cfs @ 8.27 fps)


2=Overflow (Passes < 19.12 cfs potential flow)

-3=Low Flow (Passes < 0.45 cfs potential flow)

Prepared by Vermont Agency of Transportation HydroCAD® 9.10 s/n 02416 © 2010 HydroCAD Software Solutions LLC

Pond P: Pond 004

#4 ON-SITE POND ANALYSIS

PERVIOUS, D SOIL	30,144 SF
IMPERVIOUS, D SOIL	50,922 SF
PERVIOUS, C SOIL	0 SF
IMPERVIOUS, C SOIL	174 SF
PERVIOUS, B SOIL	24,481 SF
IMPERVIOUS, B SOIL	20,691 SF
PERVIOUS, A SOI [®] Let 75 ⁴	958 SF
IMPERVIOUS, A SOIL	1,133 SF
-	128,503 SF

On-Site #4 Area not to pond 16,952 SF

#4 OFF-SITE POND ANALYSIS

F-SITE WOODS, D SOIL	166,925 SF
F-SITE ROOFS, D SOIL	15,537 SF
F-SITE GRASS, D SOIL	31,236 SF
F-SITE PAVED, D SOIL	42,592 SF

via EXISTING POND OFF-SITE POND, D SOIL OFF-SITE PAVED, D SOIL

15,537	SF
31,236	SF
42,592	SF

9,686 SF 81,022 SF

346,998 SF

#4 ON-SITE POND ANALYSIS

PERVIOUS, D SOIL **IMPERVIOUS, D SOIL** PERVIOUS, C SOIL IMPERVIOUS, C SOIL PERVIOUS, B SOIL IMPERVIOUS, B SOIL PERVIOUS, A SOIL IMPERVIOUS, A SOIL

On-Site #4 Area not to pond 16,952 SF

On-Site #4 Pond Area 10,564 SF

30,144 SF 50,922 SF 0 SF 174 SF 24,481 SF 20,691 SF 958 SF 1,133 SF

128,503 SF

#4 OFF-SITE POND ANALYSIS

OFF-SITE WOODS, D SOIL 166,925 SF OFF-SITE ROOFS, D SOIL-OFF-SITE GRASS, D SOIL OFF-SITE PAVED, D SOIL

via EXISTING POND OFF-SITE POND, D SOIL OFF-SITE PAVED, D SOIL 15,537 SF 31,236 SF 42,592 SF

9,686 SF 81,022 SF

346,998 SF

PROJECT NAME: COLCHESTER PROJECT NUMBER: HES NH 5600(14)

FILE NAME: Channel Protection-Pond.dgn PLOT DATE: \$\$\$DATE\$\$\$ PROJECT LEADER: PAC DRAWN BY: MBL DESIGNED BY: MBL CHECKED BY: HSD ChannelProtection Cover Types

SHEET \$\$*\$ OF \$T*\$

Project:	Colchester
-	HES NH 5600 (14)
	Stormwater Treatment
Practice:	Dry Pond #7
	Sta. C 1+31 – Sta. C 2+99, RT.

Dry Pond Description: The pond is located from Station C 1+31 to Station C 2+99 on the southern side of the I-89 Exit 16 SB On-Ramp.

Overbank Flood Protection		
10-Year Pre-Development Storm at S/N 007 (cfs):	16.7	
10-Year Post-Development Storm at S/N 007 (cfs):	31.4	
10-Year Post-Development Storm at S/N 007 with Dry Pond (cfs):	17.4	
Net flow at S/N 007 (cfs):	+4.0%	

Dry Pond Design Criteria		
Pond Bottom Elevation:	317.50′	
Pond Side Slopes:	2:1 Max.	
Low Flow Orifice #1 (8") Elevation:	317.50′	
Low Flow Orifice #2 (8") Elevation:	318.50	
Overflow Structure Elevation:	320.60'	
Top of Berm Elevation:	322.00'	

10-Year Storm in Dry Pond		
Peak Elevation in Pond:	319.38'	
Storage in Pond (ac-ft):	0.236	
Storage in Pond (cf):	10,285	

The calculated 10-year storm velocity at the outlet is 4.15 fps. This is below the threshold for a Type I stone channel per the VTrans Hydraulics Manual and as such, Type I stone fill will be installed at the outlet location.

In the area of the pond, ledge was not encountered during geotechnical investigation. The investigation included drilling cylindrical shaft borings near the road side to a depth at least 15 feet below existing grades.

The following downstream analysis shows in greater detail all of the on-site and off-site contributing areas and flows to the discharge point via this dry pond.

Project:	Colchester
-	HES NH 5600 (14)
	Stormwater Treatment
Practice:	Dry Pond #8
	Sta. D 3+84 – Sta. D 5+25, LT.

Dry Pond Description: The pond is located from Station D 3+84 to Station D 5+25 on the southern side of the I-89 Exit 16 NB Off-Ramp.

Overbank Flood Protection		
10-Year Pre-Development Storm at S/N 008 (cfs):	40.1	
10-Year Post-Development Storm at S/N 008 (cfs):	40.3	
10-Year Post-Development Storm at S/N 008 with Dry Pond (cfs):	37.9	
Net flow at S/N 008 (cfs):	-5.5%	

Dry Pond Design Criteria	
Pond Bottom Elevation:	320.00'
Pond Side Slopes:	3:1 Max.
Low Flow Orifice #1 (6") Elevation:	320.00'
Low Flow Orifice #2 (12") Elevation:	322.00'
Overflow Structure Elevation:	324.00'
Top of Berm Elevation:	326.50'

10-Year Storm in Dry Pond	
Peak Elevation in Pond:	324.00'
Storage in Pond (ac-ft):	0.111
Storage in Pond (cf):	4,819

The calculated 10-year storm velocity at the outlet is 5.23 fps. This is below the threshold of 5.3 fps for a Type I stone channel per the VTrans Hydraulics Manual and as such, Type I Stone Fill will be installed at the outlet location.

In the area of the pond, ledge was not encountered during geotechnical investigation. The investigation included drilling cylindrical shaft borings near the road side to a depth at least 15 feet below existing grades.

The following downstream analysis shows in greater detail all of the on-site and off-site contributing areas and flows to the discharge point via this dry pond.

To: Colchester HES NH 5600(14) Project File Date: January 12, 2015 Revised May 10, 2016 Memorandum

Project #: 57699.00

From: Marla Keene, P.E.

Re: Downstream Analysis

Introduction

The Colchester Diverging Diamond Interchange ("DDI") project proposed by the Vermont Agency of Transportation ("VTrans") seeks to make improvements to the Interstate 89 Exit 16 Interchange with U.S. Routes 2 and 7 in Colchester, Vermont (the "Project"). As presented in the Vermont Individual Stormwater Discharge Permit ("INDS") Application, of which this memorandum is a component, which was submitted to the Vermont Department of Environmental Conservation ("DEC") on October 3, 2014, this Project involves a Project Area of approximately 18.4 acres, 1.6 acres of which are new impervious surfaces for a total Project impervious of 11.3 acres. The total jurisdictional area of the Project is approximately 5.2 acres, which is used as the definition of the Site in this analysis in accordance with the Vermont Stormwater Treatment Standards, and is tabulated on a discharge point by discharge point basis on Page 6 of the INDS narrative.

Because this Project involves greater than 1 acre of impervious area, the Project requires permit coverage under the Environmental Protection Rules, Chapter 18 (DEC, 2011) and as such must comply with the Vermont Stormwater Treatment Standards. All new and redeveloped impervious surfaces within the Project discharge to Sunnyside Brook in Colchester, Vermont, a tributary to Sunderland Brook. Discharges to waters of the state are proposed at eight locations along Sunnyside Brook, designated as S/N 001 through S/N 008 and shown on Figure 1 of the Attachment. These locations are described fully in the INDS application materials.

This memorandum presents the results of a Downstream Analysis of the Project to assess peak flow rates in Sunnyside Brook at each point of stormwater discharge, both with and without proposed operational phase stormwater treatment practices ("STPs"). This memorandum has been updated to reflect the addition of 8.0 acres of off-site tributary in the vicinity of the Interstate 89 interchange based on public comments received in response to the draft stormwater discharge permit 6946-INDS issued by the DEC on February 19, 2016. VHB and VTrans reviewed the watershed delineation in the vicinity of Interstate 89 using field observations, aerial imagery and Chittenden County two-foot LIDAR generated contours and made adjustments to watersheds within the area tributary to the Project's two upstream-most discharge points. The analysis has been performed in accordance with Section 1.2 of the Vermont Stormwater Management Manual ("VSMM")(ANR, 2002). The results presented herein without proposed stormwater management practices supports the downstream analysis waiver applied for by VTrans, for the required overbank flood protection stormwater treatment standard. The analysis with proposed STPs represents the actual anticipated conditions that will occur at the discharge points during the modeled storm events.

Model Setup and Assumptions

In order to evaluate the net resulting change of the Project on flows in Sunnyside Brook, VHB constructed a model using Urban Hydrology for Small Watersheds TR-55 ("TR-55")(NRCS, 1999) as applied using HydroCAD, which is appropriate for watersheds with a time of concentration between 0.1 and 10 hours and a curve number greater than 40. Provided below is a listing and description of input data as well as associated assumptions. Figure 1 of the

40 IDX Drive Building 100, Suite 200 South Burlington, VT 05403 P 802.497.6100 Colchester HES NH 5600(14) Downstream Analysis Ref: 57699.00 May 10, 2016 Page 2 of 13

Attachment shows each off-site watershed used in support of this analysis. On-site watersheds are shown in Section 4 of the INDS. As described further below, the time of concentration and curve number for each of the watersheds evaluated in this analysis is appropriate for evaluation in TR-55.

Watershed Delineation Assumptions

Watersheds to each discharge point are shown in Figure 1 of the Attachment. Provided below is a narrative describing how the watersheds were determined, including a description of data sources considered. No changes to the Project watersheds have been made since the October 19, 2015 submission.

VHB evaluated off-site flows tributary to each discharge point using as a starting point watersheds delineated by the Vermont StreamStats program. StreamStats provides a very coarse watershed approximation, so VHB conducted a field visit to confirm or modify as necessary the tributary area to each discharge point. As proscribed in the downstream analysis guidance document (WMD, 2006), VHB removed the portions of the automatically delineated watersheds coincident with the on-site Project Area from the StreamStats watershed for separate analysis.

Where StreamStats delineated watersheds overlapped the Vermont Agency of Natural Resources ("ANR") Sunderland Brook Watershed (ANR, 2006), the ANR Sunderland Brook Watershed was assumed to be more accurate and used as the boundary of the off-site tributary area.

For off-site watersheds 6, 7 and 8, the StreamStats delineated boundary did not accurately represent the flow patterns resulting from current development, and therefore VHB modified the boundaries accordingly. For this submission, watershed 7 was expanded to include areas south of Interstate 89 and west of Route 7 based on field observation and topographic data, and those areas were routed via Route 7 drainage infrastructure. Two areas south of Interstate 89, which are tributary to discharge point S/N 009 under existing conditions and to discharge point S/N 007 under proposed conditions due to the reconfigured drainage infrastructure within the Project limits, were added to the proposed conditions model only. Watersheds west of Route 7 and situated between Interstate 89 and Mountain View Drive were adjusted based on field observations, review of record drawings and topographic data.

For the area to Pond 9, the pond across U.S. Route 7 from Hercules Drive, designated as off-site watershed 4a, VHB assumed the tributary area and land use described in permit 4146-9015 is accurate.

VHB slightly adjusted the StreamStats delineated boundary line between off-site watershed 5 and off-site watershed 4 to correspond to the off-site boundary used in the INDS dry pond supporting computations, included as Appendix F of the INDS. Given the available topographic data, VHB believes the boundary used for the dry pond analysis to be more accurate than the StreamStats boundary.

To reflect changes made to the dry pond supporting computations for this submission, VHB updated the modeling of off-site watershed 4 at the boundary with off-site watershed 3 and at the internal boundary differentiating the area to S/N 004 routed via Pond 4 and the area routed directly to S/N 004. The changes to this boundary line are a result of field observations undertaken in response to public comments received in response to draft stormwater discharge permit 6946-INDS. The off-site watersheds to S/N 004 remain separated by area west of U.S. Route 7 and area east of U.S. Route 7. Details of the west and east subwatersheds can be found in the supporting HydroCAD computations, located in the Attachment. Both west and east subwatersheds discharge to Sunnyside Brook at S/N 004.

Colchester HES NH 5600(14) Downstream Analysis Ref: 57699.00 May 10, 2016 Page 3 of 13

For StreamStats off-site watershed 5, a large area of mixed land cover including Camp Johnson was included. Field observations indicated that the area including and east of Camp Johnson flows south to the Upper Winooski Reservoir and not to Sunnyside Brook, therefore this area was removed from the analysis.

Downstream of off-site watershed 4, VHB found the StreamStats watersheds generally agree with Chittenden County 2-foot LIDAR generated contour data and field observations and therefore, in the absence of pipe network data, VHB did not further refine the off-site watershed boundaries as defined by StreamStats. Figure 1 of the Attachment shows the final off-site watersheds used in this analysis.

With the exceptions of the off-site areas tributary to S/N 009 under existing conditions and tributary to S/N 007 under proposed conditions, off-site tributary watershed delineations remain unchanged in this existing and proposed conditions analysis. Therefore VHB concluded that the above assumptions would not have a significant impact on analysis results. At all discharge points, the resulting off-site watershed was equal to or greater than ten times larger than on-site tributary area at the corresponding discharge point, thereby meeting the "10-percent rule" for downstream analysis. Table 1 below shows the individual and cumulative areas tributary to each discharge point, listed in order from upstream to downstream.

	Tabl	e 1: Summary	of On- and Off-S	Site Areas	
Discharge Point (S/N)	Off-Site Area (ac)	Cumulative Off-Site Area (ac)	On-Site Area Contributing (ac)	Cumulative On-Site Area (ac)	Cumulative Total Area (ac)
007	47.9	47.9	3.5	3.5	51.4
008	32.4	80.3	3.8	7.3	87.6
006	21.5	21.5	0.9	0.9	22.4
005	158.6	180.0	0.3	1.2	181.2
004	40.3	220.3	5.7	6.9	227.2
003	20.9	241.2	1.0	7.9	249.2
002	13.4	254.7	1.7	9.6	264.3
001	15.0	269.7	1.0	10.6	280.3
Note: Appro	ximately 0.6 a	acres, described	in the INDS Secti	on 2, are includ	ed in the total

Note: Approximately 0.6 acres, described in the INDS Section 2, are included in the total Project Area of 18.4 acres but discharge to the Winooski River and are therefore not included in this analysis.

Resulting tributary watersheds described in Table 1 above are nested from upstream to downstream. The columns labeled "Off-" and "On-Site Area (ac)" represent the additional off- and on-site area tributary at each subsequent

Colchester HES NH 5600(14) Downstream Analysis Ref: 57699.00 May 10, 2016 Page 4 of 13

downstream discharge point respectively under proposed conditions, while the columns labeled "Cumulative Off-" and "Cumulative On-Site Area (ac)" represent the total off- and on-site area tributary at each discharge point respectively.

Land Use/Land Cover Assumptions

VHB used aerial-imagery derived land use/land cover mapping and NRCS Hydrologic Soil Group ("HSG") (NRCS, 2014) mapping to determine composite curve numbers for each off-site watershed. A/D soils and C/D soils use average curve number for 2 soil groups. A matrix showing curve numbers for each land use and HSG within the evaluated area is included as Table 2 below. Some soil map units, namely Qd (quarries) and Br (borrow pits) do not have hydrologic soil groups assigned. VHB approximated map unit Qd as HSG D and Br as HSG B.

Table 2	: Curve Number by Land Use/L	and Co	ver and I	Hydrolo	gic Soil	Group		
LULC Description	TR55 Description	Α	A/D	В	с	C/D	D	w
Field	Meadow	30	54	58	71	74.5	78	98
Forest	Woods, good	30	53.5	55	70	73.5	77	98
Impervious	Paved	98	98	98	98	98	98	98
Lawn	Open Space, good	39	59.5	61	74	77	80	98
Wetland	Ponds classified as pervious	98	98	98	98	98	98	98

For on-site watersheds, VHB used the existing and proposed land use/land cover and soil types as delineated by VTrans.

Time of Concentration Assumptions

TR-55 allows calculation of time of concentration ("TC") by summing the travel time for all consecutive flow segments within a given watershed. VHB used Chittenden County two-foot LIDAR generated contours to determine TC flow path and slopes with the following assumptions about time of concentration flow segment characteristics.

VHB assumed a maximum sheet flow length of 150 feet on pervious surfaces and 50 feet on paved surfaces. For segments of TC flow paths through developed areas, as determined by visual inspection of aerial imagery, pipe or ditch flow was assumed. Ditch flow was assumed for developed flow segments with vegetated buffers adjacent to the roadway. For all other locations, pipe flow was assumed. For segments of TC flow paths through undeveloped areas without obvious flow channels, shallow concentrated flow was assumed.

For steep pipe flow segments, VHB assumed a minimum pipe size of 18-inches, which is the minimum size that VTrans uses. Though the very upstream end of pipe segments may be 12-inches, for this analysis VHB grouped steep pipe

Colchester HES NH 5600(14) Downstream Analysis Ref: 57699.00 May 10, 2016 Page 5 of 13

flow segments together. For flat pipe flow segments, VHB assumed a minimum pipe size of 24-inches. These general pipe size assumptions do not have a significant impact on times of concentration.

Ditch and stream channel geometry was measured using aerial imagery and Chittenden County two-foot LIDAR generated contours in GIS, including bottom width and side slopes, except within off-site watershed 5 where field measured ditch and stream channel geometry replaced GIS-measured data. Ditches were assumed to be flowing at six-inches deep for TC calculations, a typical VTrans design depth. A ditch roughness coefficient of 0.025 (Manning "n" value) was assumed based on stony/vegetated bottoms. Stream channels were assumed to be flowing at two-feet deep and were assigned a roughness value of 0.035 based on sluggish and weedy bottoms.

VHB also reviewed the original construction plans for the Interstate 89 project (Project I-89-3(15)) and survey plans for this project for culvert and ditch geometry. Construction plans are included as Figures 2 through 5 in the Attachment. Where available, geometry from construction plans or survey plans was used in lieu of aerial imagery measurements. This data was predominantly used for off-site Watersheds 7 and 8 and for downstream segments of off-site Watersheds 1 through 4.

With the exception of the off-site areas tributary to S/N 009 under existing conditions and tributary to S/N 007 under proposed conditions, off-site flow patterns will remain unchanged in this pre- and post-development analysis, therefore VHB concluded that further refinement of the above assumptions would not have a significant impact on analysis results.

For on-site areas, TC computations were completed based on presence of grassed channels for both existing and proposed conditions analyses. Exact geometry of existing channels is not known but they are present and the routing is unchanged when compared to proposed conditions. Geometry of channels in on-site TC calculations was based on proposed geometry.

Figure 1 of the Attachment shows each off-site watershed, TC flow path, and off-site ponding areas. Table 3 below summarizes each off-site watershed, its total area, its composite curve number, and its total time of concentration.

Colchester HES NH 5600(14) Downstream Analysis Ref: 57699.00 May 10, 2016 Page 6 of 13

Discharge Point (S/N)	Description	HydroCAD ID	Off-Site Area (ac)	Weighted Curve Number	Time of Concentration (min)
007	Athens Diner	OS9b	1.3	94	7.6
007	Highpoint Center	OS9a	1.2	87	1.8
007	Whitcomb's Frontage	OS7b	1.5	81	6.1
007	Interstate and Southbound Off-Ramp	OS7a	1.9	86	26.3
007	to Pond 4	OS7_4	12.4	74	33.5
007	to Ponds 2/3	OS7_2	21.5	77	6.1
007	to Pond 1	OS7_1	8.2	70	33.6
008	Northbound On-Ramp	OS8e	4.7	84	20.9
008	South of Hercules Drive	OS8d	2.2	84	22.9
008	North of Hercules Drive	OS8c	0.3	84	9.5
008	Interstate south of Route 7	OS8b	5.5	83	20.3
008	CVS & Vicinity	OS8a	2.6	88	12.7
008	to Pond 5	OS8_5	17.1	91	7.2
006	Upstream of Hercules Drive	OS6	21.5	75	18.7
005	Direct to Sunnyside	OS5b	71.3	71	207.9
005	Across from Costco	OS5a	10.3	82	98.7
005	to Pond 8	OS5_8	66.9	74	40.1
005	to Pond 7	OS5_7	2.7	65	49.1
005	to Pond 6	OS5_6	7.3	83	6.1
004	West of Route 7	OS4w ¹	20.5	86	21.8
004	to Channel Protection Pond	OS4p ¹	5.0	84	7.4

	Table 3: Off-Site	Tributary Area	Characteristic Su	ımmary	
Discharge Point (S/N)	Description	HydroCAD ID	Off-Site Area (ac)	Weighted Curve Number	Time of Concentration (min)
004	West of Route 7	OS4wb ¹	15.6	86	21.8
004	East of Route 7	OS4e	16.7	73	38.8
004	Charlebois Pond	OS4a1	1.9	93	5.8
004	Charlebois Bypass	OS4a2	1.1	80	1.5
003	to S/N 003	OS3	20.9	74	28.9
002	to S/N 002	OS2	13.4	56	32.9
001	to S/N 001	OS1	15.0	46	24.5
	ote 1. OS4w represents off-site area west of Route 7 to S/N 007 under existing conditions. Under proposed conditions, off-site area west of Route 7 to S/N 007 is broken into two watersheds, OS4p and OS4wb				

Methodology and Results

As described above under the Land Cover/Land Use Assumptions section of this memorandum, off-site watersheds are broken out by additional area tributary to each discharge point – the watershed to S/N 008 does not include the area tributary to S/N 007, the watershed to S/N 006 does not include the area tributary to S/N 007, the watershed to S/N 006 does not include the area tributary to S/N 008 or S/N 007, and so on. See Figure 1 of the Attachment and Table 3 for a description of each off-site watershed.

For each discharge point, VHB computed the runoff from each off-site watershed using HydroCAD, with the above described assumptions regarding time of concentration and curve number.

On-site existing and proposed conditions watershed boundaries and curve numbers were computed by VTrans based on actual areas for each land use and hydrologic soil group within the Project area. On-site watershed areas are shown in Section 4 of the INDS and described in Section 2 of the INDS. On-site TCs were computed using existing flow patterns through swales and closed drainage and will remain relatively unchanged between existing and proposed conditions. VHB computed runoff from the existing and proposed on-site watersheds using HydroCAD with the watershed boundary, land use and time of concentration calculated by VTrans.

The watersheds were routed individually to each discharge point rather than cumulatively to represent the fact that each watershed discharges to Sunnyside Brook at a different location. Reaches representing Sunnyside Brook between each discharge point were included as trapezoidal channels or ponds in the model. Reach geometry was measured using aerial imagery and Chittenden County two-foot LIDAR generated contours, including bottom width and side slopes. Stream channel segments were assumed to be flowing at two-feet deep and to have a roughness of 0.035 based on sluggish and weedy bottom conditions.

Colchester HES NH 5600(14) Downstream Analysis Ref: 57699.00 May 10, 2016 Page 8 of 13

VHB performed field measurements of the relative slopes, material, condition and dimensions of the existing Town road culvert conveying the wetland east of Hercules Drive using a laser level and rod on March 27, 2015. VHB also procured Button Professional Land Surveyors' services to perform ground survey of the inverts, material and dimensions of the existing Town road culverts conveying Sunnyside Brook at Lower Mountain View Drive and Hercules Drive and the existing Interstate 89 culvert tributary to Sunnyside Brook at the Exit 16 interchange on September 16, 2015. The Sunnyside Brook crossing at Lower Mountain View Drive is a 24-inch corrugated metal pipe ("CMP"). The Sunnyside Brook crossing at Hercules Drive is twin 36-inch CMPs. The tributary crossing at Interstate 89 is a 22 by 36 inch asphalt coated corrugated galvanized metal pipe arch, though it was modeled as a 24 by 35 inch pipe arch as that represents the nearest available standard size. The tributary crossing at Hercules Drive is a 12-inch smooth interior plastic pipe. VHB then fit the measured culverts to the HydroCAD model using Chittenden County two-foot LIDAR-generated contours and aerial imagery. VHB modeled the reaches upstream of the culverts as ponds to allow representation of backwater that would occur at the culverts. Pond and roadway overtopping geometry is also based on the LIDAR-generated contours and aerial imagery. The pond representing the wetland east of Hercules Drive was assigned a low-flow thalweg based on observed reach geometry. Geometry of each culvert included in the model is summarized in Table 4 below. At the Interstate 89 culvert where peak ponding elevation exceeded the upstream culvert invert, VHB assigned a dynamic tailwater representing the peak downstream elevation at Lower Mountain View Drive on an hourly increment basis. VHB did not consider a shorter timestep necessary based on the anticipated travel time through this reach and the small difference between hourly elevations and peak modeled elevations.

Colchester HES NH 5600(14) Downstream Analysis Ref: 57699.00 May 10, 2016 Page 9 of 13

	Table 4: Culv	verts included in I	Downstream An	alvsis Mo	del	
Culvert Location	Source of Data	Dimensions	Upstream Invert (ft) ¹	Length (ft)	Slope (ft/ft)	Approximate Roadway Overtopping Elevation (ft) ¹
T 00	Interstate 89					
Interstate 89	Record					
(Downstream of	Drawings &	36"W x 22"H	202.24	04.6	0.005	
S/N 007)	Survey	Arch Culvert	308.84	216	0.005	316 ²
Lower Mountain View Drive						
(Downstream of		24" Corrugated				
S/N 006)	Survey	Metal Pipe	305.81	102	0.011	316.13
		12" Smooth				
		Plastic Pipe				
Hercules Drive (at	Field	with Inverted				
wetland outlet)	Measurements	Sump and Riser	306.6	50	0.002	312.3
Hercules Drive		2 x 36"				
(Downstream of	Field	Corrugated			0.007/-	
S/N 005)	Measurements	Metal Pipes	300.01/299.72	76	0.005	309.16
1. Elevations from g	ground survey exce	ept Hercules Drive	at wetland outlet	, which we	ere estima	ted using
Chittenden County	2-foot LIDAR gene	erated contours.				-
2. Flows towards W	ínooski River at ap	proximately Elev 3	13, prior to road	way overto	opping at	approximately
Elev 316		-			-	-

For the analysis with proposed STPs, VHB used the watershed and STP geometry data prepared by VTrans for the proposed dry ponds within Site 7, 8 and 4, as included in Appendix F of the INDS. The proposed dry pond within Site 4 captures approximately 9.2 acres of off-site area in addition to the on-site areas captured. Therefore, for the analysis with proposed STPs, the west Off-site area 4 watershed composite curve number and acreage was adjusted to reflect flows directed to the proposed dry pond.

See the HydroCAD output in the Attachment for detailed model configuration.

Modeled rainfall events include the following 24-hour Type II distribution shown in Table 5.

	Table 5: Modeled Rainfall	Event
Name	Total Rainfall Depth	Description
10-year Storm	3.2-inches	Used for evaluating the Overbank Flood Protection Standard

Colchester HES NH 5600(14) Downstream Analysis Ref: 57699.00 May 10, 2016 Page 10 of 13

VHB performed three model scenarios. The first scenario represents existing conditions, the second scenario represents proposed conditions without the proposed dry ponds tributary to S/N 007, 008 and 004, and the third scenario represents proposed conditions with the proposed dry ponds tributary to S/N 007, 008 and 004. The third model scenario does not take into account the grass swales proposed for water quality treatment because swales provide minimal flow attenuation and would not have a significant impact on results.

Peak modeled flow rates, and the percent increase over existing conditions at each discharge point, for each of the rainfall events for each scenario are summarized in Tables 6 and 7 below.

		Table 6: 10-year S	torm Model Resu	lts	
Discharge Point (S/N in order from upstream to down)	Scenario 1: Existing Peak Flow (cfs)	Scenario 2: Proposed Peak Flow (cfs, without STP)	Proposed without STP Change From Existing	Scenario 3: Proposed Peak Flow (cfs, with STP)	Proposed with STP Change From Existing
007	16.7	31.4	+88%	17.4	+4%
008	40.1	40.3	0%	37.9	-5%
006	66.5	66.7	0%	64.2	-3%
005	31.9	32.0	0%	31.9	0%
004	59.6	55.3	-7%	41.4	-31%
003	74.7	66.1	-11%	58.2	-22%
002	75.7	67.2	-11%	59.5	-21%
001	75.3	67.3	-11%	59.3	-21%

Modeled flows in some instances decrease from upstream to downstream, such as between S/N 005 and S/N 006. This is due to a combination of the stream channel (modeled as reaches) attenuating flows from upstream to downstream, and times of concentration between tributary watersheds being such that peak flows are not necessarily coincident.

Complete HydroCAD model data and results are included in the Attachment. The percent flow rate increase is less than five-percent at each discharge point for each modeled scenario during the 10-year event with the proposed dry ponds. The only projected increase is at S/N 007, which represent only a four-percent increase over existing conditions during the 10-year storm event. Based on the minimal peak rate increase, a similarly minimal increase in velocities within the affected reaches could also be anticipated. Figure 6 shows the maximum 10-year extent of inundation predicted behind each of the Interstate 89, Lower Mountain View Drive and Hercules Drive culverts under existing conditions and under proposed conditions with STPs installed. The peak predicted elevation at each culvert and associated inundation areas are within 0.13 feet from existing to proposed conditions with STPs installed. The only

Colchester HES NH 5600(14) Downstream Analysis Ref: 57699.00 May 10, 2016 Page 11 of 13

increased flood depth is predicted to occur upstream of Interstate 89, by 0.13 feet, representing storage of an additional 0.37 acre-feet of water. As shown on Figure 6, this represents a minimal increase in inundation extents. The Interstate 89 culvert is not submerged under existing or proposed conditions. Supporting documentation is included in the HydroCAD modeling results in the Attachment.

The VSMM criterion for waiver of the Overbank Flood Protection standard is that the site is smaller than 5 acres and the flow rates and velocities with the proposed detention facility increase by less than five-percent from the predeveloped condition and no existing structures are impacted. As described in the introduction, the total jurisdictional area of the Project is approximately 5.2 acres. The total site area increases from upstream to downstream, such that the cumulative site area is only greater than 5 acres at discharge point 001, as shown in Table 7 below.

Table 7: Cumulat Site Area by D	
Discharge Point (S/N)	Cumulative Jurisdictional Site Area
007	1.89
008	3.57
006	3.90
005	3.92
004	4.62
003	4.76
002	4.99
001	5.24

Therefore the Project is eligible for waiver of the Overbank Flood Protection standard at all discharge points except S/N 001. The proposed conditions peak flow rate actually decreases slightly or remains the same at each discharge point downstream of the proposed dry pond in Site 7. At S/N 001, the Project does not meet the "less than 5 acre" portion of the criteria for waiver of the Overbank Flood Protection standard. However, at S/N 001, the Project reduces 10-year peak flows from existing conditions, therefore meeting the requirements of the Overbank Flood Protection standard.

Colchester HES NH 5600(14) Downstream Analysis Ref: 57699.00 May 10, 2016 Page 12 of 13

Conclusion

In accordance with Section 1.2 of VSMM, a downstream analysis has been completed by VHB to assess flow rates and velocities for the overbank (Qp10) storm event. The results of the analysis show that both with the STPs considered, there would be an increase of less than five-percent from the pre-developed condition at all discharge points, and there are no existing structures whose functionality would be impacted by the project. The criteria of Section 1.2 of VSMM regarding downstream analyses are therefore met and no additional controls are needed, and the Project is eligible for waiver of the overbank flood protection standard.

Attachment

Figure 1: Off-Site Watersheds and Times of Concentration Flowpaths

Figure 2: Interstate 89 Record Plan Sheet 13

Figure 3: Interstate 89 Record Plan Sheet 14

Figure 4: Interstate 89 Record Plan Sheet 15

Figure 5: Interstate 89 Record Plan Sheet 16

Figure 6: 10-Year Inundation Extents Map

Existing Conditions Models

Existing Conditions Downstream Analysis HydroCAD Model

On-Site 7 Existing Conditions HydroCAD Model

Proposed Conditions without STPs models

Proposed Land Cover Downstream Analysis without STPs HydroCAD Model

On-Site 7 Proposed Conditions without STPs HydroCAD Model

Proposed Conditions Models

Proposed Land Cover Downstream Analysis with STPs HydroCAD Model

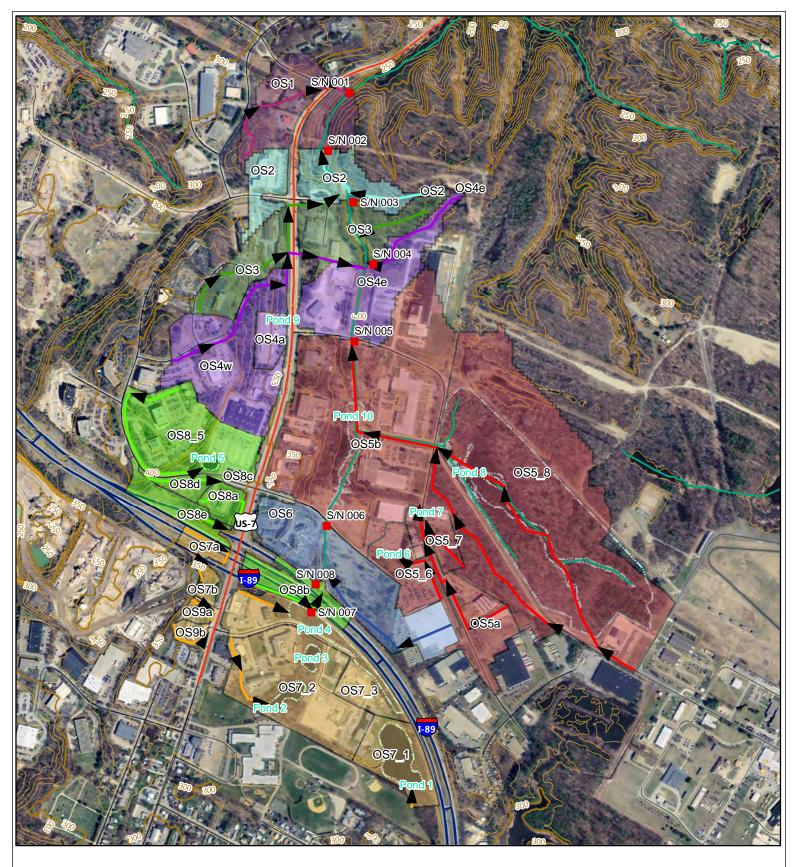
On-Site 7 Proposed Conditions HydroCAD Model

References

Chittenden County Regional Planning Commission (CCRPC) 2004. DEM derived from Bare Earth LIDAR. South Burlington, VT. October 2004.

Chittenden County Regional Planning Commission (CCRPC) 2004. 3- Meter Resolution Bare Earth LIDAR Point Cloud. South Burlington, VT. October 2004.

StreamStats watersheds accessed via http://water.usgs.gov/osw/streamstats/Vermont.html


Colchester HES NH 5600(14) Downstream Analysis Ref: 57699.00 May 10, 2016 Page 13 of 13

- United States Department of Agriculture Natural Resources Conservation Service (NRCS), 1999. Conservation Engineering Division Urban Hydrology for Small Watersheds TR-55. Washington, DC. Second Edition January 1999.
- NRCS, 2014. Soil Survey for Chittenden County, Vermont. Survey area version 17. Tabular data version 15. Washington, DC. September 24, 2014.
- Vermont Agency of Natural Resources (ANR) 2006. Stormwater Impaired Watersheds. Waterbury, Vermont. April 26, 2006.
- Vermont Agency of Natural Resources (ANR) 2002. Vermont Stormwater Management Manual. Waterbury, Vermont. 2002.
- Vermont Department of Environmental Conservation (DEC) 2011. Vermont Stormwater Management Rule. Environmental Protection Rules, Chapter 18. Waterbury, Vermont. Effective March 15, 2011.
- Vermont Natural Resources Board. (VNRB) 2008. Vermont Water Quality Standards. Montpelier, VT. Effective January 1, 2008
- Watershed Management Division (WMD) 2006. Downstream Analysis Guidance, of Vermont Agency of Natural Resources. Waterbury, Vermont. May 19, 2006.

\\VTSBDATA\projects\57699.00 Colchester Act 250\docs\memos\57699.00 downstream analysis Rev2016-04-27.docx

ATTACHMENT

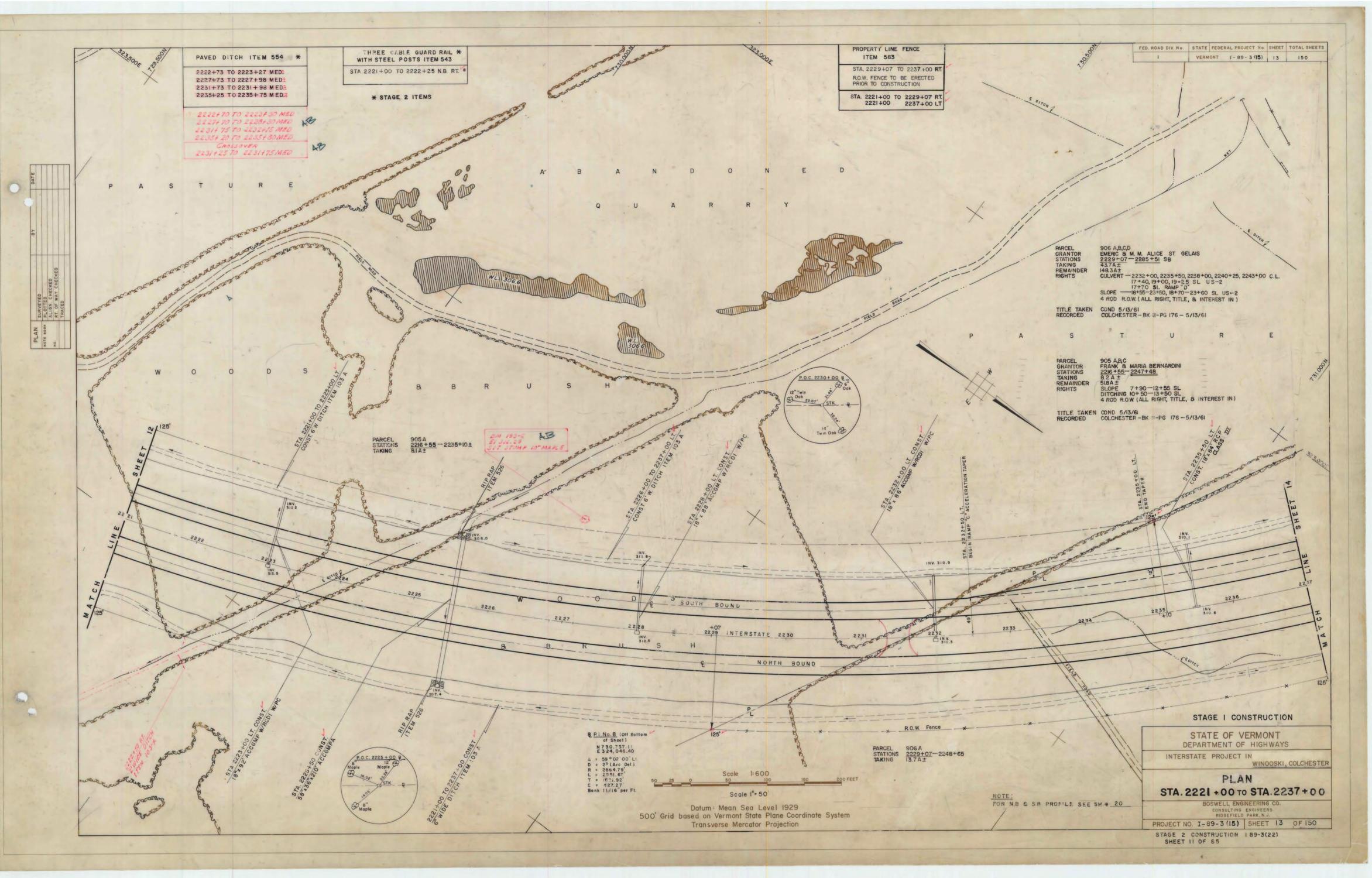
Design Point
 Time of Concentration
 StreamCenterlines
 PondTakeoffs
 Interstate
 US Highway
 State Highway

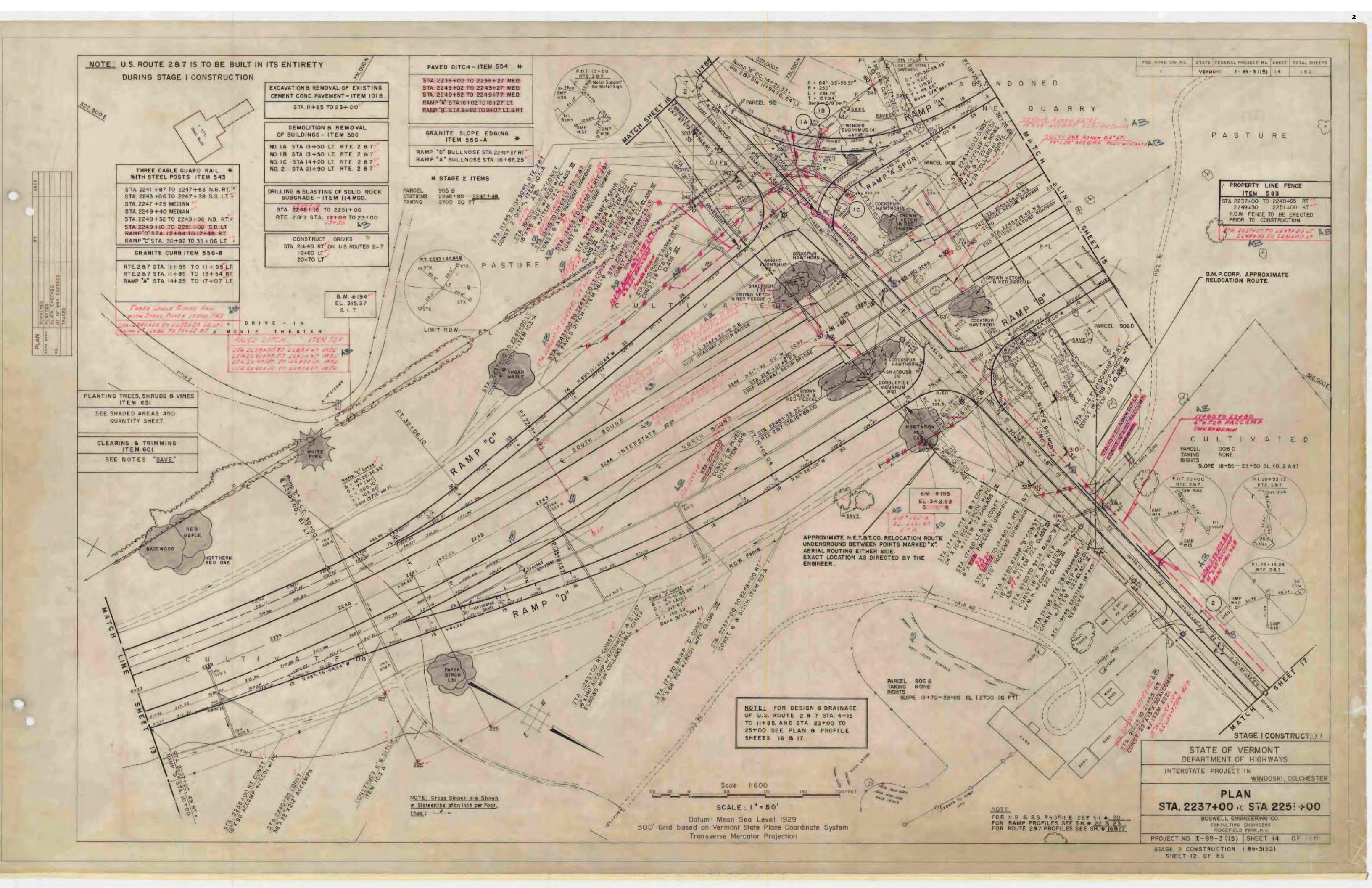
Town Road

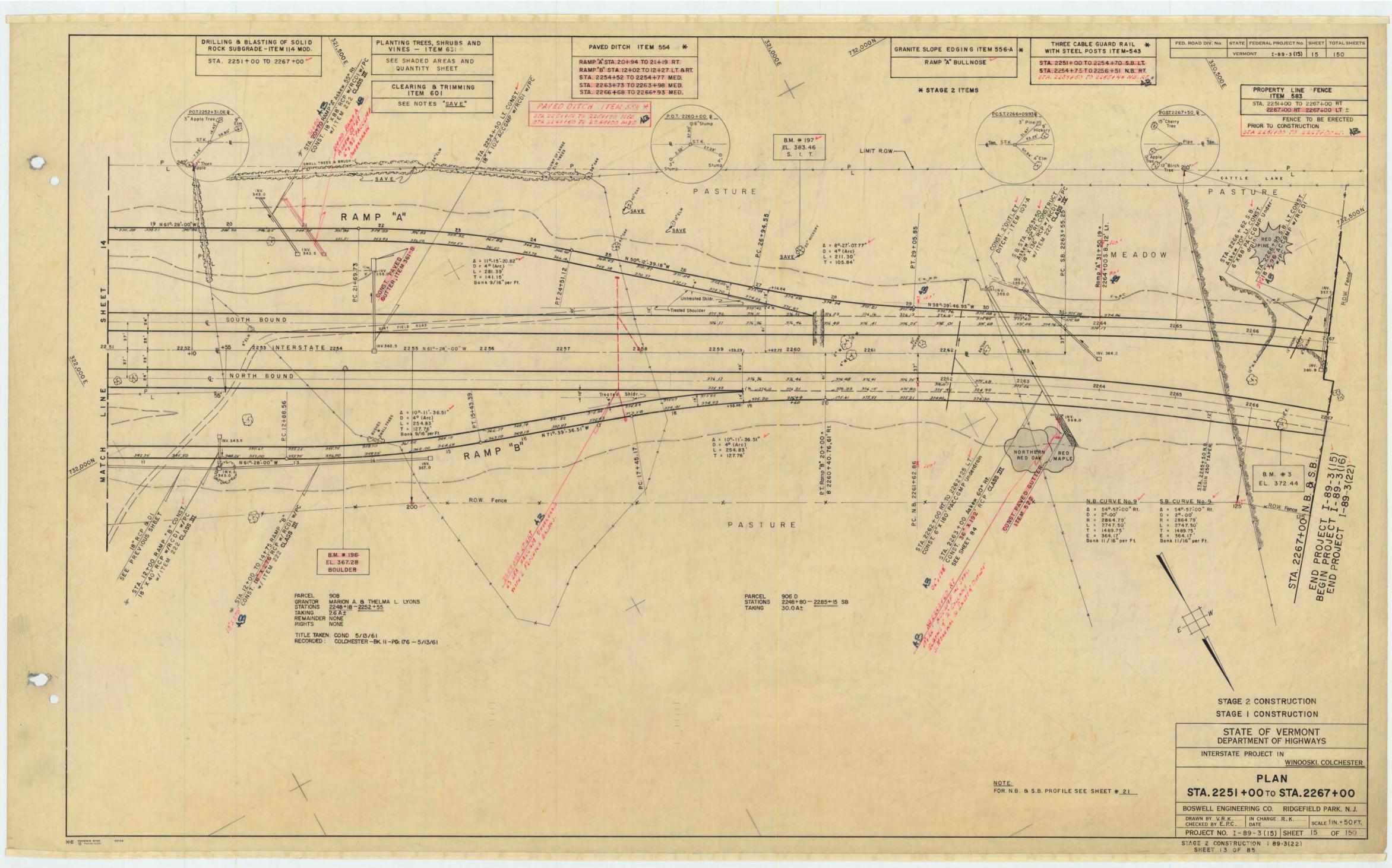
Figure 1: Vermont Agency of Transportation (VTrans) Colchester DDI Downstream Analysis Colchester, VT Off-Site Watersheds and Times of Concentration Flowpaths

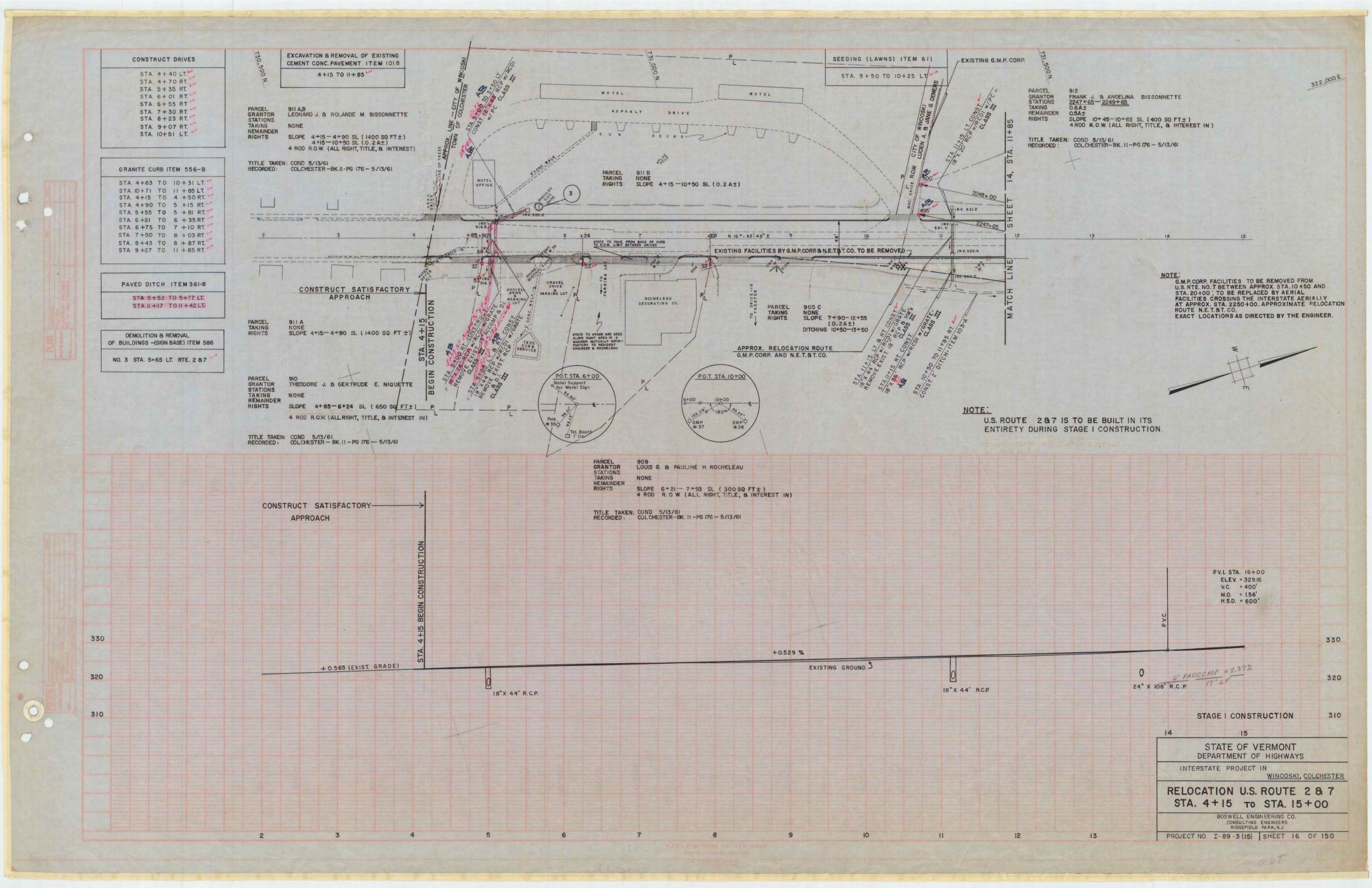
> January 8, 2015 Revised April 26, 2016

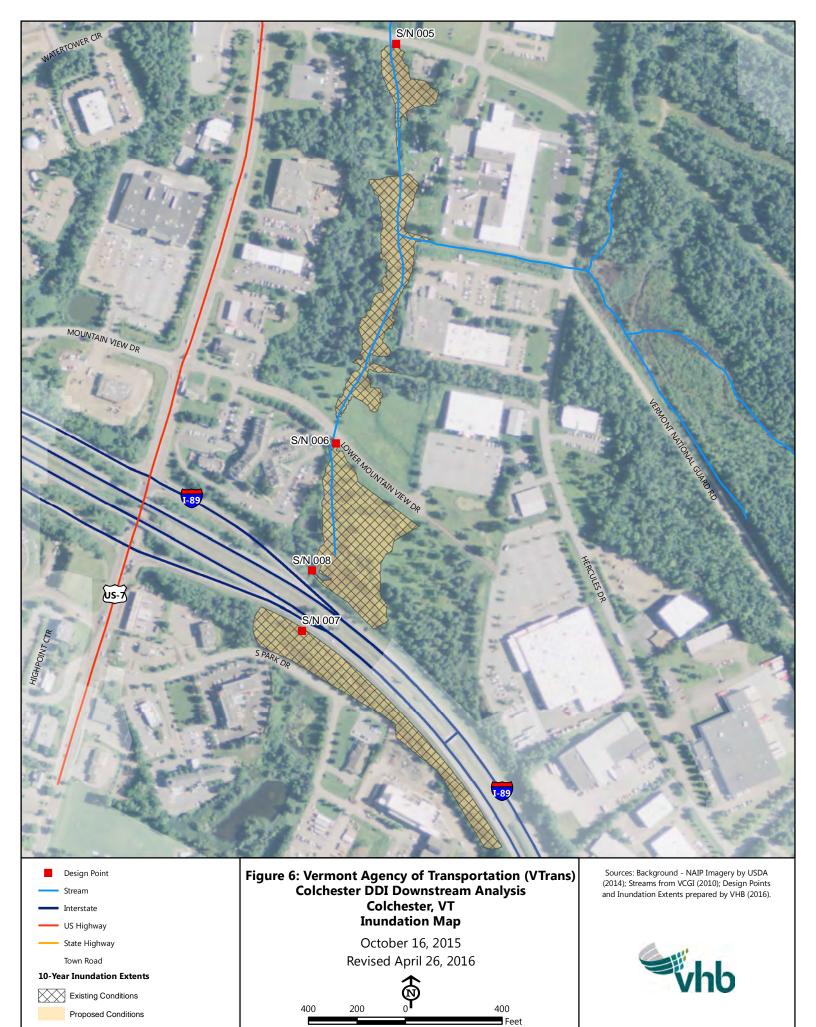
Sources: Background - ArcGIS Online Basemap Imagery (2011); Stream Centerlines downloaded from VCGI (2010); Design Points, Time of Concentrations prepared by VHB (2015, updated 2016); Contours downloaded from VCGI (2012)

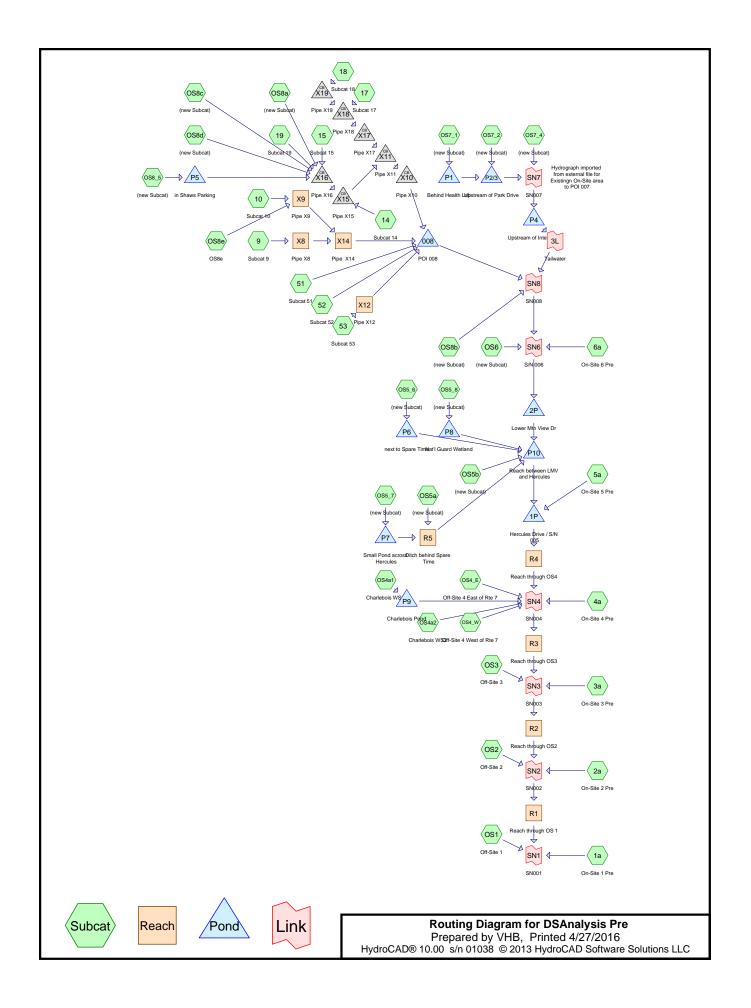



Feet


0




\\VTSBDATA\projects\57699.00 Colchester Act 250\GIS\Project\DownstreamAnalysis.mxd, Prepared by: Jtherrien



\\VTSBDATA\projects\57699.00 Colchester Act 250\GIS\Project\InundationFigure.mxd, Prepared by: Jtherrien

DSAnalysis Pre	Type II 24-hr	10 Year Storm Rainfall=3.20"
Prepared by VHB		Printed 4/27/2016
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software So	olutions LLC	Page 2

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1a: On-Site1 Pre	Runoff Area=0.996 ac 37.40% Impervious Runoff Depth=1.27" Flow Length=744' Tc=4.1 min CN=55/98 Runoff=1.89 cfs 0.105 af
Subcatchment 2a: On-Site 2 Pre	Runoff Area=1.668 ac 27.34% Impervious Runoff Depth=0.88" Flow Length=727' Tc=5.8 min CN=48/98 Runoff=2.08 cfs 0.122 af
Subcatchment 3a: On-Site 3 Pre Flow Length=457	Runoff Area=1.013 ac 61.40% Impervious Runoff Depth=1.90" Slope=0.0240 '/' Tc=16.2 min CN=53/98 Runoff=2.07 cfs 0.160 af
Subcatchment 4a: On-Site 4 Pre	Runoff Area=5.698 ac 50.60% Impervious Runoff Depth=1.96" w Length=1,961' Tc=14.2 min CN=72/98 Runoff=13.32 cfs 0.931 af
Subcatchment 5a: On-Site 5 Pre	Runoff Area=0.302 ac 57.28% Impervious Runoff Depth=2.30" Flow Length=231' Tc=1.7 min CN=80/98 Runoff=1.27 cfs 0.058 af
Subcatchment 6a: On-Site 6 Pre	Runoff Area=0.853 ac 62.25% Impervious Runoff Depth=2.14" Flow Length=349' Tc=2.7 min CN=69/98 Runoff=3.15 cfs 0.152 af
Subcatchment9: Subcat9 Flow Length=154	Runoff Area=0.139 ac 33.81% Impervious Runoff Depth=1.93" 4' Slope=0.1493 '/' Tc=0.9 min CN=80/98 Runoff=0.53 cfs 0.022 af
Subcatchment 10: Subcat 10	Runoff Area=0.606 ac 40.92% Impervious Runoff Depth=2.04" Flow Length=700' Tc=3.5 min CN=80/98 Runoff=2.20 cfs 0.103 af
Subcatchment 14: Subcat 14 Flow Length=4	Runoff Area=0.456 ac 100.00% Impervious Runoff Depth=2.97" 51' Slope=0.0216 '/' Tc=2.5 min CN=0/98 Runoff=2.30 cfs 0.113 af
Flow Length=4	51' Slope=0.0216 '/' Tc=2.5 min CN=0/98 Runoff=2.30 cfs 0.113 af Runoff Area=0.365 ac 38.90% Impervious Runoff Depth=2.01"
Flow Length=4	 51' Slope=0.0216 '/' Tc=2.5 min CN=0/98 Runoff=2.30 cfs 0.113 af Runoff Area=0.365 ac 38.90% Impervious Runoff Depth=2.01" Flow Length=436' Tc=2.3 min CN=80/98 Runoff=1.36 cfs 0.061 af Runoff Area=0.116 ac 80.17% Impervious Runoff Depth=2.50"
Flow Length=4 Subcatchment 15: Subcat 15 Subcatchment 17: Subcat 17	 51' Slope=0.0216 '/' Tc=2.5 min CN=0/98 Runoff=2.30 cfs 0.113 af Runoff Area=0.365 ac 38.90% Impervious Runoff Depth=2.01" Flow Length=436' Tc=2.3 min CN=80/98 Runoff=1.36 cfs 0.061 af Runoff Area=0.116 ac 80.17% Impervious Runoff Depth=2.50" Flow Length=122' Tc=1.0 min CN=65/98 Runoff=0.52 cfs 0.024 af Runoff Area=0.008 ac 87.50% Impervious Runoff Depth=2.77"
Flow Length=43 Subcatchment 15: Subcat 15 Subcatchment 17: Subcat 17 Subcatchment 18: Subcat 18	 51' Slope=0.0216 '/' Tc=2.5 min CN=0/98 Runoff=2.30 cfs 0.113 af Runoff Area=0.365 ac 38.90% Impervious Runoff Depth=2.01" Flow Length=436' Tc=2.3 min CN=80/98 Runoff=1.36 cfs 0.061 af Runoff Area=0.116 ac 80.17% Impervious Runoff Depth=2.50" Flow Length=122' Tc=1.0 min CN=65/98 Runoff=0.52 cfs 0.024 af Runoff Area=0.008 ac 87.50% Impervious Runoff Depth=2.77" Flow Length=43' Tc=0.3 min CN=80/98 Runoff=0.04 cfs 0.002 af Runoff Area=0.274 ac 36.13% Impervious Runoff Depth=1.97"
Flow Length=4 Subcatchment 15: Subcat 15 Subcatchment 17: Subcat 17 Subcatchment 18: Subcat 18 Subcatchment 19: Subcat 19	 51' Slope=0.0216 '/' Tc=2.5 min CN=0/98 Runoff=2.30 cfs 0.113 af Runoff Area=0.365 ac 38.90% Impervious Runoff Depth=2.01" Flow Length=436' Tc=2.3 min CN=80/98 Runoff=1.36 cfs 0.061 af Runoff Area=0.116 ac 80.17% Impervious Runoff Depth=2.50" Flow Length=122' Tc=1.0 min CN=65/98 Runoff=0.52 cfs 0.024 af Runoff Area=0.008 ac 87.50% Impervious Runoff Depth=2.77" Flow Length=43' Tc=0.3 min CN=80/98 Runoff=0.04 cfs 0.002 af Runoff Area=0.274 ac 36.13% Impervious Runoff Depth=1.97" Flow Length=320' Tc=2.4 min CN=80/98 Runoff=1.00 cfs 0.045 af Runoff Area=0.608 ac 38.49% Impervious Runoff Depth=2.00"

DSAnalysis Pre Prepared by VHB

Prepared by VHB	Printed 4/27/2016
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC	Page 3
Subcatchment OS1: Off-Site 1Runoff Area=15.016 ac0.00% ImperviousFlow Length=1,440'Tc=24.5 minCN=46/0Runoff Area	•
Subcatchment OS2: Off-Site 2Runoff Area=13.610 ac0.00% ImperviousFlow Length=1,300'Tc=32.9 minCN=56/0Runoff	•
Subcatchment OS3: Off-Site 3Runoff Area=20.942 ac0.00% ImperviousFlow Length=668'Slope=0.0210 '/'Tc=28.9 minCN=74/0Runo	
Subcatchment OS4a1: Charlebois WS1Runoff Area=1.860 ac0.00% ImperviousTc=5.8 minCN=93/0Runoff	•
Subcatchment OS4a2: Charlebois WS2 Runoff Area=1.120 ac 0.00% Impervious Tc=1.5 min CN=80/0 Runoff	
Subcatchment OS4_E: Off-Site 4 East of Runoff Area=16.737 ac 0.00% Impervious Flow Length=1,140' Slope=0.0114 '/' Tc=38.8 min CN=73/0 Runo	•
Subcatchment OS4_W: Off-Site 4 West of Runoff Area=20.542 ac 0.00% Impervious Flow Length=2,060' Tc=21.8 min CN=86/0 Runo	
Subcatchment OS5a: (new Subcat)Runoff Area=19.687 ac0.00% ImperviousFlow Length=1,356'Slope=0.0012 '/'Tc=98.7 minCN=70/0Runoff Area	
Subcatchment OS5b: (new Subcat)Runoff Area=61.972 ac0.00% ImperviousFlow Length=3,643'Tc=207.9 minCN=74/0Runo	
Subcatchment OS5_6: (new Subcat)Runoff Area=7.318 ac0.00% ImperviousFlow Length=660'Tc=6.1 minCN=83/0Runofi	
Subcatchment OS5_7: (new Subcat)Runoff Area=2.744 ac0.00% ImperviousFlow Length=556'Slope=0.0010 '/'Tc=49.1 minCN=65/0Runoff Area	
Subcatchment OS5_8: (new Subcat) Flow Length=2,163' Tc=40.1 min CN=74/0 Runo	
Subcatchment OS6: (new Subcat)Runoff Area=21.459 ac0.00% ImperviousFlow Length=1,476'Tc=18.7 minCN=75/0Runoff	
Subcatchment OS7_1: (new Subcat)Runoff Area=8.195 ac0.00% ImperviousFlow Length=136'Slope=0.0108 '/'Tc=33.6 minCN=70/0Runoff Area	
Subcatchment OS7_2: (new Subcat)Runoff Area=21.469 ac0.00% ImperviousFlow Length=779'Tc=6.1 minCN=77/0Runoff	
Subcatchment OS7_4: (new Subcat)Runoff Area=12.807 ac0.00% ImperviousFlow Length=503'Slope=0.0219 '/'Tc=33.5 minCN=74/0Runoff Area	
Subcatchment OS8a: (new Subcat)Runoff Area=2.557 ac0.00% ImperviousFlow Length=1,659'Tc=15.7 minCN=88/0Runoff Area	
Subcatchment OS8b: (new Subcat)Runoff Area=5.517 ac0.00% ImperviousFlow Length=799'Tc=20.3 minCN=82/0Runoff Area	

DSAnalysis Pre

SubcatchmentOS8c: (new Subcat)

Type II 24-hr 10 Year Storm Rainfall=3.20" Printed 4/27/2016

Runoff Area=0.298 ac 0.00% Impervious Runoff Depth=1.68"

Flow Length=480' Tc=11.2 min CN=84/0 Runoff=0.74 cfs 0.042 af

Page 4

Prepared by VHB HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Subcatchment OS8d: (new Subcat) Runoff Area=2.208 ac 0.00% Impervious Runoff Depth=1.68" Flow Length=740' Tc=22.9 min CN=84/0 Runoff=3.81 cfs 0.310 af Runoff Area=4.725 ac 0.00% Impervious Runoff Depth=1.68" SubcatchmentOS8e: OS8e Flow Length=370' Slope=0.0538 '/' Tc=20.9 min CN=84/0 Runoff=8.63 cfs 0.662 af Subcatchment OS8_5: (new Subcat) Runoff Area=17.067 ac 0.00% Impervious Runoff Depth=2.26" Flow Length=1,741' Tc=7.2 min CN=91/0 Runoff=63.26 cfs 3.212 af Avg. Flow Depth=0.56' Max Vel=4.12 fps Inflow=75.67 cfs 32.416 af Reach R1: Reach through OS 1 n=0.035 L=590.0' S=0.0220 '/' Capacity=2,282.34 cfs Outflow=75.07 cfs 32.404 af Avg. Flow Depth=0.86' Max Vel=7.00 fps Inflow=74.68 cfs 31.982 af Reach R2: Reach through OS2 n=0.035 L=580.0' S=0.0500 '/' Capacity=1,850.26 cfs Outflow=74.47 cfs 31.977 af Avg. Flow Depth=0.51' Max Vel=1.56 fps Inflow=59.61 cfs 30.038 af Reach R3: Reach through OS3 n=0.040 L=580.0' S=0.0052 '/' Capacity=2.787.67 cfs Outflow=55.71 cfs 30.012 af Avg. Flow Depth=0.39' Max Vel=0.99 fps Inflow=31.86 cfs 24.150 af Reach R4: Reach through OS4 n=0.035 L=750.0' S=0.0020 '/' Capacity=1,717.01 cfs Outflow=31.81 cfs 24.107 af Avg. Flow Depth=0.79' Max Vel=1.26 fps Inflow=5.16 cfs 1.411 af **Reach R5: Ditch behind Spare Time** n=0.025 L=325.0' S=0.0012 '/' Capacity=43.39 cfs Outflow=5.13 cfs 1.411 af Avg. Flow Depth=0.18' Max Vel=8.21 fps Inflow=0.99 cfs 0.046 af Reach X12: Pipe X12 18.0" Round Pipe n=0.011 L=88.0' S=0.0673 '/' Capacity=32.20 cfs Outflow=0.99 cfs 0.046 af Avg. Flow Depth=0.97' Max Vel=5.92 fps Inflow=8.97 cfs 0.788 af Reach X14: Pipe X14 24.0" Round Pipe n=0.011 L=145.0' S=0.0050 '/' Capacity=18.84 cfs Outflow=8.96 cfs 0.788 af Avg. Flow Depth=0.17' Max Vel=4.21 fps Inflow=0.53 cfs 0.022 af Reach X8: Pipe X8 24.0" Round Pipe n=0.011 L=43.6' S=0.0193 '/' Capacity=37.11 cfs Outflow=0.52 cfs 0.022 af Reach X9: Pipe X9 Avg. Flow Depth=0.97' Max Vel=5.93 fps Inflow=8.91 cfs 0.766 af 24.0" Round Pipe n=0.011 L=20.0' S=0.0050 '/' Capacity=18.90 cfs Outflow=8.91 cfs 0.766 af Peak Elev=302.19' Storage=31,202 cf Inflow=32.44 cfs 24.158 af Pond 1P: Hercules Drive / S/N 005 Outflow=31.86 cfs 24.150 af Pond 2P: Lower Mtn View Dr Peak Elev=309.98' Storage=94,287 cf Inflow=66.51 cfs 10.984 af

Pond 008: POI 008

Inflow=30.63 cfs 4.443 af Primary=30.63 cfs 4.443 af

Outflow=14.01 cfs 10.980 af

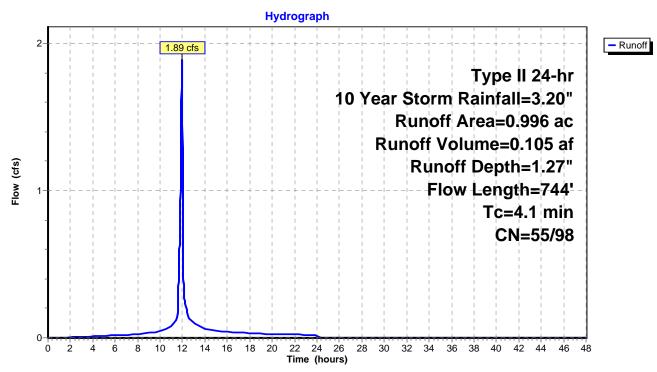
Pond P1: Behind Health Lab Peak Elev=310.17' Storage=24,634 cf Inflow=4.73 cfs 0.566 af

Outflow=0.00 cfs 0.000 af

DSAnalysis Pre Prepared by VHB HydroCAD® 10.00 s/n 01038 © 2013 HydroC	Type II 24-hr 10 Year Storm Rainfall=3.20"Printed 4/27/2016CAD Software Solutions LLCPage 5
Pond P10: Reach between LMV and	Peak Elev=308.04' Storage=54,645 cf Inflow=32.62 cfs 24.266 af Outflow=32.41 cfs 24.100 af
Pond P2/3: Upstream of Park Drive 12.0" Round	Peak Elev=310.77' Storage=57,533 cf Inflow=46.37 cfs 2.168 af d Culvert n=0.013 L=100.0' S=0.0025 '/' Outflow=1.21 cfs 1.790 af
Pond P4: Upstream of Interstate 35.0" x 24.0", R=17.9"/55.1" Pipe Arcl	Peak Elev=309.61' Storage=78,154 cf Inflow=16.73 cfs 3.872 af h Culvert n=0.013 L=216.0' S=0.0053 '/' Outflow=3.63 cfs 3.726 af
Pond P5: in Shaws Parking	Peak Elev=358.34' Storage=73,625 cf Inflow=63.26 cfs 3.212 af Outflow=10.02 cfs 2.325 af
Pond P6: next to Spare Time	Peak Elev=310.49' Storage=28,585 cf Inflow=20.95 cfs 0.981 af Outflow=0.41 cfs 0.887 af
Pond P7: Small Pond across Hercules	Peak Elev=313.51' Storage=3,714 cf Inflow=0.76 cfs 0.137 af Outflow=0.11 cfs 0.053 af
Pond P8: Nat'l Guard Wetland	Peak Elev=309.65' Storage=123,647 cf Inflow=45.62 cfs 5.788 af Outflow=4.80 cfs 5.629 af
Pond P9: Charlebois Pond	Peak Elev=333.57' Storage=0.296 af Inflow=7.66 cfs 0.379 af Outflow=0.80 cfs 0.357 af
Pond X10: Pipe X10 18.0" Round	Peak Elev=338.79' Inflow=20.74 cfs 3.346 af Culvert n=0.011 L=100.0' S=0.0752 '/' Outflow=20.74 cfs 3.346 af
Pond X11: Pipe X11 18.0" Round	Peak Elev=344.73' Inflow=20.74 cfs 3.346 af d Culvert n=0.011 L=77.0' S=0.0336 '/' Outflow=20.74 cfs 3.346 af
Pond X15: Pipe X15 18.0" Round	Peak Elev=350.62' Inflow=20.68 cfs 3.320 af d Culvert n=0.011 L=75.0' S=0.0055 '/' Outflow=20.68 cfs 3.320 af
Pond X16: Pipe X16 18.0" Rou	Peak Elev=356.32' Inflow=20.41 cfs 3.208 af nd Culvert n=0.011 L=8.0' S=0.0100 '/' Outflow=20.41 cfs 3.208 af
Pond X17: Pipe X17 18.0" Round	Peak Elev=344.73' Inflow=0.56 cfs 0.026 af d Culvert n=0.011 L=186.0' S=0.0269 '/' Outflow=0.56 cfs 0.026 af
Pond X18: Pipe X18 18.0" Rou	Peak Elev=344.73' Inflow=0.56 cfs 0.026 af nd Culvert n=0.011 L=11.0' S=0.0136 '/' Outflow=0.56 cfs 0.026 af
Pond X19: Pipe X19 18.0" Rou	Peak Elev=344.73' Inflow=0.04 cfs 0.002 af nd Culvert n=0.011 L=97.0' S=0.0155 '/' Outflow=0.04 cfs 0.002 af
Link 3L: Tailwater	Inflow=3.63 cfs 3.726 af Primary=3.63 cfs 3.726 af
Link SN1: SN001	Inflow=75.30 cfs 32.581 af Primary=75.30 cfs 32.581 af
Link SN2: SN002	Inflow=75.67 cfs 32.416 af Primary=75.67 cfs 32.416 af

DSAnalysis Pre Prepared by VHB	Type II 24-hr 10 Year Storm Rainfall=3.20" Printed 4/27/2016
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Sot	
Link SN3: SN003	Inflow=74.68 cfs_31.982 af
LINK SNS. SNUUS	Primary=74.68 cfs 31.982 af
Link SN4: SN004	Inflow=59.61 cfs 30.038 af
	Primary=59.61 cfs 30.038 af
Link SN6: S/N 006	Inflow=66.51 cfs 10.984 af
	Primary=66.51 cfs 10.984 af
ts\57699.00 Cirlt hester Act 250\tech\Stormwater\VTrans HydroCA	
	Area= 6.326 ac 20.88% Imperv. Primary=16.73 cfs 3.872 af
Link SN8: SN008	Inflow=40.09 cfs 8.876 af
	Primary=40.09 cfs 8.876 af

Total Runoff Area = 359.057 acRunoff Volume = 34.208 afAverage Runoff Depth = 1.14"98.06% Pervious = 352.104 ac1.94% Impervious = 6.952 ac


Summary for Subcatchment 1a: On-Site 1 Pre

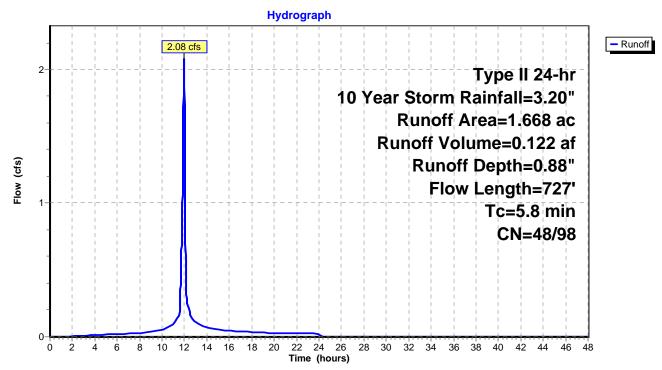
Runoff = 1.89 cfs @ 11.95 hrs, Volume= 0.105 af, Depth= 1.27"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	CN Dese	cription				
C	.745	83 Pave	Paved roads w/open ditches, 50% imp, HSG A				
C	.116		>75% Grass cover, Good, HSG A				
C	.135	32 Woo	Woods/grass comb., Good, HSG A				
0.996 71 Weighted Average							
0.624 55 62.60% Pervious Area							
0.372 98 37.40% Impervious Area							
То	Longth	Slope	Volocity	Capacity	Description		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
1.1	100		1.49	(013)	Sheet Flow, Sheet 1		
1.1	100	0.0070	1.43		Smooth surfaces $n=0.011$ P2= 2.30"		
0.4	89	0.0370	3.90		Shallow Concentrated Flow, Shallow 2a		
011	00	0.001.0	0100		Paved $Kv = 20.3 \text{ fps}$		
1.8	436	0.0573	4.14	5.38	· · · · · · · · · · · · · · · · · · ·		
					Area= 1.3 sf Perim= 6.3' r= 0.21'		
					n= 0.030 Earth, grassed & winding		
0.8	119	0.1424	2.64		Shallow Concentrated Flow, Shallow 1b		
					Short Grass Pasture Kv= 7.0 fps		
4.1	744	Total					

HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Subcatchment 1a: On-Site 1 Pre


Summary for Subcatchment 2a: On-Site 2 Pre

Runoff = 2.08 cfs @ 11.97 hrs, Volume= 0.122 af, Depth= 0.88"

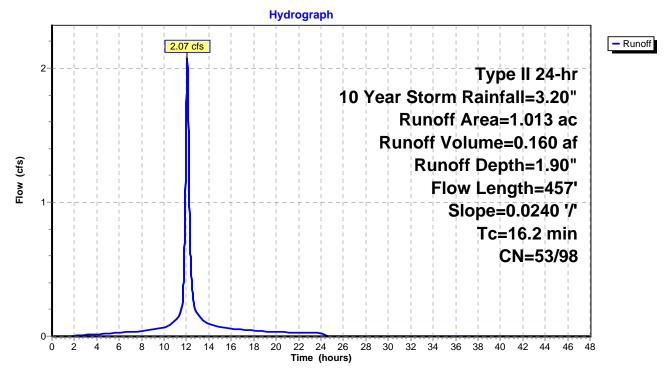
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Desc	cription				
0.	912 8						
-			>75% Grass cover, Good, HSG A				
0.259 32 Woods/grass comb., Good, HSG A							
1.	1.668 62 Weighted Average						
1.212 48 72.66% Pervious Area							
0.	0.456 98 27.34% Impervious Area						
Тс	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
1.6	100	0.0144	1.02		Sheet Flow, Sheet 2		
					Smooth surfaces $n=0.011$ P2= 2.30"		
4.1	595	0.0144	2.44		Shallow Concentrated Flow, Shallow 2a		
0.4	05	0.0700	4.07	0.00	Paved Kv= 20.3 fps		
0.1	25	0.0792	4.87	6.33	,		
					Area= 1.3 sf Perim= $6.3'$ r= $0.21'$		
0.0	7	0.5368	5.13		n= 0.030 Earth, grassed & winding Shallow Concentrated Flow, Shallow 2b		
0.0	'	0.0000	5.15		Short Grass Pasture Kv= 7.0 fps		
5.8	727	Total					
0.0							

Prepared by VHB HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Subcatchment 2a: On-Site 2 Pre

Summary for Subcatchment 3a: On-Site 3 Pre

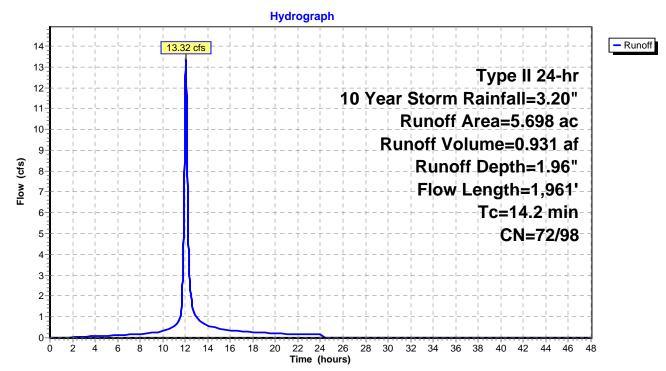

Runoff = 2.07 cfs @ 12.08 hrs, Volume= 0.160 af, Depth= 1.90"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) C	N Des	cription					
	0.	152 3	39 >75°	% Grass co	over, Good	, HSG A			
0.223 61 >75% Grass cover, Good, HSG B									
0.016 74 >75% Grass cover, Good, HSG C									
0.142 98 Paved roads w/curbs & sewers, HSG A									
0.480 98 Paved roads w/curbs & sewers, HSG B									
1.013 81 Weighted Average									
	0.	391 క	53 38.6	0% Pervio	us Area				
	0.	622 9	98 61.4	0% Imperv	vious Area				
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	5.5	357	0.0240	1.08		Shallow Concentrated Flow, Shallow 3			
						Short Grass Pasture Kv= 7.0 fps			
	10.7	100	0.0240	0.16		Sheet Flow, Sheet 3			
_						Grass: Short n= 0.150 P2= 2.30"			
	16.0	457	Total						

16.2 457 Total

Subcatchment 3a: On-Site 3 Pre



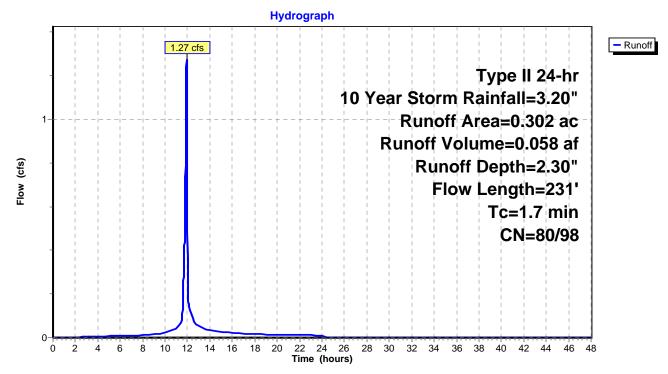
Summary for Subcatchment 4a: On-Site 4 Pre

Runoff = 13.32 cfs @ 12.06 hrs, Volume= 0.931 af, Depth= 1.96"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Desc	cription						
0.023 98 Paved parking, HSG A									
			ed parking						
			ed parking						
			ed parking						
0.025 39 >75% Grass cover, Good, HSG A									
1.201 61 >75% Grass cover, Good, HSG B									
-				over, Good,	HSG D				
			ghted Aver						
			0% Pervio						
2.	883 9	98 50.6	0% Imperv	/ious Area					
т.	1	0		0	Description				
Tc (min)	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
0.5	93	0.1637	2.83		Shallow Concentrated Flow, Shallow 4a				
10.4	1 5 2 7	0 01 17	0.46		Short Grass Pasture Kv= 7.0 fps				
10.4	1,537	0.0147	2.46		Shallow Concentrated Flow, Shallow 4b				
1.6	100	0.0147	1.03		Paved Kv= 20.3 fps Sheet Flow, Sheet 4				
1.0	100	0.0147	1.05		Smooth surfaces $n = 0.011$ P2= 2.30"				
1.2	180	0.0222	2.58	3.35	Channel Flow, Channel 4				
1.2	100	0.0222	2.00	0.00	Area = 1.3 sf Perim = $6.3' \text{ r} = 0.21'$				
					n= 0.030 Earth, grassed & winding				
0.0	7	0.1520	2.73		Shallow Concentrated Flow, Shallow 4c				
					Short Grass Pasture Kv= 7.0 fps				
0.2	15	0.0650	1.27		Shallow Concentrated Flow, Shallow 4d				
					Woodland Kv= 5.0 fps				
0.3	29	0.1040	1.61		Shallow Concentrated Flow, Shallow 4e				
					Woodland Kv= 5.0 fps				
14.2	1,961	Total							

Subcatchment 4a: On-Site 4 Pre

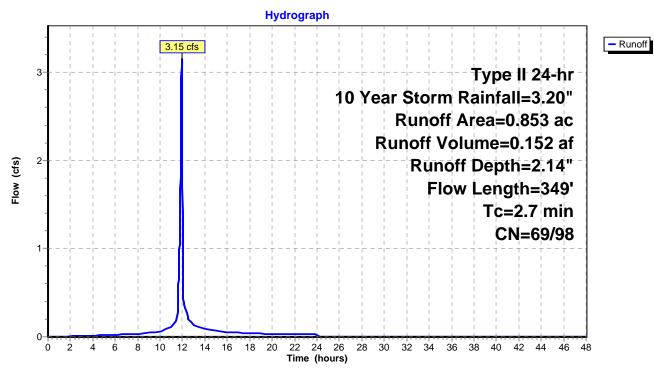

Summary for Subcatchment 5a: On-Site 5 Pre

Runoff = 1.27 cfs @ 11.92 hrs, Volume= 0.058 af, Depth= 2.30"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	Area (ac) CN Description								
0.173 98 Paved roads w/curbs & sewers, HSG D									
0.129 80 Pasture/grassland/range, Good, HSG D									
C	.302	90 Weig	ghted Aver	age					
C	.129	80 42.7	2% Pervio	us Area					
C	.173	98 57.2	8% Imperv	vious Area					
т.	1	0		0	Description				
Tc	Length		Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
1.1	100	0.0351	1.46		Sheet Flow, Sheet 5				
					Smooth surfaces n= 0.011 P2= 2.30"				
0.4	99	0.0351	3.80		Shallow Concentrated Flow, Shallow 5a				
					Paved Kv= 20.3 fps				
0.2	32	0.1243	2.47		Shallow Concentrated Flow, Shallow 5b				
					Short Grass Pasture Kv= 7.0 fps	_			
1.7	231	Total							

Subcatchment 5a: On-Site 5 Pre


Summary for Subcatchment 6a: On-Site 6 Pre

Runoff = 3.15 cfs @ 11.93 hrs, Volume= 0.152 af, Depth= 2.14"

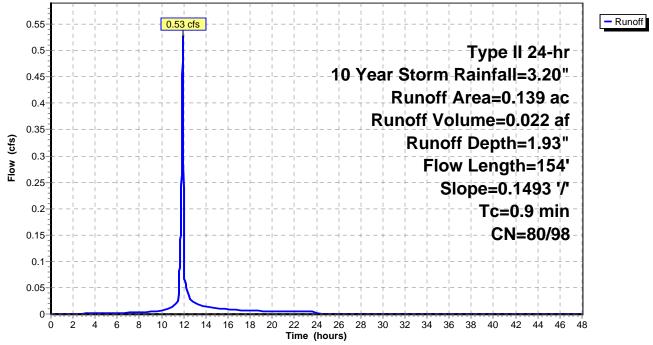
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Dese	cription						
0.	.248 9	98 Pave	ed roads w	/curbs & se	ewers, HSG B				
0.	0.188 61 >75% Grass cover, Good, HSG B								
0.	.283 9	ewers, HSG D							
0.134 80 >75% Grass cover, Good, HSG D									
0.	.853 8	37 Weig	ghted Aver	age					
0.	.322 6	69 37.7 [°]	5% Pervio	us Area					
0.	.531 9	98 62.2	5% Imperv	/ious Area					
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
0.9	130	0.0115	2.53	3.29	Channel Flow, Channel 6a				
					Area= 1.3 sf Perim= 6.3' r= 0.21'				
					n= 0.022 Earth, clean & straight				
1.1	100	0.0418	1.57		Sheet Flow, Sheet 6				
					Smooth surfaces $n= 0.011$ P2= 2.30"				
0.1	20	0.0418	4.15		Shallow Concentrated Flow, Shallow 6a				
		0 0000	5 00	7 70	Paved Kv= 20.3 fps				
0.1	32	0.0630	5.92	7.70	,				
					Area= 1.3 sf Perim= $6.3'$ r= $0.21'$				
0.5	07	0 4 4 0 4	0.40		n= 0.022 Earth, clean & straight				
0.5	67	0.1194	2.42		Shallow Concentrated Flow, Shallow 6b				
0.7	0.40	T . (.)			Short Grass Pasture Kv= 7.0 fps				
2.7	349	Total							

Prepared by VHB HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Subcatchment 6a: On-Site 6 Pre

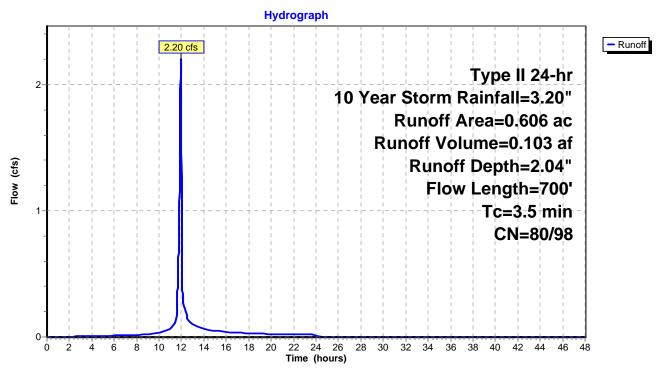
Summary for Subcatchment 9: Subcat 9


Runoff = 0.53 cfs @ 11.91 hrs, Volume= 0.022 af, Depth= 1.93"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

A	Area (ac) CN Description								
0.047 98 Paved roads w/curbs & sewers, HSG D									
0.092 80 >75% Grass cover, Good, HSG D									
0.139 86 Weighted Average									
	0.092 80 66.19% Pervious Area								
	0.0)47	98 33	.81% Imper	vious Area				
	Tc in)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description			
().9	154	0.149	3 2.70		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps			

Subcatchment 9: Subcat 9

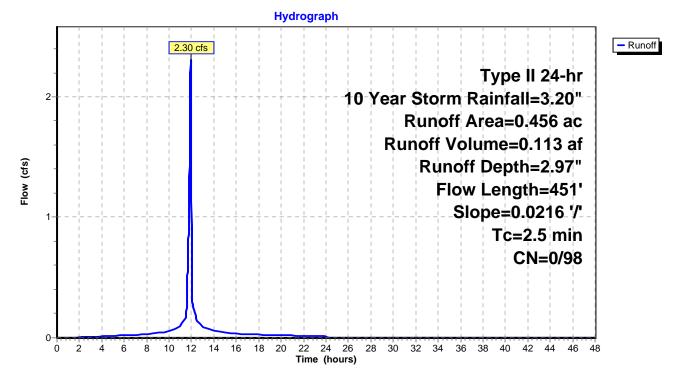

Summary for Subcatchment 10: Subcat 10

Runoff = 2.20 cfs @ 11.94 hrs, Volume= 0.103 af, Depth= 2.04"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) (CN Des	cription				
0.248 98 Paved roads w/curbs & sewers, HSG D								
0.358 80 >75% Grass cover, Good, HSG D								
0.606 87 Weighted Average								
0.358 80 59.08% Pervious Area								
	0.	248	98 40.9	2% Imperv	vious Area			
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	3.4	685	0.0267	3.32		Shallow Concentrated Flow,		
	0.1	15	0.1156	2.38		Paved Kv= 20.3 fps Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps		
	3.5	700	Total					

Subcatchment 10: Subcat 10


Summary for Subcatchment 14: Subcat 14

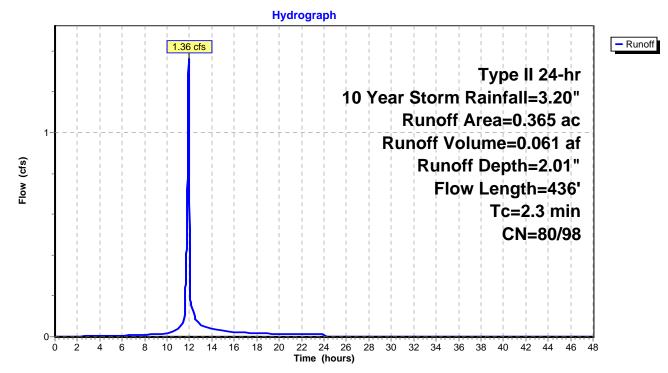
Runoff = 2.30 cfs @ 11.93 hrs, Volume= 0.113 af, Depth= 2.97"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

CN	Desc	cription					
0.456 98 Paved roads w/curbs & sewers, HSG D							
0.456 98 100.00% Impervious Area							
•	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
451 (0.0216	2.98		Shallow Concentrated Flow, Paved Kv= 20.3 fps			
	98 98 ngth eet)	98 Pave 98 100.0 ogth Slope eet) (ft/ft)	98 Paved roads w 98 100.00% Imper ogth Slope Velocity eet) (ft/ft) (ft/sec)	98 Paved roads w/curbs & se 98 100.00% Impervious Area ogth Slope Velocity Capacity set) (ft/ft) (ft/sec) (cfs)			

Subcatchment 14: Subcat 14

Summary for Subcatchment 15: Subcat 15


Runoff = 1.36 cfs @ 11.93 hrs, Volume= 0.061 af, Depth= 2.01"

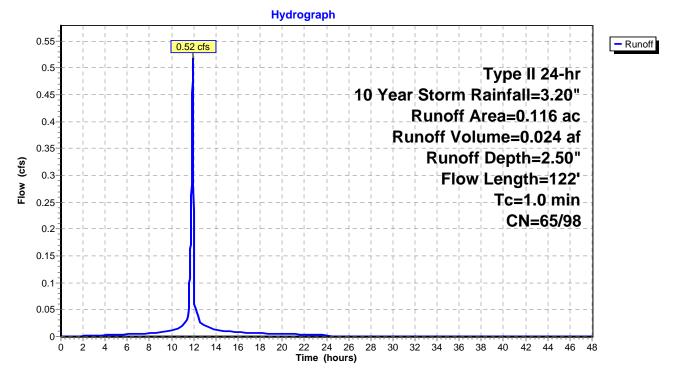
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) C	N Des	cription				
0.123 80 >75% Grass cover, Good, HSG D								
0.100 80 >75% Grass cover, Good, HSG D								
0.142 98 Paved roads w/curbs & sewers, HSG D								
0.365 87 Weighted Average								
	0.	223	80 61.1	0% Pervio	us Area			
	0.	142	98 38.9	0% Imperv	vious Area			
	_							
	Tc	Length	Slope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	0.1	26	0.0477	4.43		Shallow Concentrated Flow,		
						Paved Kv= 20.3 fps		
	2.2	410	0.0417	3.06		Shallow Concentrated Flow,		
						Grassed Waterway Kv= 15.0 fps		
	0.0	400	Tatal					

2.3 436 Total

Subcatchment 15: Subcat 15

Summary for Subcatchment 17: Subcat 17

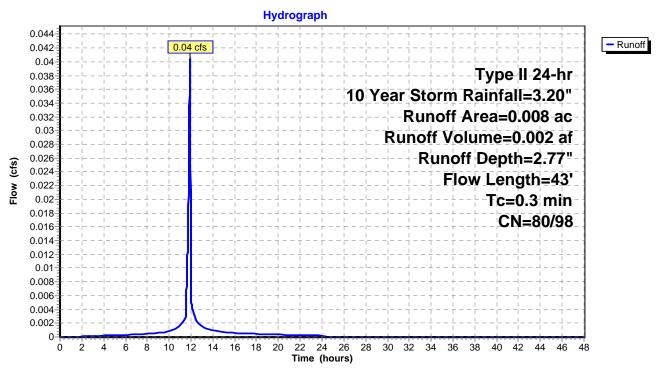

0.52 cfs @ 11.91 hrs, Volume= 0.024 af, Depth= 2.50" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) (CN I	Desc	cription			
0.089 98 Paved roads w/curbs & sewers, HSG D								
0.004 98 Paved roads w/curbs & sewers, HSG B								
0.005 80 >75% Grass cover, Good, HSG D								
0.018 61 >75% Grass cover, Good, HSG B								
0.116 91 Weighted Average								
	0.	023	65 [·]	19.8	3% Pervio	us Area		
	0.	093	98 8	80.1 [°]	7% Imperv	vious Area		
	Tc (min)	Length (feet)		ope t/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	0.4	78	0.02	217	2.99		Shallow Concentrated Flow,	
	0.6	44	0.03	330	1.27		Paved Kv= 20.3 fps Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps	
	1.0	122	Tota	al				

122 Total

Subcatchment 17: Subcat 17


Summary for Subcatchment 18: Subcat 18

Runoff = 0.04 cfs @ 11.90 hrs, Volume= 0.002 af, Depth= 2.77"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) (CN Des	cription				
0.007 98 Paved roads w/curbs & sewers, HSG D								
0.001 80 >75% Grass cover, Good, HSG D								
0.008 96 Weighted Average								
	0.	001		0% Pervio				
	0.	007	98 87.5	50% Imperv	∕ious Area			
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	0.2	36	0.0256	3.25		Shallow Concentrated Flow,		
	0.1	7	0.0600	1.71		Paved Kv= 20.3 fps Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps		
	0.3	43	Total					

Subcatchment 18: Subcat 18

Summary for Subcatchment 19: Subcat 19

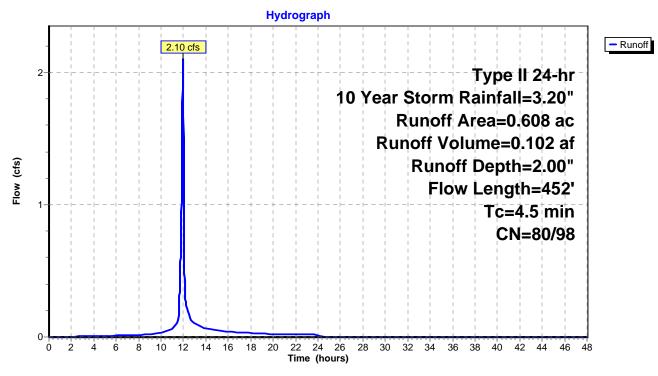
Runoff = 1.00 cfs @ 11.93 hrs, Volume= 0.045 af, Depth= 1.97"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Des	cription				
0	.175 8	80 >75°	% Grass co	over, Good	, HSG D		
0	.099 9	98 Pave	ed roads w	/curbs & se	ewers, HSG D		
0	.274	87 Weig	Veighted Average				
0	.175 8	80 63.8	7% Pervio	us Area			
0	.099 9	98 36.1	3% Imperv	vious Area			
_		-		- ·			
Tc	Length	Slope	Velocity	Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)			
0.1	37	0.0465	4.38		Shallow Concentrated Flow,		
					Paved Kv= 20.3 fps		
2.1	212	0.0590	1.70		Shallow Concentrated Flow,		
					Short Grass Pasture Kv= 7.0 fps		
0.2	71	0.0058	4.74	5.81	Pipe Channel,		
					15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'		
					n= 0.011 Concrete pipe, straight & clean		
24	320	Total					

2.4 320 Total

Subcatchment 19: Subcat 19


Summary for Subcatchment 51: Subcat 51

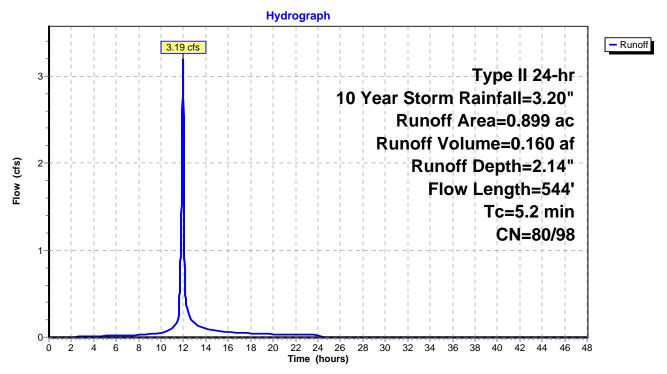
Runoff = 2.10 cfs @ 11.95 hrs, Volume= 0.102 af, Depth= 2.00"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) (N Dese	cription			
0.374 80 >75% Grass cover, Good, HSG D							
0.234 98 Paved roads w/curbs & sewers, HSG D							
	0.	608	87 Weig	ghted Aver	age		
	0.	374	80 61.5	1% Pervio	us Area		
0.234 98 38.49% Impervious Area							
_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	1.0	207	0.0283	3.41		Shallow Concentrated Flow,	
_	3.5	245	0.0276	1.16		Paved Kv= 20.3 fps Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps	
	4.5	452	Total				

Subcatchment 51: Subcat 51

Summary for Subcatchment 52: Subcat 52


Runoff = 3.19 cfs @ 11.96 hrs, Volume= 0.160 af, Depth= 2.14"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) CN Description							
0.332 98 Paved roads w/curbs & sewers, HSG D									
	0.092 98 Paved parking, HSG D								
	0.349 80 >75% Grass cover, Good, HSG D								
	0.	103	30 >75	% Grass co	over, Good	, HSG D			
_	0.	023	80 >75	% Grass co	over, Good	, HSG D			
	0.	899 8	88 Wei	ghted Aver	age				
	0.	475 8	30 52.8	4% Pervio	us Area				
	0.	424	98 47.1	6% Imperv	ious Area				
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.5	116	0.0412	4.12		Shallow Concentrated Flow,			
						Paved Kv= 20.3 fps			
	4.7	428	0.0462	1.50		Shallow Concentrated Flow,			
_						Short Grass Pasture Kv= 7.0 fps			
	F 0	E 4 4	Tatal						

5.2 544 Total

Subcatchment 52: Subcat 52

Summary for Subcatchment 53: Subcat 53

Runoff = 0.99 cfs @ 11.92 hrs, Volume= 0.046 af, Depth= 2.16"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) (CN Dese	cription				
0.008 98 Paved parking, HSG D							
0.133 98 Paved roads w/curbs & sewers, HSG D							
0.017 98 Paved parking, HSG B							
0	.007	98 Roo	fs, HSG B				
	.059			over, Good			
0	.034	80 >759	% Grass co	over, Good	, HSG D		
0	.258		ghted Aver				
0	.093		5% Pervio				
0	.165	98 63.9	5% Imperv	vious Area			
Та	ا به مربع	Clana	Valasitu	Conseitu	Description		
Tc	Length		Velocity	Capacity	Description		
<u>(min)</u>	(feet)		(ft/sec)	(cfs)			
0.8	176	0.0327	3.67		Shallow Concentrated Flow,		
					Paved Kv= 20.3 fps		
0.5	57	0.0877	2.07		Shallow Concentrated Flow,		
		0.0454	4.04		Short Grass Pasture Kv= 7.0 fps		
0.3	80	0.0451	4.31		Shallow Concentrated Flow,		
					Paved Kv= 20.3 fps		
1.6							

0-

Ó

2

4 6 8 10 12 14 16

20

18

22 24 26

Time (hours)

30

28

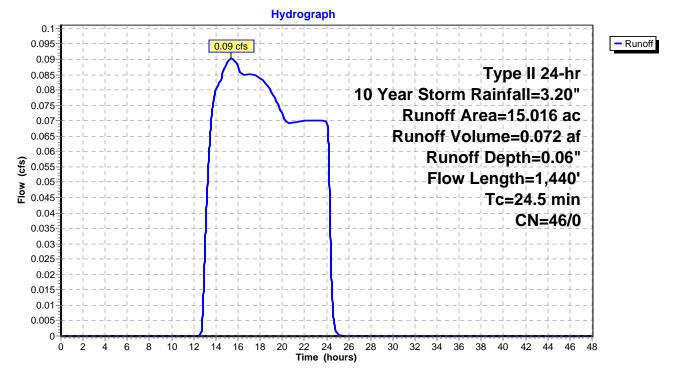
32 34

36 38 40 42 44 46 48

Hydrograph - Runoff 0.99 cfs 1 Type II 24-hr 10 Year Storm Rainfall=3.20" Runoff Area=0.258 ac Runoff Volume=0.046 af Runoff Depth=2.16" Flow (cfs) Flow Length=313' Tc=1.6 min CN=68/98

Subcatchment 53: Subcat 53

Summary for Subcatchment OS1: Off-Site 1


Runoff = 0.09 cfs @ 15.38 hrs, Volume= 0.072 af, Depth= 0.06"

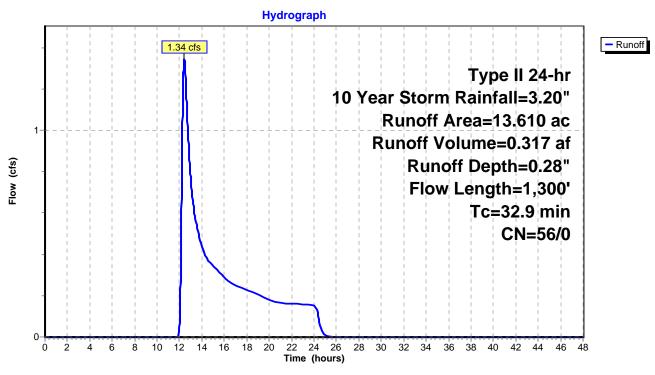
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) C	N Dese	cription		
*	15.	016 4	16 Com	posite CN		
	15.	016 4	46 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	18.7	100	0.0426	0.09		Sheet Flow,
	2.3	464	0.0426	3.32		Woods: Light underbrush n= 0.400 P2= 2.30" Shallow Concentrated Flow, woods segment Unpaved Kv= 16.1 fps
	2.9	586	0.0427	3.33		Shallow Concentrated Flow, grass segment Unpaved Kv= 16.1 fps
	0.1	156	0.1731	29.96	94.12	Pipe Channel, 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
_	0.5	134	0.0746	4.10		n= 0.013 Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps

24.5 1,440 Total

Subcatchment OS1: Off-Site 1

Summary for Subcatchment OS2: Off-Site 2


Runoff = 1.34 cfs @ 12.43 hrs, Volume= 0.317 af, Depth= 0.28"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

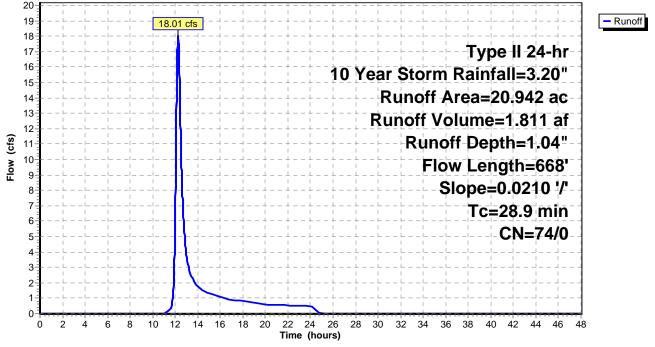
	Area	(ac) C	N Dese	cription		
*	13.	610 5	56 Com	posite CN		
	13.	610 5	56 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	26.7	100	0.0176	0.06		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.30"
	5.4	690	0.0176	2.14		Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	0.8	510	0.0585	10.87	41.30	Trap/Vee/Rect Channel Flow, channel Bot.W=2.50' D=1.00' Z= 1.3 '/' Top.W=5.10' n= 0.025
	~~~~	4 0 0 0	<b>T</b> ( )			

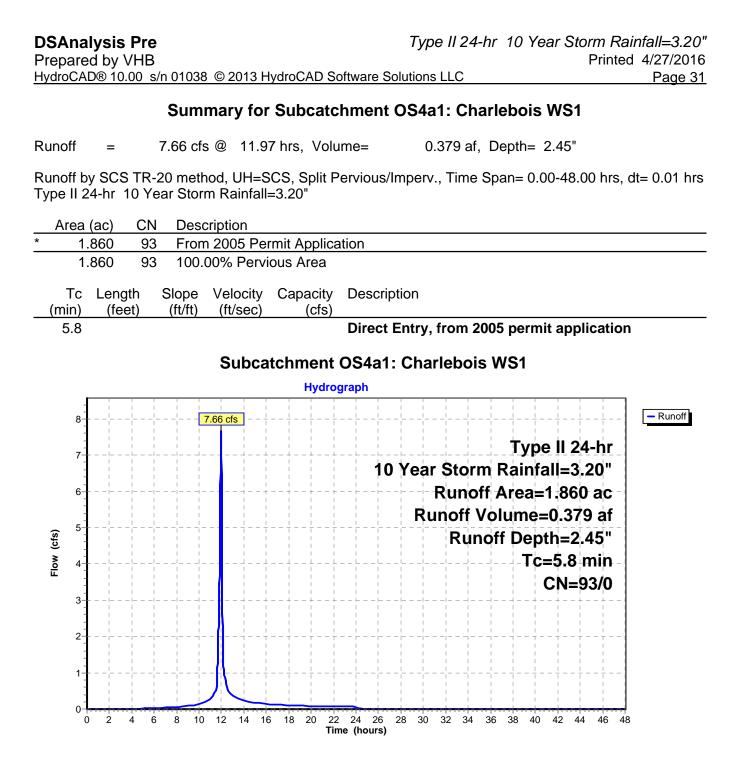
32.9 1,300 Total

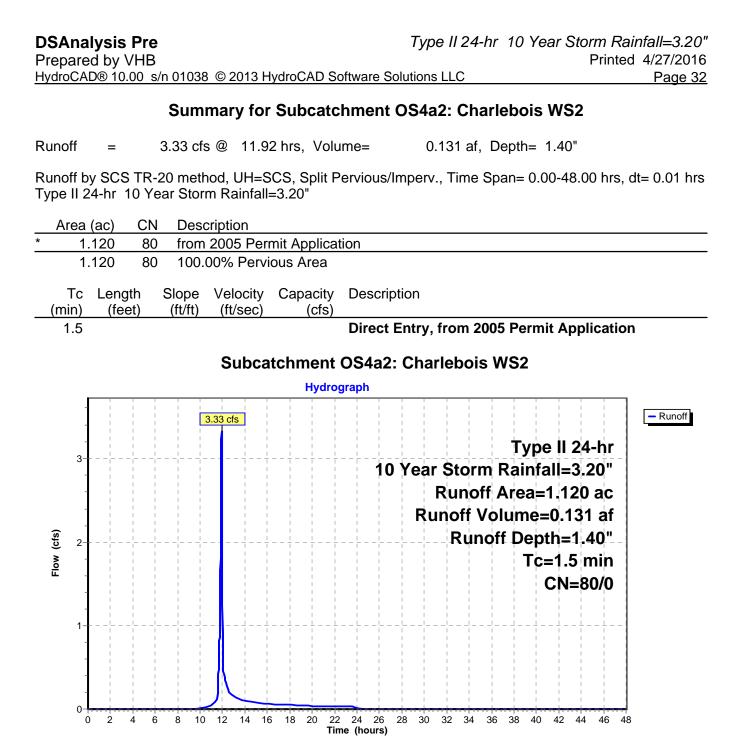
# Subcatchment OS2: Off-Site 2



#### Summary for Subcatchment OS3: Off-Site 3


Runoff = 18.01 cfs @ 12.24 hrs, Volume= 1.811 af, Depth= 1.04"


Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"


	Area	(ac) C	N Des	cription		
*	20.	942 7	74 Com	posite CN		
	20.942 74 100.00% Pervious Area				ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	24.8	100	0.0210	0.07		Sheet Flow,
	4.1	568	0.0210	2.33		Woods: Light underbrush n= 0.400 P2= 2.30" <b>Shallow Concentrated Flow,</b> Unpaved Kv= 16.1 fps
	28.9	668	Total			

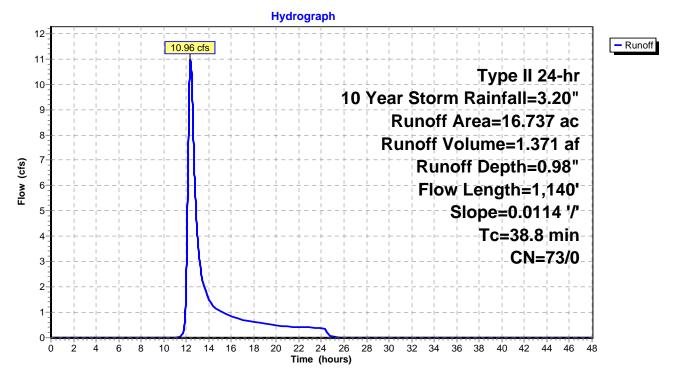
#### Subcatchment OS3: Off-Site 3









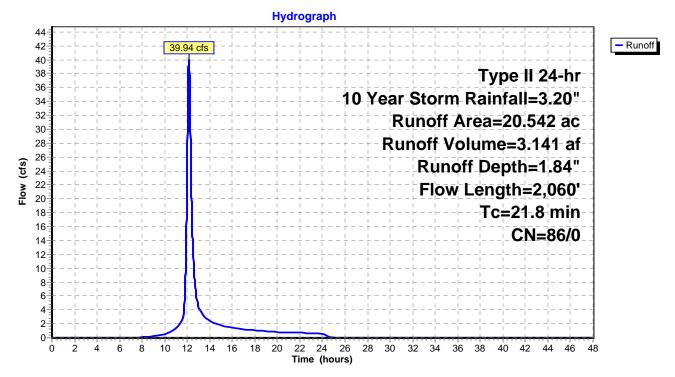

### Summary for Subcatchment OS4_E: Off-Site 4 East of Rte 7

Runoff = 10.96 cfs @ 12.37 hrs, Volume= 1.371 af, Depth= 0.98"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) C	N Desc	cription		
*	16.	737 7	'3 com	posite		
	16.737 73 100.00% Pervious Area		ous Area			
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	29.2	150	0.0114	0.09		Sheet Flow,
	9.6	990	0.0114	1.72		Grass: Dense n= 0.240 P2= 2.30" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	38.8	1,140	Total			

### Subcatchment OS4_E: Off-Site 4 East of Rte 7




### Summary for Subcatchment OS4_W: Off-Site 4 West of Rte 7

Runoff = 39.94 cfs @ 12.14 hrs, Volume= 3.141 af, Depth= 1.84"

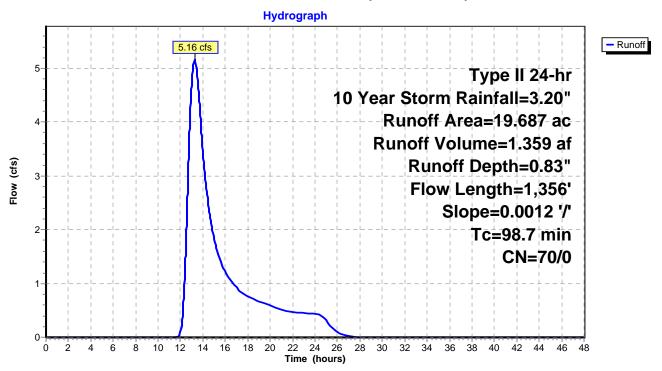
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Desc	cription		
* 20	.542 8	36 com	posite CN		
20	.542 8	36 100.	00% Pervi	ous Area	
Tc	0	Slope	Velocity		Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
14.1	100	0.0312	0.12		Sheet Flow,
					Grass: Dense n= 0.240 P2= 2.30"
1.9	320	0.0312	2.84		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
4.4	940	0.0137	3.55	7.98	
					Bot.W=3.00' D=0.50' Z= 4.0 & 2.0 '/' Top.W=6.00'
0.4	440	0.0057	40.04	40.74	n= 0.025
0.1	110	0.0357	13.61	42.74	
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
0 5	160	0.0100	E 10	214 24	n= 0.013
0.5	160	0.0123	5.10	214.24	
					Bot.W=5.00' D=2.00' Z= 8.0 '/' Top.W=37.00' n= 0.035
0.4	320	0.0402	14.44	45.36	Pipe Channel,
0.4	320	0.0402	14.44	45.50	24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
					n= 0.013
0.4	110	0.0826	4.31		Shallow Concentrated Flow,
0.4	110	0.0020	ч. <b>0</b> 1		Grassed Waterway Kv= 15.0 fps
21.8	2,060	Total			
21.0	2,000	Total			



# Subcatchment OS4_W: Off-Site 4 West of Rte 7

### Summary for Subcatchment OS5a: (new Subcat)

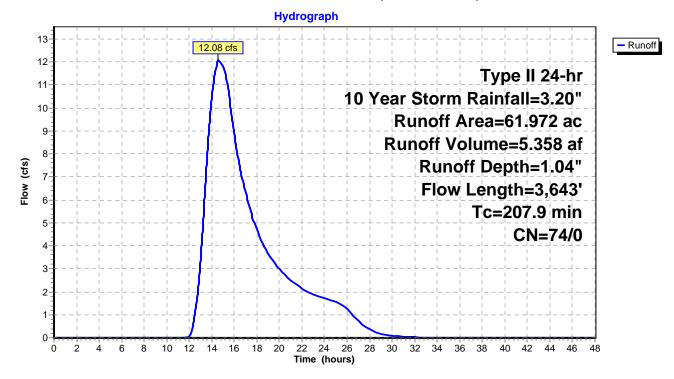

Runoff = 5.16 cfs @ 13.27 hrs, Volume= 1.359 af, Depth= 0.83"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
*	19.	687 7	70 weig	hted CN		
	19.	687 7	70 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	78.0	100	0.0012	0.02		Sheet Flow,
	9.4	313	0.0012	0.56		Woods: Light underbrush n= 0.400 P2= 2.30" Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	8.3	489	0.0012	0.98	1.95	Trap/Vee/Rect Channel Flow, Bot.W=2.00' D=0.50' Z= 4.0 '/' Top.W=6.00' n= 0.025
	3.0	454	0.0012	2.49	7.84	<b>Pipe Channel,</b> 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50' n= 0.013
	<u> </u>	4 0 5 0	<b>T</b> ( )			

98.7 1,356 Total

#### Subcatchment OS5a: (new Subcat)




# Summary for Subcatchment OS5b: (new Subcat)

Runoff = 12.08 cfs @ 14.56 hrs, Volume= 5.358 af, Depth= 1.04"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Dese	cription		
* 61	.972 7	'4 weig	hted CN		
61.	.972 7	4 100.	00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
47.4	100	0.0015	0.04		Sheet Flow,
					Grass: Dense n= 0.240 P2= 2.30"
1.4	50	0.0015	0.58		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
113.4	1,318	0.0015	0.19		Shallow Concentrated Flow,
24.8	670	0.0081	0.45		Woodland Kv= 5.0 fps Shallow Concentrated Flow,
2.110	0.0	010001	0110		Woodland Kv= 5.0 fps
10.2	666	0.0009	1.08	3.25	Trap/Vee/Rect Channel Flow,
					Bot.W=0.00' D=1.00' Z= 3.0 '/ Top.W=6.00'
					n= 0.025
10.7	839	0.0048	1.31	8.19	Trap/Vee/Rect Channel Flow,
					Bot.W=4.00' D=0.50' Z= 17.0 '/' Top.W=21.00'
					n= 0.035
207.9	3,643	Total			



# Subcatchment OS5b: (new Subcat)


#### Summary for Subcatchment OS5_6: (new Subcat)

Runoff = 20.95 cfs @ 11.98 hrs, Volume= 0.981 af, Depth= 1.61"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
*	7.	.318 8	33 weig	hted CN		
	7.	.318 8	33 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	1.0	50	0.0130	0.85		Sheet Flow,
	2.4	340	0.0130	2.31		Smooth surfaces n= 0.011 P2= 2.30" Shallow Concentrated Flow, Paved Kv= 20.3 fps
	2.7	270	0.0110	1.69		Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	6.1	660	Total			

### Subcatchment OS5_6: (new Subcat)




### Summary for Subcatchment OS5_7: (new Subcat)

Runoff = 0.76 cfs @ 12.60 hrs, Volume= 0.137 af, Depth= 0.60"

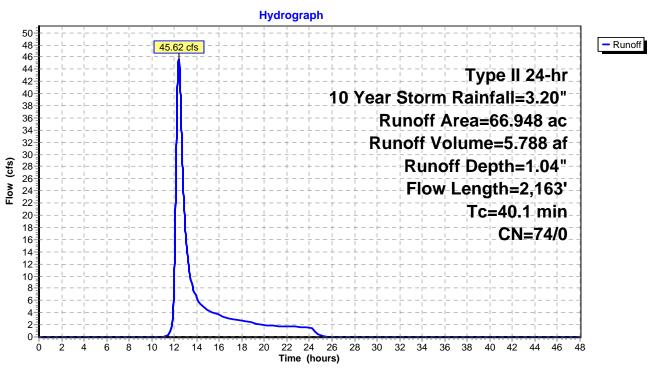
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) C	N Desc	cription		
*	2.	744 6	5 weig	hted CN		
	2.744 6		5 100.00% Pervi		ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	34.2	100	0.0010	0.05	(015)	Sheet Flow,
	54.2	100	0.0010	0.05		Range n= 0.130 P2= 2.30"
	14.9	456	0.0010	0.51		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	49.1	556	Total			

### Subcatchment OS5_7: (new Subcat)



#### Summary for Subcatchment OS5_8: (new Subcat)


Runoff = 45.62 cfs @ 12.39 hrs, Volume= 5.788 af, Depth= 1.04"

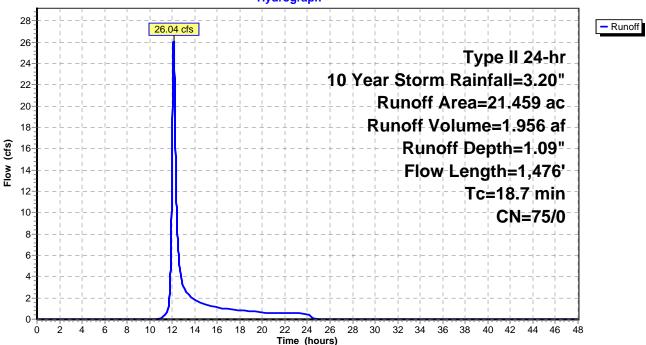
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
*	66.	948 7	74 weig	hted CN		
	66.	948 7	74 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	1.9	50	0.0025	0.44		Sheet Flow, Smooth surfaces n= 0.011 P2= 2.30"
	5.7	345	0.0025	1.02		<b>Shallow Concentrated Flow,</b> Paved Kv= 20.3 fps
	32.5	1,768	0.0023	0.91	5.67	Trap/Vee/Rect Channel Flow, Bot.W=4.00' D=0.50' Z= 17.0 '/' Top.W=21.00' n= 0.035
-						

40.1 2,163 Total

### Subcatchment OS5_8: (new Subcat)




#### Summary for Subcatchment OS6: (new Subcat)

Runoff = 26.04 cfs @ 12.12 hrs, Volume= 1.956 af, Depth= 1.09"

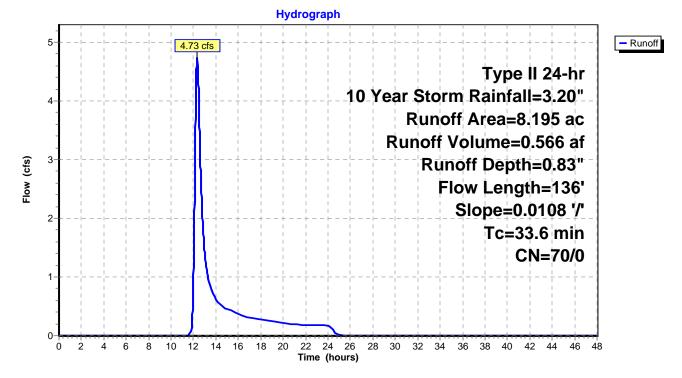
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
*	21.	.459 7	75 weig	hted CN		
	21.459 75 100.00% Pervious Ar		ous Area			
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	1.1	50	0.0093	0.75		Sheet Flow,
	1.7	488	0.0930	4.91		Smooth surfaces n= 0.011 P2= 2.30" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	15.9	938	0.0043	0.98		Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
	18.7	1,476	Total			· ·

#### Subcatchment OS6: (new Subcat)



#### Hydrograph


### Summary for Subcatchment OS7_1: (new Subcat)

Runoff = 4.73 cfs @ 12.32 hrs, Volume= 0.566 af, Depth= 0.83"

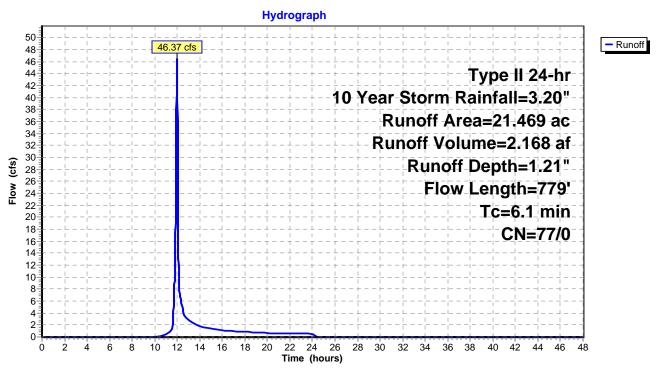
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) C	N Dese	cription		
*	8.	195 7	70 weig	hted CN		
	8.	195 7	70 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	32.4	100	0.0108	0.05	(0.0)	Sheet Flow,
	1.2	36	0.0108	0.52		Woods: Light underbrush n= 0.400 P2= 2.30" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	33.6	136	Total			

### Subcatchment OS7_1: (new Subcat)



## Summary for Subcatchment OS7_2: (new Subcat)


Runoff = 46.37 cfs @ 11.98 hrs, Volume= 2.168 af, Depth= 1.21"

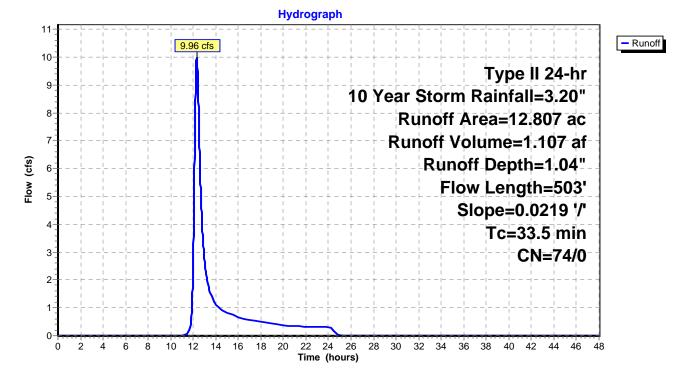
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
*	21.	469 7	77 weig	hted CN		
	21.469 77 100.00% Pervious Area				ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	1.1	50	0.0093	0.75		Sheet Flow, Smooth surfaces n= 0.011 P2= 2.30"
	2.3	273	0.0093	1.96		<b>Shallow Concentrated Flow,</b> Paved Kv= 20.3 fps
_	2.7	456	0.0175	2.81	4.22	
	0.4	770	<b>T</b> . ( . )			

6.1 779 Total

### Subcatchment OS7_2: (new Subcat)




### Summary for Subcatchment OS7_4: (new Subcat)

Runoff = 9.96 cfs @ 12.32 hrs, Volume= 1.107 af, Depth= 1.04"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Des	cription		
*	12.	807 7	74 weig	hted CN		
	12.	807 7	74 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	24.4	100	0.0219	0.07		Sheet Flow,
	9.1	403	0.0219	0.74		Woods: Light underbrush n= 0.400 P2= 2.30" <b>Shallow Concentrated Flow,</b> Woodland Kv= 5.0 fps
_	33.5	503	Total			

### Subcatchment OS7_4: (new Subcat)



# Summary for Subcatchment OS8a: (new Subcat)

Runoff = 6.43 cfs @ 12.08 hrs, Volume= 0.426 af, Depth= 2.00"

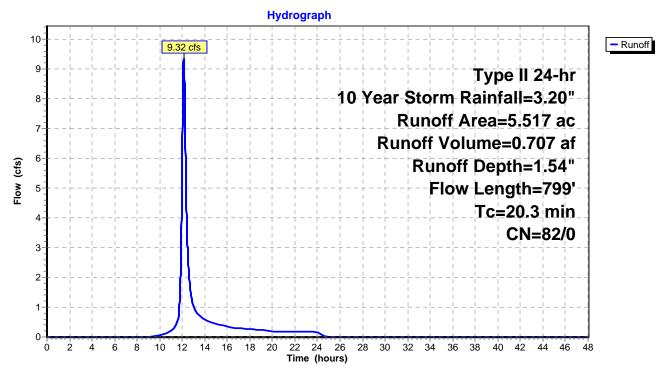
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Dese	cription		
* 2	.557 8	88 weig	hted CN		
2.	.557 8	88 100.	00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
8.1	60	0.1228	0.12		Sheet Flow,
2.3	290	0.0103	2.06		Woods: Light underbrush n= 0.400 P2= 2.30" <b>Shallow Concentrated Flow,</b> Paved Kv= 20.3 fps
0.6	90	0.1319	2.54		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
1.7	240	0.0243	2.34		Shallow Concentrated Flow,
0.1	130	0.1053	19.29	34.09	Grassed Waterway Kv= 15.0 fps <b>Pipe Channel,</b> 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
2.9	849	0.0259	4.92	14.77	n= 0.013 <b>Trap/Vee/Rect Channel Flow,</b> Bot.W=4.00' D=0.50' Z= 4.0 '/' Top.W=8.00' n= 0.025
15.7	1,659	Total			

Hydrograph 7 - Runoff 6.43 cfs Type II 24-hr 6 10 Year Storm Rainfall=3.20" Runoff Area=2.557 ac 5-Runoff Volume=0.426 af Runoff Depth=2.00" Flow (cfs) 4 Flow Length=1,659' 3-Tc=15.7 min CN=88/0 2 1-0-2 8 12 14 16 18 20 24 26 28 30 32 34 36 38 40 42 44 4 6 10 22 46 48 Ó Time (hours)

# Subcatchment OS8a: (new Subcat)

#### Summary for Subcatchment OS8b: (new Subcat)


Runoff = 9.32 cfs @ 12.13 hrs, Volume= 0.707 af, Depth= 1.54"

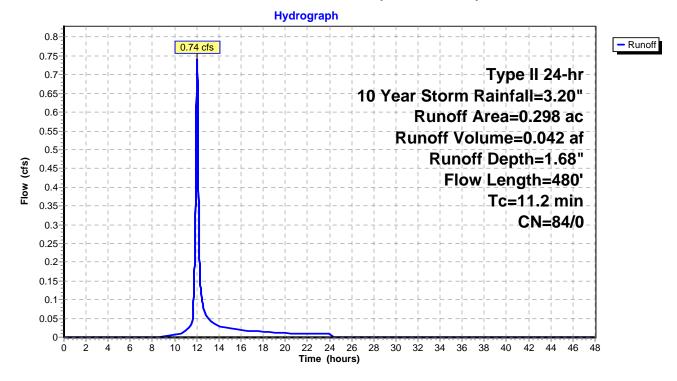
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Des	cription		
*	5.	517 8	32 weig	hted CN		
	5.	517 8	B2 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	10.0	100	0.0032	0.17		Sheet Flow, roadside channel
	9.5	518	0.0032	0.91		Fallow n= 0.050 P2= 2.30" Shallow Concentrated Flow, roadside channel Unpaved Kv= 16.1 fps
	0.8	181	0.0055	3.86	17.89	
	20.3	799	Total			

r=

#### Subcatchment OS8b: (new Subcat)




#### Summary for Subcatchment OS8c: (new Subcat)

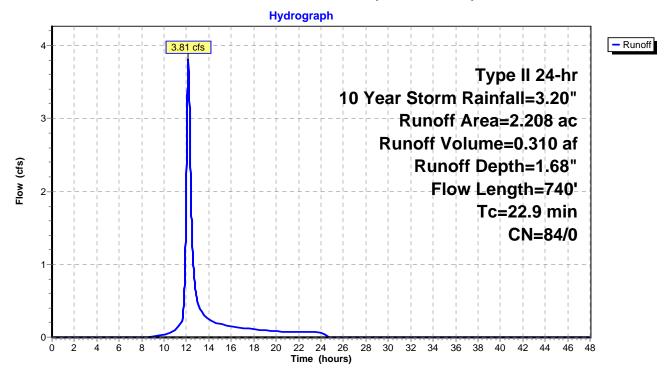
Runoff = 0.74 cfs @ 12.03 hrs, Volume= 0.042 af, Depth= 1.68"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
*	0.	.298 8	34 weig	hted CN		
	0.	.298 8	34 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	8.0	100	0.0504	0.21		Sheet Flow,
						Grass: Short n= 0.150 P2= 2.30"
	1.5	140	0.0504	1.57		Shallow Concentrated Flow,
	47	0.40	0.0040	0.04		Short Grass Pasture Kv= 7.0 fps
	1.7	240	0.0243	2.34		Shallow Concentrated Flow,
_						Grassed Waterway Kv= 15.0 fps
	11.2	480	Total			

#### Subcatchment OS8c: (new Subcat)




#### Summary for Subcatchment OS8d: (new Subcat)

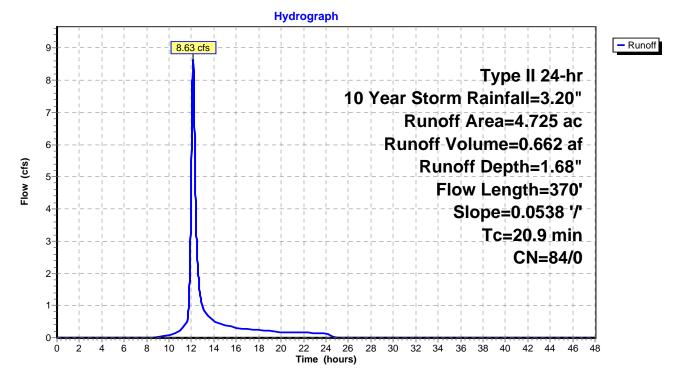
Runoff = 3.81 cfs @ 12.16 hrs, Volume= 0.310 af, Depth= 1.68"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
*	2.	.208 8	34 weig	hted CN		
	2.	.208 8	34 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	14.8	100	0.0766	0.11		Sheet Flow,
	2.8	240	0.0796	1.41		Woods: Light underbrush n= 0.400 P2= 2.30" <b>Shallow Concentrated Flow,</b> Woodland Kv= 5.0 fps
	5.3	400	0.0327	1.27		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
	22.9	740	Total			

#### Subcatchment OS8d: (new Subcat)




#### Summary for Subcatchment OS8e: OS8e

Runoff = 8.63 cfs @ 12.14 hrs, Volume= 0.662 af, Depth= 1.68"

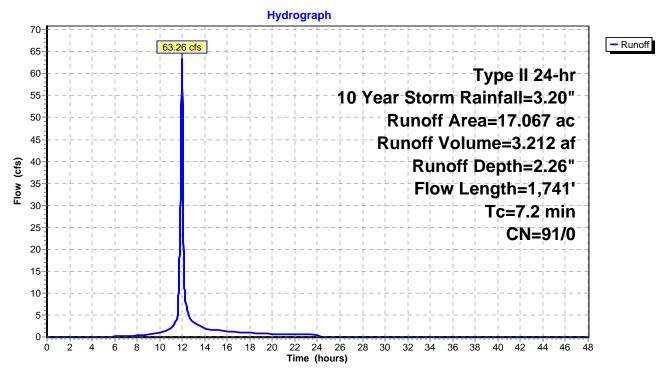
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
*	4.	725 8	34 weig	hted CN		
	4.	725 8	34 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	17.0	100	0.0538	0.10	X - 7	Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.30"
	3.9	270	0.0538	1.16		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	20.9	370	Total			

#### Subcatchment OS8e: OS8e



#### Summary for Subcatchment OS8_5: (new Subcat)


Runoff = 63.26 cfs @ 11.98 hrs, Volume= 3.212 af, Depth= 2.26"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

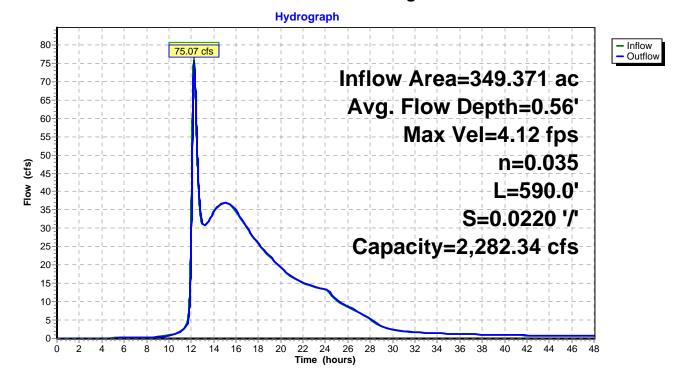
	Area	(ac) C	N Des	cription		
*	17.	.067 9	91 weig	hted CN		
	17.	.067 9	91 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	0.6	50	0.0398	1.34		Sheet Flow, Smooth surfaces n= 0.011 P2= 2.30"
	1.8	427	0.0398	4.05		Shallow Concentrated Flow, Paved Kv= 20.3 fps
	4.8	1,264	0.0498	4.41	3.03	Trap/Vee/Rect Channel Flow, Bot.W=2.00' D=0.25' Z= 3.0 '/' Top.W=3.50' n= 0.025
-		4 - 44	<b>—</b>			

7.2 1,741 Total

#### Subcatchment OS8_5: (new Subcat)



#### Summary for Reach R1: Reach through OS 1


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.12 fps, Min. Travel Time= 2.4 min Avg. Velocity = 1.41 fps, Avg. Travel Time= 7.0 min

Peak Storage= 10,757 cf @ 12.27 hrs Average Depth at Peak Storage= 0.56' Bank-Full Depth= 4.00' Flow Area= 172.0 sf, Capacity= 2,282.34 cfs

31.00' x 4.00' deep channel, n= 0.035 Side Slope Z-value= 3.0 '/' Top Width= 55.00' Length= 590.0' Slope= 0.0220 '/' Inlet Invert= 266.00', Outlet Invert= 253.00'

‡

#### Reach R1: Reach through OS 1



334.093 ac.

Inflow Area =

10-5-0-

0

Ż

6 8

10 12

14 16 18

20 22 24 26

Time (hours)

28 30 32 34

36 38

40 42 44 46 48

#### Summary for Reach R2: Reach through OS2

2.23% Impervious, Inflow Depth > 1.15" for 10 Year Storm event

Inflow 74.68 cfs @ 12.22 hrs. Volume= 31.982 af = 74.47 cfs @ 12.24 hrs, Volume= Outflow 31.977 af, Atten= 0%, Lag= 0.9 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 7.00 fps, Min. Travel Time= 1.4 min Avg. Velocity = 2.66 fps, Avg. Travel Time= 3.6 min Peak Storage= 6,170 cf @ 12.24 hrs Average Depth at Peak Storage= 0.86' Bank-Full Depth= 4.00' Flow Area= 112.0 sf, Capacity= 1,850.26 cfs 8.00' x 4.00' deep channel, n= 0.035 Side Slope Z-value= 5.0 '/' Top Width= 48.00' Length= 580.0' Slope= 0.0500 '/' Inlet Invert= 295.00', Outlet Invert= 266.00' ‡ Reach R2: Reach through OS2 Hydrograph 80- Inflow 74.47 cfs Outflow 75-Inflow Area=334.093 ac 70 65 Avg. Flow Depth=0.86' 60-Max Vel=7.00 fps 55 50 n=0.035 (cfs) 45 Flow L=580.0' 40 35-S=0.0500 '/' 30-Capacity=1,850.26 cfs 25 20 15

312.138 ac.

Inflow Area =

#### Summary for Reach R3: Reach through OS3

2.19% Impervious, Inflow Depth > 1.15" for 10 Year Storm event

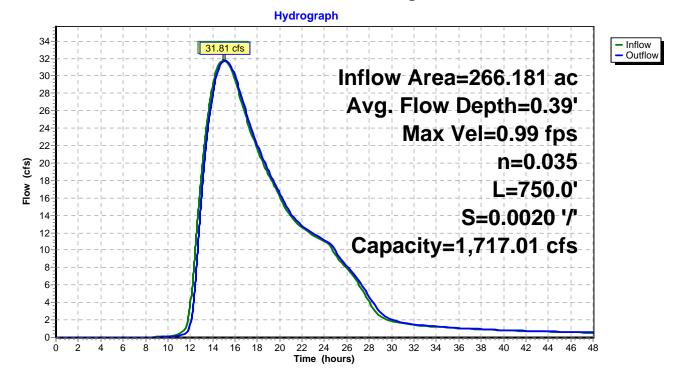
Inflow 59.61 cfs @ 12.14 hrs. Volume= 30.038 af = 55.71 cfs @ 12.21 hrs, Volume= Outflow 30.012 af, Atten= 7%, Lag= 4.5 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.56 fps, Min. Travel Time= 6.2 min Avg. Velocity = 0.61 fps, Avg. Travel Time= 15.9 min Peak Storage= 20,744 cf @ 12.21 hrs Average Depth at Peak Storage= 0.51' Bank-Full Depth= 4.00' Flow Area= 560.0 sf, Capacity= 2,787.67 cfs 60.00' x 4.00' deep channel, n= 0.040 Winding stream, pools & shoals Side Slope Z-value= 20.0 '/' Top Width= 220.00' Length= 580.0' Slope= 0.0052 '/' Inlet Invert= 298.00', Outlet Invert= 295.00' ‡ Reach R3: Reach through OS3 Hydrograph 65 Inflow 59.61 cfs Outflow 60-55.71 cfs Inflow Area=312.138 ac 55 Avg. Flow Depth=0.51' 50 45 Max Vel=1.56 fps 40 n=0.040 (cfs) 35-L=580.0' _lo ₹ 30-S=0.0052 '/' 25 Capacity=2,787.67 cfs 20 15 10 5 0 2 12 14 16 18 20 22 26 28 30 32 34 36 38 40 42 46 48 0 6 8 10 24 44 Time (hours)

#### Summary for Reach R4: Reach through OS4

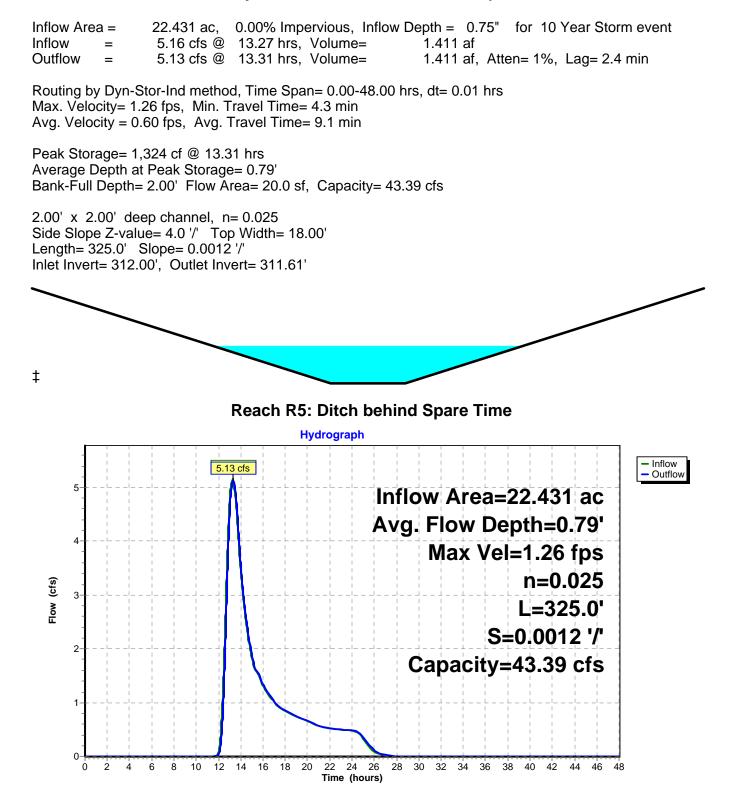
 Inflow Area =
 266.181 ac,
 1.48% Impervious, Inflow Depth >
 1.09" for 10 Year Storm event

 Inflow =
 31.86 cfs @
 14.97 hrs, Volume=
 24.150 af

 Outflow =
 31.81 cfs @
 15.10 hrs, Volume=
 24.107 af, Atten= 0%, Lag= 8.2 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.99 fps, Min. Travel Time= 12.6 min Avg. Velocity = 0.43 fps, Avg. Travel Time= 29.2 min

Peak Storage= 23,989 cf @ 15.10 hrs Average Depth at Peak Storage= 0.39' Bank-Full Depth= 4.00' Flow Area= 412.0 sf, Capacity= 1,717.01 cfs


80.00' x 4.00' deep channel, n= 0.035 Side Slope Z-value= 5.0 6.5 '/' Top Width= 126.00' Length= 750.0' Slope= 0.0020 '/' Inlet Invert= 299.50', Outlet Invert= 298.00'

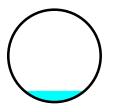


#### **Reach R4: Reach through OS4**

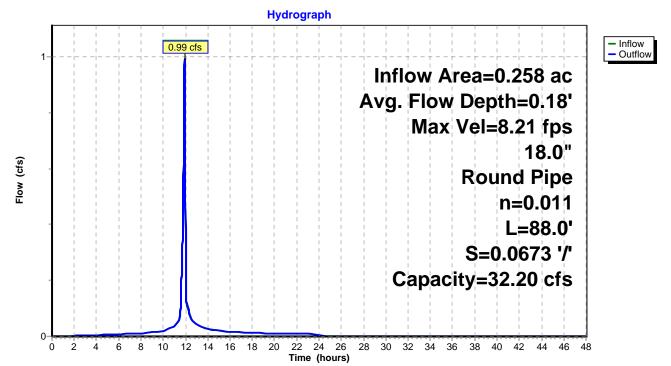


#### Summary for Reach R5: Ditch behind Spare Time




# Summary for Reach X12: Pipe X12

Inflow Area =0.258 ac, 63.95% Impervious, Inflow Depth =2.16" for 10 Year Storm eventInflow =0.99 cfs @11.92 hrs, Volume =0.046 afOutflow =0.99 cfs @11.92 hrs, Volume =0.046 af, Atten = 0%, Lag = 0.1 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 8.21 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.33 fps, Avg. Travel Time= 0.6 min

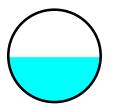
Peak Storage= 11 cf @ 11.92 hrs Average Depth at Peak Storage= 0.18' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 32.20 cfs

18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 88.0' Slope= 0.0673 '/' Inlet Invert= 330.50', Outlet Invert= 324.58'

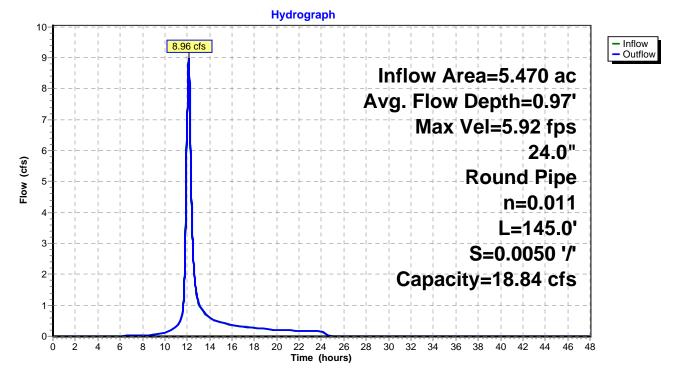


# Reach X12: Pipe X12




# Summary for Reach X14: Pipe X14

Inflow Area =5.470 ac, 5.39% Impervious, Inflow Depth = 1.73" for 10 Year Storm eventInflow =8.97 cfs @ 12.14 hrs, Volume=0.788 afOutflow =8.96 cfs @ 12.14 hrs, Volume=0.788 af, Atten= 0%, Lag= 0.3 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 5.92 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.79 fps, Avg. Travel Time= 1.4 min

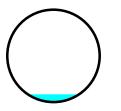
Peak Storage= 219 cf @ 12.14 hrs Average Depth at Peak Storage= 0.97' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 18.84 cfs

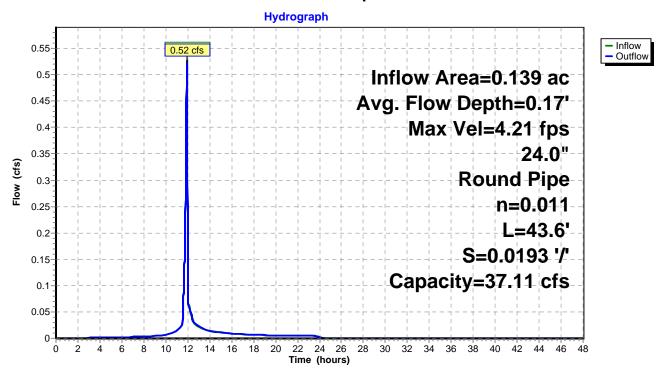
24.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 145.0' Slope= 0.0050 '/' Inlet Invert= 324.02', Outlet Invert= 323.30'



# Reach X14: Pipe X14




### Summary for Reach X8: Pipe X8


Inflow Area =0.139 ac, 33.81% Impervious, Inflow Depth =1.93" for 10 Year Storm eventInflow =0.53 cfs @11.91 hrs, Volume=0.022 afOutflow =0.52 cfs @11.91 hrs, Volume=0.022 af, Atten= 0%, Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.21 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.22 fps, Avg. Travel Time= 0.6 min

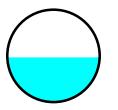
Peak Storage= 5 cf @ 11.91 hrs Average Depth at Peak Storage= 0.17' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 37.11 cfs

24.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 43.6' Slope= 0.0193 '/' Inlet Invert= 327.35', Outlet Invert= 326.51'





#### Reach X8: Pipe X8


### Summary for Reach X9: Pipe X9

Inflow Area =5.331 ac, 4.65% Impervious, Inflow Depth = 1.72" for 10 Year Storm eventInflow =8.91 cfs @12.14 hrs, Volume=0.766 afOutflow =8.91 cfs @12.14 hrs, Volume=0.766 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 5.93 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.77 fps, Avg. Travel Time= 0.2 min

Peak Storage= 30 cf @ 12.14 hrs Average Depth at Peak Storage= 0.97' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 18.90 cfs

24.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 20.0' Slope= 0.0050 '/' Inlet Invert= 327.02', Outlet Invert= 326.92'

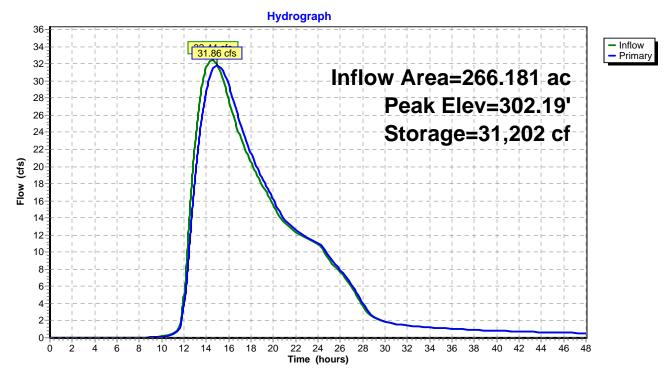


Hydrograph Inflow 8.91 cfs Outflow 9-Inflow Area=5.331 ac 8-Avg. Flow Depth=0.97' 7-Max Vel=5.93 fps 24.0" 6 Flow (cfs) **Round Pipe** 5 n=0.011 4-L=20.0' 3-S=0.0050 '/' 2 Capacity=18.90 cfs 1 0-2 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 0 6 Time (hours)

# Reach X9: Pipe X9

#### Summary for Pond 1P: Hercules Drive / S/N 005

Upstream end of Hercules Drive culvert represents S/N 005


Inflow Area	=	266.181 ac,	1.48% Impervious, Inflow Depth > 1.09" for 10 Year Storm event
Inflow	=	32.44 cfs @	14.55 hrs, Volume= 24.158 af
Outflow	=	31.86 cfs @	14.97 hrs, Volume= 24.150 af, Atten= 2%, Lag= 24.7 min
Primary	=	31.86 cfs @	14.97 hrs, Volume= 24.150 af
-			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 300.01' Surf.Area= 698 sf Storage= 262 cf Peak Elev= 302.19' @ 14.97 hrs Surf.Area= 37,631 sf Storage= 31,202 cf (30,940 cf above start)

Plug-Flow detention time= 12.7 min calculated for 24.144 af (100% of inflow) Center-of-Mass det. time= 11.5 min (1,170.9 - 1,159.3)

Volume	Inv	ert Ava	I.Storage	Storage Description	on			
#1	299.	00' 2	89,977 cf	Custom Stage D	<b>ata (Irregular)</b> List	ed below (Recalc)		
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
299.0	)0	12	38.0	0	0	12		
300.0	00	664	524.0	255	255	21,749		
301.0	00	8,419	934.0	3,816	4,071	69,324		
302.0	00	34,889	1,232.0	20,149	24,220	120,701		
303.0	00	50,252	1,311.0	42,338	66,557	136,738		
304.0		63,333	1,347.0	56,667	123,224	144,468		
306.0	)0	105,180	1,900.0	166,753	289,977	287,393		
Device	Routing	In	vert Outl	et Devices				
#1	Primary	300	.01' <b>36.0</b>	" Round Culvert				
L= 76.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 300.01' / 299.50' S= 0.0067 '/' Cc= 0.900 n= 0.025, Flow Area= 7.07 sf 300.07' <b>36.0" Round Culvert</b> L= 76.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 299.72' / 300.07' S= -0.0046 '/' Cc= 0.900 n= 0.025, Flow Area= 7.07 sf								
· · ·	Primary OutFlow Max=31.85 cfs @ 14.97 hrs HW=302.19' TW=299.89' (Dynamic Tailwater)							

**2=Culvert** (Barrel Controls 15.17 cfs @ 3.31 fps)



### Pond 1P: Hercules Drive / S/N 005

Printed 4/27/2016

Page 63

# Summary for Pond 2P: Lower Mtn View Dr

Inflow Area =	107.210 ac,	3.51% Impervious, Ir	nflow Depth > 1.23"	for 10 Year Storm event
Inflow =	66.51 cfs @	12.12 hrs, Volume=	10.984 af	
Outflow =	14.01 cfs @	12.72 hrs, Volume=	10.980 af, Att	en= 79%, Lag= 36.3 min
Primary =	14.01 cfs @	12.72 hrs, Volume=	10.980 af	

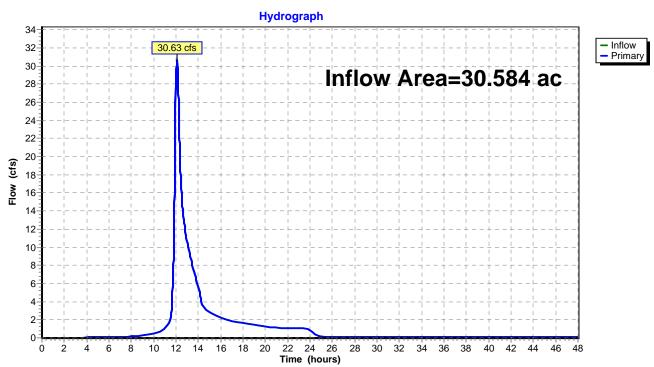
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 307.54' Surf.Area= 1,916 sf Storage= 898 cf Peak Elev= 309.98' @ 13.10 hrs Surf.Area= 97,209 sf Storage= 94,287 cf (93,389 cf above start)

Plug-Flow detention time= 50.8 min calculated for 10.958 af (100% of inflow) Center-of-Mass det. time= 45.2 min (1,129.2 - 1,084.0)

Volume	Inv	ert Ava	il.Storage	Storage Descripti	on				
#1	305.8	81' 2,6	97,851 cf	Custom Stage D	ata (Irregular)List	ted below (Recalc)			
Elevatio	n	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(fee		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
305.8		0	20.0	0	0	0			
306.0	00	86	86.0	5	5	557			
307.0	00	523	295.0	274	279	6,896			
308.0	00	3,791	669.0	1,907	2,187	35,591			
309.0	00	48,653	2,441.0	22,008	24,195	474,139			
310.0	00	98,391	2,208.0	72,077	96,272	560,370			
312.0	00	463,287	3,621.0	516,787	613,059	1,215,826			
316.	50	463,287	3,621.0	2,084,792	2,697,851	1,232,120			
Device	Routing	In	vert Outl	et Devices					
#1	Primary	305	5.81' <b>24.0</b>	" Round Culvert					
			L= 1	02.0' CMP, proje	cting, no headwall	, Ke= 0.900			
			Inlet	let / Outlet Invert= 305.81' / 304.74' S= 0.0105 '/' Cc= 0.900					
			n= 0	0.025 Corrugated r	metal, Flow Area=	= 3.14 sf			
#2	Primary	316				sted Rectangular Weir			
				d (feet) 0.20 0.40					
			Coe	f. (English) 2.68 2	2.70 2.70 2.64 2.	63 2.64 2.64 2.63			
Drimon	<b>Primary OutFlow</b> Max-14.01 cfs @ 12.72 brs $HW$ -309.95' TW-307.91' (Dynamic Tailwater)								

Primary OutFlow Max=14.01 cfs @ 12.72 hrs HW=309.95' TW=307.91' (Dynamic Tailwater) -1=Culvert (Outlet Controls 14.01 cfs @ 4.46 fps)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)


Hydrograph 70- Inflow 66.51 cfs - Primary 65 Inflow Area=107.210 ac 60 Peak Elev=309.98' 55 Storage=94,287 cf 50-45 Flow (cfs) 40 35 30-25 20-14.01 cfs 15-10-5 0-2 6 12 14 16 18 20 24 26 28 30 32 4 8 10 22 34 36 38 40 42 44 46 48 Ó Time (hours)

# Pond 2P: Lower Mtn View Dr

# Summary for Pond 008: POI 008

Inflow Area	a =	30.584 ac,	6.26% Impervious, Inflow D	Depth > 1.74" for 10 Year Storm event
Inflow	=	30.63 cfs @	12.11 hrs, Volume=	4.443 af
Primary	=	30.63 cfs @	12.11 hrs, Volume=	4.443 af, Atten= 0%, Lag= 0.0 min

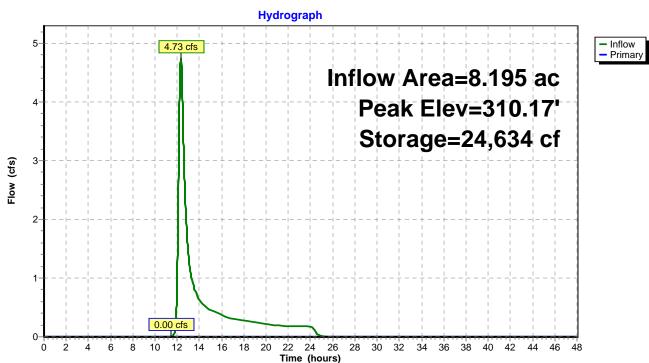
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs



#### Pond 008: POI 008

# Summary for Pond P1: Behind Health Lab

Inflow Area	=	8.195 ac,	0.00% Impervious, Inflow D	epth = 0.83" for 10 Year Storm event
Inflow :	=	4.73 cfs @	12.32 hrs, Volume=	0.566 af
Outflow :	=	0.00 cfs @	11.47 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min
Primary :	=	0.00 cfs @	11.47 hrs, Volume=	0.000 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 310.17' @ 25.92 hrs Surf.Area= 141,660 sf Storage= 24,634 cf

Plug-Flow detention time= 3.3 min calculated for 0.000 af (0% of inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Volume	Inv	rert Ava	il.Storage	Storage Descript	ion		
#1	310.	00' 3	72,741 cf	Custom Stage D	D <b>ata (Irregular)</b> List	ted below (Recalc	)
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
310.0 312.5		140,477 157,885	1,706.0 1,775.0	0 372,741	0 372,741	140,477 160,080	
Device	Routing	In	vert Outl	et Devices			
#1	Primary	310	Hea	tom Weir/Orifice, d (feet) 0.00 1.00 th (feet) 3.00 9.00	)	8)	

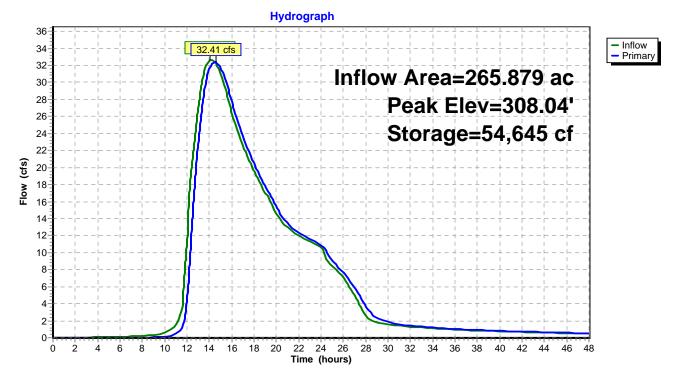
Primary OutFlow Max=0.00 cfs @ 11.47 hrs HW=310.00' TW=310.03' (Dynamic Tailwater)

Prepared by VHB HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC



# Pond P1: Behind Health Lab

#### Summary for Pond P10: Reach between LMV and Hercules


Inflow Area	=	265.879 ac,	1.42% Impervious, Inflow I	Depth > 1.10" for 10 Year Storm event
Inflow =	=	32.62 cfs @	14.10 hrs, Volume=	24.266 af
Outflow =	=	32.41 cfs @	14.56 hrs, Volume=	24.100 af, Atten= 1%, Lag= 27.3 min
Primary =	=	32.41 cfs @	14.56 hrs, Volume=	24.100 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 307.54' Surf.Area= 88,869 sf Storage= 3,516 cf Peak Elev= 308.04' @ 14.56 hrs Surf.Area= 115,526 sf Storage= 54,645 cf (51,129 cf above start)

Plug-Flow detention time= 49.4 min calculated for 24.020 af (99% of inflow) Center-of-Mass det. time= 31.4 min (1,160.3 - 1,128.9)

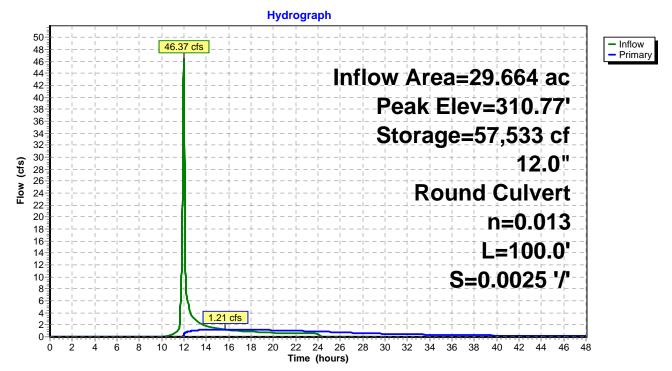
Volume	Inv	ert Avai	il.Storage	Storage Description	on		
#1	307.	50' 1	14,777 cf	Storage 1066' DS	6 of LMV (Irregula	<b>r)</b> Listed below (Re	calc)
Elevatio (fee 307.5 308.0 308.5	50 00	Surf.Area (sq-ft) 86,932 112,678 148,186	Perim. (feet) 3,099.0 3,270.0 3,641.0	Inc.Store (cubic-feet) 0 49,764 65,014	Cum.Store (cubic-feet) 0 49,764 114,777	Wet.Area (sq-ft) 86,932 173,614 377,657	
Device	Routing	In	vert Outl	et Devices			
#1	Primary	307		mmetrical Weir, C et (feet) -143.00 -		.00 -21.00 -11.00	0.00
			-	0 38.00 60.00 88 . (feet) 310.00 30		34 308.76 307.71	307.54
				67 308.66 309.24			

Primary OutFlow Max=32.41 cfs @ 14.56 hrs HW=308.04' TW=302.17' (Dynamic Tailwater)



### Pond P10: Reach between LMV and Hercules

#### Summary for Pond P2/3: Upstream of Park Drive


Inflow Area =	29.664 ac,	0.00% Impervious, Inflow D	epth = 0.88" for 10 Year Storm event
Inflow =	46.37 cfs @	11.98 hrs, Volume=	2.168 af
Outflow =	1.21 cfs @	15.63 hrs, Volume=	1.790 af, Atten= 97%, Lag= 219.0 min
Primary =	1.21 cfs @	15.63 hrs, Volume=	1.790 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 310.77' @ 15.63 hrs Surf.Area= 84,106 sf Storage= 57,533 cf

Plug-Flow detention time= 647.0 min calculated for 1.790 af (83% of inflow) Center-of-Mass det. time= 568.5 min (1,417.6 - 849.1)

Volume	Invert	Avail	.Storage	Storage Description	n		
#1	310.00'	12	28,517 cf	Pond 2 (Irregular)			
#2	310.00'	3	33,492 cf	Pond 3 (Irregular)	Listed below (Red	alc)	
		2′	12,008 cf	Total Available Sto	rage		
Elevation (feet)	Su	urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
310.00		39,781	975.0	0	0	39,781	
312.25		76,433	1,197.0	128,517	128,517	78,230	
Elevation (feet)	Su	urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
310.00		25,767	687.0	0	0	25,767	
312.25		49,751	855.0	83,492	83,492	46,455	
	outing rimary	In\ 310.		et Devices <b>Round Culvert</b>			
#1 F1	inary	310.	L= 1 Inlet	00.0' RCP, sq.cut e	.00' / 309.75' S=	e= 0.500 0.0025 '/'    Cc= 0.900	0

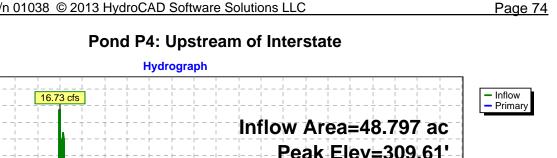
**Primary OutFlow** Max=1.21 cfs @ 15.63 hrs HW=310.77' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 1.21 cfs @ 2.57 fps)



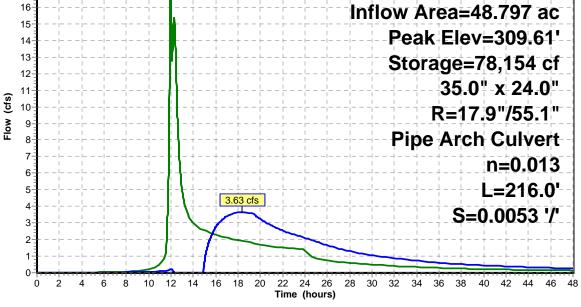
# Pond P2/3: Upstream of Park Drive

# Summary for Pond P4: Upstream of Interstate

Inflow Area	a =	48.797 ac,	2.71% Impervious, Inflow D	Depth > 0.95" for 10 Year Storm event
Inflow	=	16.73 cfs @	11.96 hrs, Volume=	3.872 af
Outflow	=	3.63 cfs @	18.39 hrs, Volume=	3.726 af, Atten= 78%, Lag= 385.7 min
Primary	=	3.63 cfs @	18.39 hrs, Volume=	3.726 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 309.61' @ 15.70 hrs Surf.Area= 122,812 sf Storage= 78,154 cf

Plug-Flow detention time= 412.5 min calculated for 3.726 af (96% of inflow) Center-of-Mass det. time= 356.0 min (1,469.3 - 1,113.3)


Volume	Inv	vert Avai	I.Storage	Storage Descripti	on		
#1	308.	84' 2	64,873 cf	Custom Stage D	ata (Irregular)Liste	ed below (Recalc)	
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
308.8	34	100	40.0	0	0	100	
309.0	00	113,232	2,956.0	,	6,224	695,316	
311.(	00	146,115	3,003.0	258,649	264,873	718,386	
Device #1	Routing Primary		.84' <b>35.0</b> L= 2 Inle	216.0' Ke= 0.500	8.84' / 307.69' S=	Arch CMP_Arch_1/2 35 0.0053 '/' Cc= 0.900 .63 sf	5x24

**Primary OutFlow** Max=3.64 cfs @ 18.39 hrs HW=309.52' TW=308.65' (Dynamic Tailwater) **1=CMP_Arch_1/2 35x24** (Outlet Controls 3.64 cfs @ 3.15 fps) 18-

17

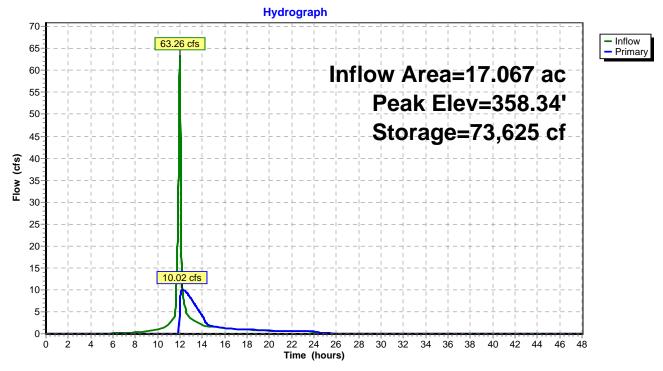


Printed 4/27/2016



# Summary for Pond P5: in Shaws Parking

Data from Champlain Consulting Engineers 8 SEP 00


-								
Inflow Are Inflow Outflow Primary	= =	17.067 ac, 0. 63.26 cfs @ 1 10.02 cfs @ 12 10.02 cfs @ 12	1.98 hrs, Volur 2.22 hrs, Volur	me= 3.2° me= 2.32	= 2.26" for 10 Year Storm event 12 af 25 af, Atten= 84%, Lag= 14.0 min 25 af			
	Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 358.34' @ 12.22 hrs Surf.Area= 21,910 sf Storage= 73,625 cf							
Center-of	Plug-Flow detention time= 279.0 min calculated for 2.324 af (72% of inflow) Center-of-Mass det. time= 185.0 min ( 985.5 - 800.5 )							
Volume	Inve	ert Avail.Sto	rage Storage	Description				
#1	354.5				ismatic)Listed below			
Elevatio	n	Surf.Area	Inc.Store	Cum.Store				
(feet	t)	(sq-ft)	(cubic-feet)	(cubic-feet)				
354.5	0	16,374	0	0				
356.0		18,340	26,036	26,036				
358.0		21,318	39,658	65,694				
360.0		24,759	46,077	111,771				
362.0		31,577	56,336	168,107				
Device	Routing	Invert	Outlet Device	S				
#1	Primary	356.10'	2.0" Horiz, 2'	" ORIFICE/GRA	<b>TF</b> $C = 0.600$			
#2	Primary	357.00'			<b>ORIFICE/GRATE X9 X 9.00</b> C= 0.600			
	. minury	007.00		ir flow at low hea				
#3	Primary	359.60'			AL ORIFICE/GRATE C= 0.600			
<i>"</i> 0	Thinary	000.00		ir flow at low hea				
Drimony	<b>Primary OutElow</b> Max-10.02 cfs @ 12.22 brs $HW-358.34'$ TW-351.08' (Dynamic Tailwater)							

Primary OutFlow Max=10.02 cfs @ 12.22 hrs HW=358.34' TW=351.98' (Dynamic Tailwater) -1=2" ORIFICE/GRATE (Orifice Controls 0.16 cfs @ 7.21 fps) -2=6" HORIZONTAL ORIFICE/GRATE X9 (Orifice Controls 9.87 cfs @ 5.58 fps)

-3=18" HORIZONTAL ORIFICE/GRATE (Controls 0.00 cfs)

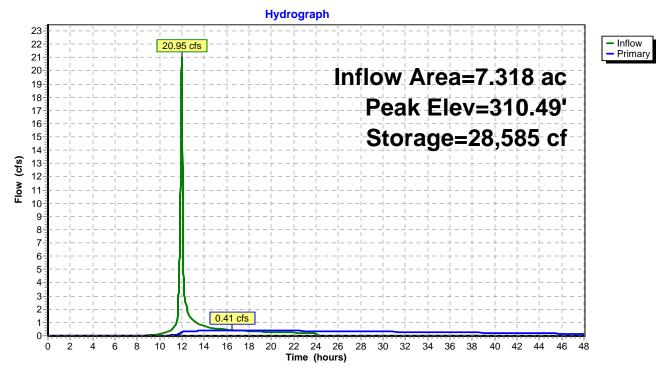
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC





# Summary for Pond P6: next to Spare Time

Inflow Are	a =	7.318 ac,	0.00% Impervious, Inflow D	Depth = 1.61" for 10 Year Storm event
Inflow	=	20.95 cfs @	11.98 hrs, Volume=	0.981 af
Outflow	=	0.41 cfs @	16.49 hrs, Volume=	0.887 af, Atten= 98%, Lag= 270.9 min
Primary	=	0.41 cfs @	16.49 hrs, Volume=	0.887 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 310.49' @ 16.49 hrs Surf.Area= 14,614 sf Storage= 28,585 cf

Plug-Flow detention time= 844.7 min calculated for 0.887 af (90% of inflow) Center-of-Mass det. time= 795.3 min (1,625.2 - 829.8)

Volume	Inv	ert Avail	.Storage	Storage Descriptio	n		
#1	308.	00' 5	52,935 cf	Custom Stage Da	ta (Irregular)Liste	d below (Recalc)	
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
308.0	00	8,207	459.0	0	0	8,207	
310.0	00	13,684	465.0	21,659	21,659	9,231	
312.0	00	17,677	465.0	31,276	52,935	10,161	
Device #1 #2	Routing Primary Primary		00' <b>3.0"</b> 14' <b>18.0</b> L= 3 Inlet	et Devices Vert. Orifice/Grate " Round Culvert 4.0' CPP, mitered / Outlet Invert= 310 .120, Flow Area= 1	to conform to fill,   .14' / 310.09' S=	Ke= 0.700 0.0015 '/' Cc= 0.900	
Primary	Primary OutFlow Max=0.41 cfs @ 16.49 hrs HW=310.49' TW=307.98' (Dynamic Tailwater)						

-1=Orifice/Grate (Orifice Controls 0.36 cfs @ 7.40 fps)

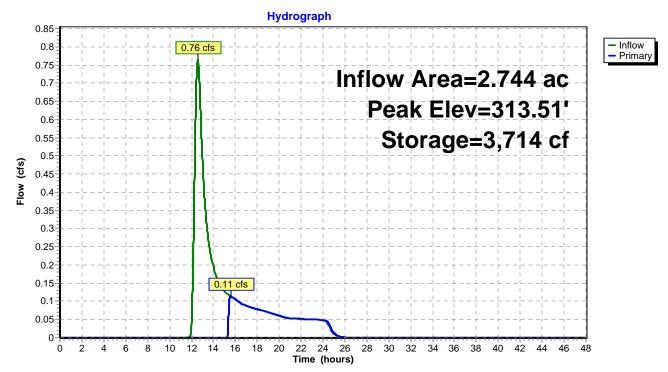
-2=Culvert (Barrel Controls 0.05 cfs @ 0.23 fps)



# Pond P6: next to Spare Time

Page 78

# Summary for Pond P7: Small Pond across Hercules


Inflow Area =	2.744 ac,	0.00% Impervious, Inflow D	Depth = 0.60" for 10 Year Storm event
Inflow =	0.76 cfs @	12.60 hrs, Volume=	0.137 af
Outflow =	0.11 cfs @	15.57 hrs, Volume=	0.053 af, Atten= 85%, Lag= 178.6 min
Primary =	0.11 cfs @	15.57 hrs, Volume=	0.053 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 313.51' @ 15.57 hrs Surf.Area= 3,312 sf Storage= 3,714 cf

Plug-Flow detention time= 402.5 min calculated for 0.053 af (38% of inflow) Center-of-Mass det. time= 230.1 min (1,163.1 - 932.9)

Volume	Inv	ert Ava	il.Storage	Storage Description	on		
#1	312.	00'	5,495 cf	Custom Stage Da	<b>ata (Irregular)</b> List	ed below (Recalc)	
Elevatio (fee 312.0 314.0	et) 00	Surf.Area (sq-ft) 1,699 3,952	Perim. (feet) 250.0 313.0	Inc.Store (cubic-feet) 0 5,495	Cum.Store (cubic-feet) 0 5,495	Wet.Area (sq-ft) 1,699 4,577	
Device #1	Routing Primary		3.50' <b>50.0</b> Head	d (feet) 0.20 0.40	0.60 0.80 1.00	ed Rectangular We 1.20 1.40 1.60 63 2.64 2.64 2.63	ir

Primary OutFlow Max=0.11 cfs @ 15.57 hrs HW=313.51' TW=312.45' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir** (Weir Controls 0.11 cfs @ 0.25 fps)



# Pond P7: Small Pond across Hercules

Page 80

# Summary for Pond P8: Nat'l Guard Wetland

Inflow Area =	66.948 ac,	0.00% Impervious, Inflow De	epth = 1.04" for 10 Year Storm event
Inflow =	45.62 cfs @	12.39 hrs, Volume=	5.788 af
Outflow =	4.80 cfs @	16.96 hrs, Volume=	5.629 af, Atten= 89%, Lag= 273.8 min
Primary =	4.80 cfs @	16.96 hrs, Volume=	5.629 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 309.65' @ 14.69 hrs Surf.Area= 209,303 sf Storage= 123,647 cf

Plug-Flow detention time= 294.8 min calculated for 5.629 af (97% of inflow) Center-of-Mass det. time= 279.2 min (1,169.5 - 890.4)

Volume	Inv	ert Avai	.Storage	Storage Descripti	on	
#1	306.6	60' 2,725,483		Custom Stage Data (Irregular)Listed below (Recalc)		
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
306.6		3,900	2,500.0	0	0	3,900
308.6	0	19,200	7,100.0	21,169	21,169	3,518,054
312.6	0	1,822,000	6,500.0	2,704,314	2,725,483	4,167,976
Device #1	Routing Primary	Inv 306.	60' <b>12.0</b>		L= 50.0' Ke= 0.50	00 0.0020 '/' Cc= 0.900
#2	Primary	n= 0 y 312.30' <b>60.0</b> Head		0.012, Flow Area= 0.79 sf <b>D' long x 25.0' breadth Broad-Crested Rectangular Weir</b> ad (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 ef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63		
Primary OutFlow Max=4.80 cfs @ 16.96 hrs HW=309.61' TW=307.97' (Dynamic Tailwater) -1=Culvert (Outlet Controls 4.80 cfs @ 6.11 fps)						

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

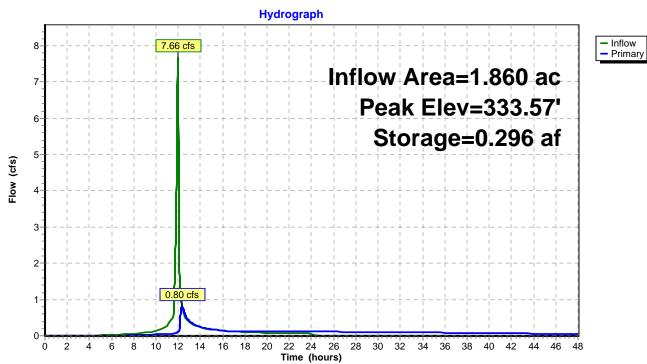
Pond P8: Nat'l Guard Wetland



# **Summary for Pond P9: Charlebois Pond**

Inflow Area =	1.860 ac,	0.00% Impervious, Inflow D	Depth = 2.45" for 10 Year Storm event
Inflow =	7.66 cfs @	11.97 hrs, Volume=	0.379 af
Outflow =	0.80 cfs @	12.34 hrs, Volume=	0.357 af, Atten= 90%, Lag= 22.4 min
Primary =	0.80 cfs @	12.34 hrs, Volume=	0.357 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 331.00' Surf.Area= 0.050 ac Storage= 0.082 af Peak Elev= 333.57' @ 12.34 hrs Surf.Area= 0.119 ac Storage= 0.296 af (0.214 af above start)


Plug-Flow detention time= 979.3 min calculated for 0.274 af (72% of inflow) Center-of-Mass det. time= 670.0 min (1,459.3 - 789.3)

Volume	Invert	Avail.Stora	ge Stora	rage Description
#1	327.00'	0.351	af Cus	stom Stage Data (Prismatic)Listed below (Recalc)
Elevatior (feet			c.Store re-feet)	Cum.Store (acre-feet)
327.00	1 1	.003	0.000	0.000
328.00		.009	0.006	0.006
329.00	0 0	.018	0.014	0.020
330.00	0 0	.029	0.024	0.043
331.00		.050	0.039	0.082
332.00		.075	0.062	0.145
333.00		.102	0.088	0.233
334.00	0 0	.132	0.117	0.351
Device	Routing	Invert	Outlet De	Devices
#1	Primary	331.00'	15.0" Ro	Round Culvert
#2 #3	Device 1 Primary	331.00' 333.50'	Inlet / Ou n= 0.012 1.7" Ver 36.0" x 3	<ul> <li>CPP, square edge headwall, Ke= 0.500</li> <li>butlet Invert= 331.00' / 330.00' S= 0.0220 '/' Cc= 0.900</li> <li>2, Flow Area= 1.23 sf</li> <li>rt. Orifice/Grate C= 0.600</li> <li>36.0" Horiz. Orifice/Grate C= 0.600</li> <li>to weir flow at low heads</li> </ul>
Primary	OutFlow M	ax=0.80 cfs @	2 12.34 hr	rs HW=333.57' TW=0.00' (Dynamic Tailwater)

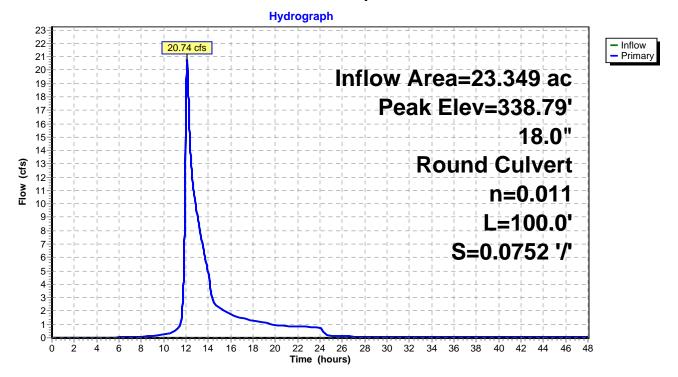
-1=Culvert (Passes 0.12 cfs of 8.23 cfs potential flow) -2=Orifice/Grate (Orifice Controls 0.12 cfs @ 7.61 fps)

-3=Orifice/Grate (Weir Controls 0.68 cfs @ 0.85 fps)

HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC



# Pond P9: Charlebois Pond


# Summary for Pond X10: Pipe X10

3.41% Impervious, Inflow Depth > 1.72" for 10 Year Storm event Inflow Area = 23.349 ac, Inflow 20.74 cfs @ 12.11 hrs. Volume= 3.346 af = Outflow 20.74 cfs @ 12.11 hrs, Volume= 3.346 af, Atten= 0%, Lag= 0.0 min = 20.74 cfs @ 12.11 hrs. Volume= Primary 3.346 af =

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 338.79' @ 12.11 hrs

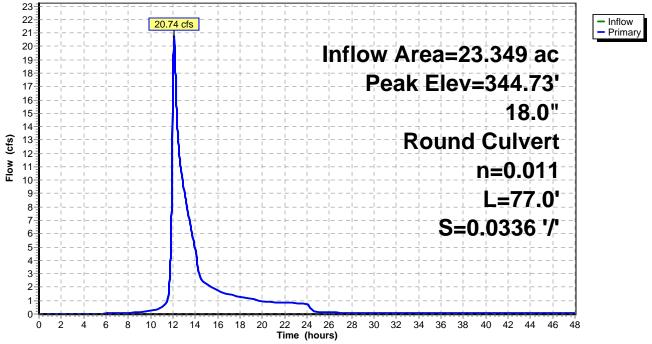
Device	Routing	Invert	Outlet Devices
#1	Primary	332.10'	<b>18.0" Round Culvert</b> L= 100.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 332.10' / 324.58' S= 0.0752 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.77 sf

### Pond X10: Pipe X10



# Summary for Pond X11: Pipe X11

3.41% Impervious, Inflow Depth > 1.72" for 10 Year Storm event Inflow Area = 23.349 ac, Inflow 20.74 cfs @ 12.11 hrs. Volume= 3.346 af = Outflow 20.74 cfs @ 12.11 hrs, Volume= 3.346 af, Atten= 0%, Lag= 0.0 min = 20.74 cfs @ 12.11 hrs, Volume= Primary 3.346 af =


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 344.73' @ 12.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	335.10'	<b>18.0"</b> Round Culvert L= 77.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= $335.10' / 332.51'$ S= 0.0336 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.77 sf

Primary OutFlow Max=20.71 cfs @ 12.11 hrs HW=344.71' TW=338.79' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 20.71 cfs @ 11.72 fps)

### Pond X11: Pipe X11

#### **Hydrograph**



# Summary for Pond X15: Pipe X15

 Inflow Area =
 23.225 ac, 3.00% Impervious, Inflow Depth > 1.72" for 10 Year Storm event

 Inflow =
 20.68 cfs @
 12.11 hrs, Volume=
 3.320 af

 Outflow =
 20.68 cfs @
 12.11 hrs, Volume=
 3.320 af, Atten= 0%, Lag= 0.0 min

 Primary =
 20.68 cfs @
 12.11 hrs, Volume=
 3.320 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 350.62' @ 12.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	336.00'	<b>18.0"</b> Round Culvert L= 75.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= $336.00' / 335.59'$ S= 0.0055 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.77 sf

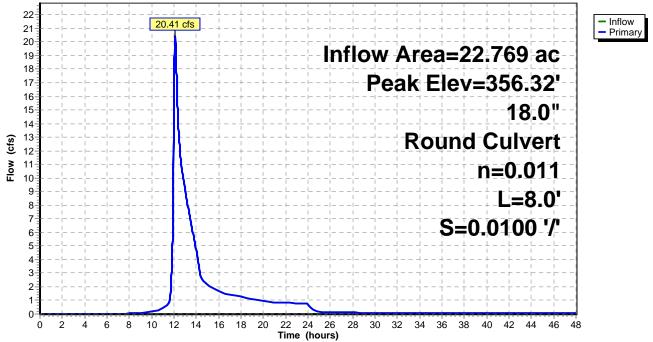
Primary OutFlow Max=20.56 cfs @ 12.11 hrs HW=350.55' TW=344.72' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 20.56 cfs @ 11.63 fps)

#### **Hydrograph** 23-22-- Inflow 20.68 cfs 21 Primary 20 Inflow Area=23.225 ac 19 18-Peak Elev=350.62' 17-16-18.0" 15 14-(cfs) 13-**Round Culvert** 12-Flow 11n=0.011 10-9-L=75.0' 8-7-S=0.0055 '/' 6-5-4-3-2-1-0-6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 2 4 0 Time (hours)

# Pond X15: Pipe X15

# Summary for Pond X16: Pipe X16

Inflow Area =22.769 ac, 1.06% Impervious, Inflow Depth > 1.69" for 10 Year Storm eventInflow =20.41 cfs @12.11 hrs, Volume=3.208 afOutflow =20.41 cfs @12.11 hrs, Volume=3.208 afPrimary =20.41 cfs @12.11 hrs, Volume=3.208 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 356.32' @ 12.12 hrs

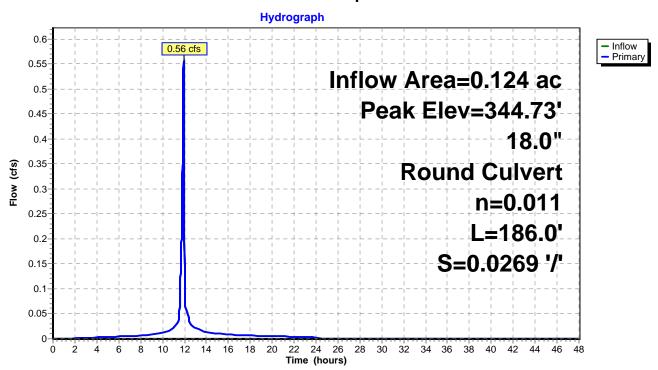
Device	Routing	Invert	Outlet Devices
#1	Primary	336.64'	<b>18.0"</b> Round Culvert L= 8.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= $336.64' / 336.56'$ S= $0.0100' / Cc= 0.900$ n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.77 sf

Primary OutFlow Max=20.11 cfs @ 12.11 hrs HW=356.15' TW=350.56' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 20.11 cfs @ 11.38 fps)

### Pond X16: Pipe X16

#### Hydrograph




# Summary for Pond X17: Pipe X17

Inflow Area = 0.124 ac, 80.65% Impervious, Inflow Depth = 2.52" for 10 Year Storm event Inflow 0.56 cfs @ 11.91 hrs. Volume= 0.026 af = 0.56 cfs @ 11.91 hrs, Volume= Outflow 0.026 af, Atten= 0%, Lag= 0.0 min = 0.56 cfs @ 11.91 hrs, Volume= Primary 0.026 af =

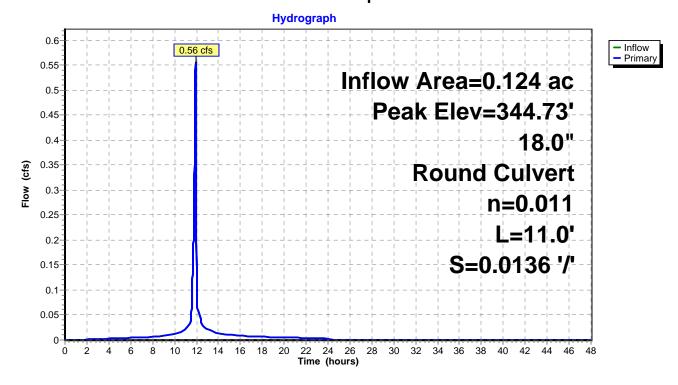
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 344.73' @ 12.12 hrs

Device Routing Invert Outlet Devices	
#1 Primary 341.50' <b>18.0" Round Culvert</b> L= 186.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 341.50' / 336.50' S= 0.0269 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.77 sf	

Primary OutFlow Max=0.56 cfs @ 11.91 hrs HW=341.83' TW=337.17' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 0.56 cfs @ 1.95 fps)



Pond X17: Pipe X17


# Summary for Pond X18: Pipe X18

Inflow Area = 0.124 ac, 80.65% Impervious, Inflow Depth = 2.52" for 10 Year Storm event 0.56 cfs @ 11.91 hrs. Volume= Inflow 0.026 af = 0.56 cfs @ 11.91 hrs, Volume= Outflow 0.026 af, Atten= 0%, Lag= 0.0 min = 0.56 cfs @ 11.91 hrs, Volume= Primary 0.026 af =

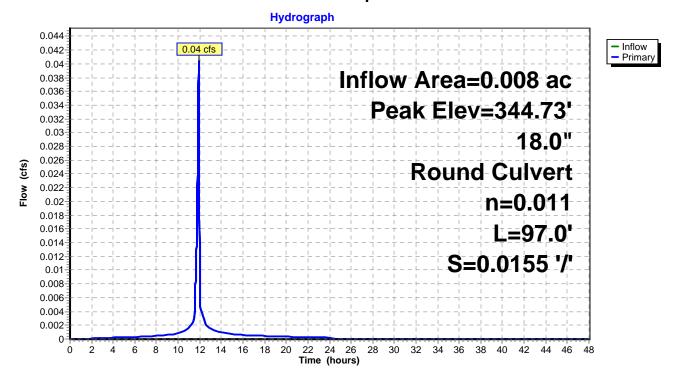
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 344.73' @ 12.13 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	341.75'	<b>18.0"</b> Round Culvert L= 11.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= $341.75'$ / $341.60'$ S= 0.0136 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.77 sf

Primary OutFlow Max=0.56 cfs @ 11.91 hrs HW=342.09' TW=341.83' (Dynamic Tailwater) -1=Culvert (Barrel Controls 0.56 cfs @ 2.78 fps)



## Pond X18: Pipe X18


### Summary for Pond X19: Pipe X19

Inflow Area =0.008 ac, 87.50% Impervious, Inflow Depth =2.77" for 10 Year Storm eventInflow =0.04 cfs @11.90 hrs, Volume=0.002 afOutflow =0.04 cfs @11.90 hrs, Volume=0.002 af, Atten= 0%, Lag= 0.0 minPrimary =0.04 cfs @11.90 hrs, Volume=0.002 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 344.73' @ 12.14 hrs

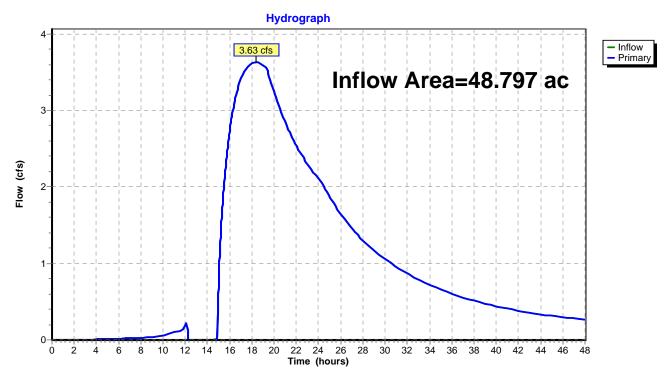
Device	Routing	Invert	Outlet Devices
#1	Primary	343.00'	<b>18.0"</b> Round Culvert L= 97.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= $343.00' / 341.50'$ S= 0.0155 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.77 sf

Primary OutFlow Max=0.04 cfs @ 11.90 hrs HW=343.09' TW=342.09' (Dynamic Tailwater)



### Pond X19: Pipe X19

# Summary for Link 3L: Tailwater


 Inflow Area =
 48.797 ac, 2.71% Impervious, Inflow Depth > 0.92" for 10 Year Storm event

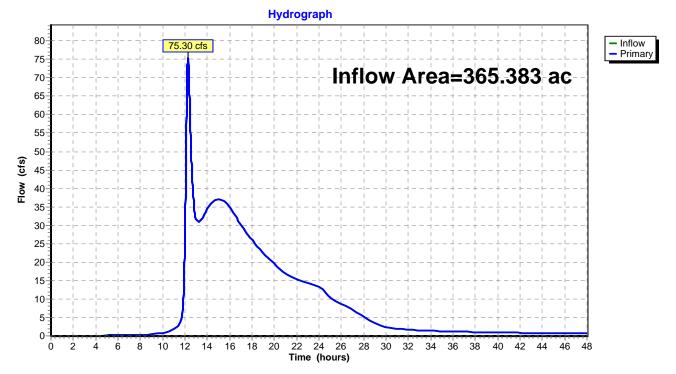
 Inflow =
 3.63 cfs @
 18.39 hrs, Volume=
 3.726 af

 Primary =
 3.63 cfs @
 18.39 hrs, Volume=
 3.726 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

49 Point man	ual elevatio	n table, To	= 0.00 hrs,	dt= 1.00 hr	s, feet =			
307.54	307.54	307.54	307.54	307.54	307.55	307.55	307.56	307.56
307.57	307.59	307.65	308.94	309.98	309.88	309.57	309.28	309.01
308.75	308.48	308.21	308.11	308.06	308.02	307.99	307.86	307.82
307.79	307.75	307.71	307.69	307.68	307.67	307.67	307.66	307.66
307.65	307.65	307.64	307.64	307.64	307.64	307.63	307.63	307.63
307.63	307.63	307.62	307.62					




### Link 3L: Tailwater

# Summary for Link SN1: SN001

Inflow Area	a =	365.383 ac,	2.26% Impervious, Inflow I	Depth > 1.07"	for 10 Year Storm event
Inflow	=	75.30 cfs @	12.27 hrs, Volume=	32.581 af	
Primary	=	75.30 cfs @	12.27 hrs, Volume=	32.581 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

# Link SN1: SN001



# Summary for Link SN2: SN002

Inflow Area	a =	349.371 ac,	2.26% Impervious, Inflow I	Depth > 1.11"	for 10 Year Storm event
Inflow	=	75.67 cfs @	12.24 hrs, Volume=	32.416 af	
Primary	=	75.67 cfs @	12.24 hrs, Volume=	32.416 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

#### Hydrograph 80- Inflow Primary 75.67 cfs 75-Inflow Area=349.371 ac 70-65 60-55-50 Flow (cfs) 45 40 35 30-25-20-15 10-5-0-22 24 26 Time (hours) 28 30 32 34 36 38 40 42 44 46 2 8 10 12 14 16 18 20 Ó 4 6 48

#### Link SN2: SN002

# Summary for Link SN3: SN003

Inflow Are	a =	334.093 ac,	2.23% Impervious, Inflow	Depth > 1.15"	for 10 Year Storm event
Inflow	=	74.68 cfs @	12.22 hrs, Volume=	31.982 af	
Primary	=	74.68 cfs @	12.22 hrs, Volume=	31.982 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

0-

Ó

2

4 6

8

10 12 14 16 18 20

#### Hydrograph 80 74.68 cfs Inflow Primary 75-Inflow Area=334.093 ac 70-65 60-55-50 Flow (cfs) 45 40 35-30 25 20-15-10-5-

22 24 26 Time (hours) 28 30 32 34 36 38 40 42 44 46

48

#### Link SN3: SN003

# Summary for Link SN4: SN004

Inflow Are	a =	312.138 ac,	2.19% Impervious, Inflow [	Depth > 1.15"	for 10 Year Storm event
Inflow	=	59.61 cfs @	12.14 hrs, Volume=	30.038 af	
Primary	=	59.61 cfs @	12.14 hrs, Volume=	30.038 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

10 12 14 16 18 20

2

Ó

4

6 8

### Hydrograph 65- Inflow Primary 59.61 cfs 60-Inflow Area=312.138 ac 55 50-45 40-(cts) 35-Flow 30 25 20-15 10-5 0

22 24 26 Time (hours) 28 30 32 34 36

38

40 42 44 46

48

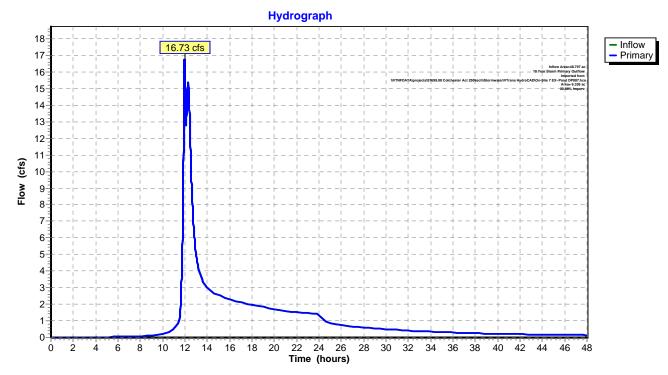
### Link SN4: SN004

# Summary for Link SN6: S/N 006

Inflow Are	a =	107.210 ac,	3.51% Impervious, Inflow I	Depth > 1.23"	for 10 Year Storm event
Inflow	=	66.51 cfs @	12.12 hrs, Volume=	10.984 af	
Primary	=	66.51 cfs @	12.12 hrs, Volume=	10.984 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

#### Hydrograph 70- Inflow Primary 66.51 cfs 65-Inflow Area=107.210 ac 60-55-50-45 Flow (cfs) 40-35 30 25 20 15 10-5-0 22 24 26 Time (hours) 2 8 10 12 14 16 18 20 28 30 32 40 42 44 46 48 Ó 4 6 34 36 38


### Link SN6: S/N 006

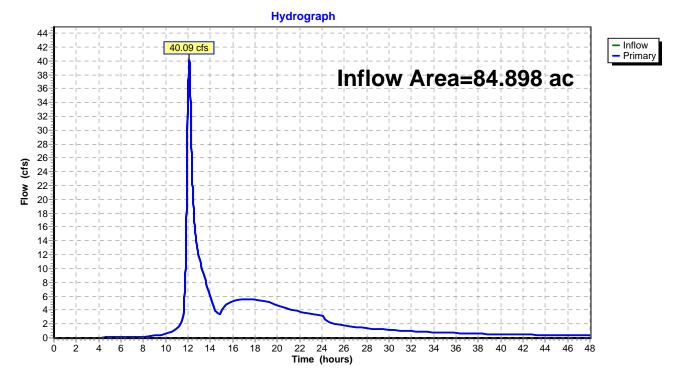
# Summary for Link SN7: SN007

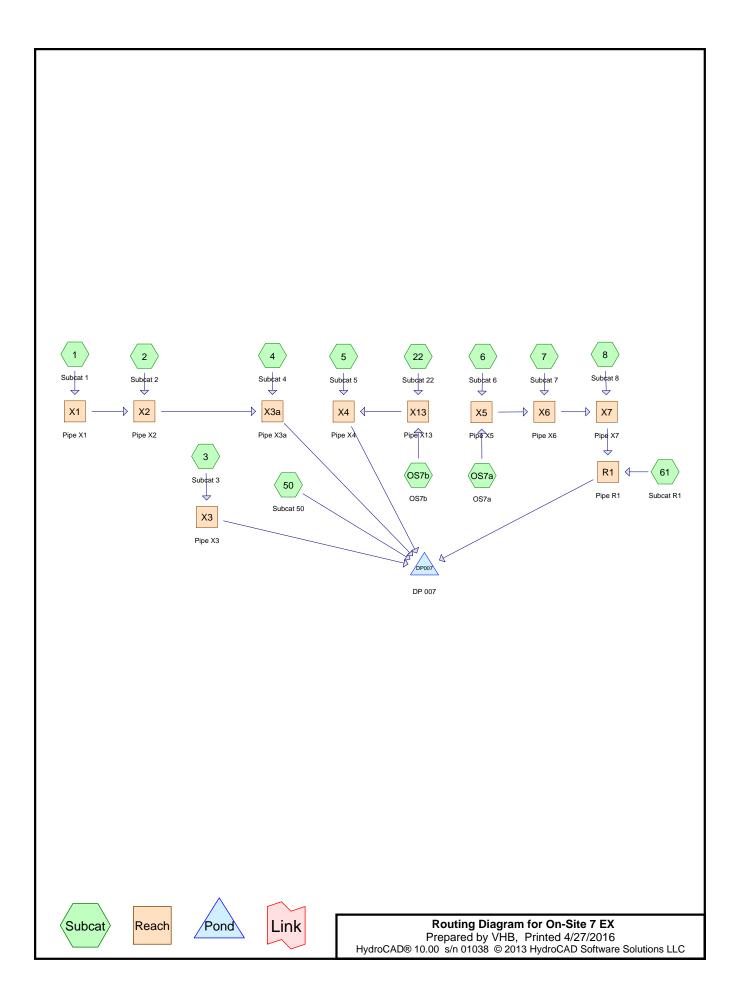
Inflow Area	a =	48.797 ac,	2.71% Impervious, Inflow De	pth > 0.95" for 10 Ye	ear Storm event
Inflow	=	16.73 cfs @	11.96 hrs, Volume=	3.872 af	
Primary	=	16.73 cfs @	11.96 hrs, Volume=	3.872 af, Atten= 0%, L	.ag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

10 Year Storm Primary Outflow Imported from \\VTNFDATA\projects\57699.00 Colchester Act 250\tech\Stormwater\V




### Link SN7: SN007


# Summary for Link SN8: SN008

Inflow Area	=	84.898 ac,	3.81% Impervious, Inflow D	epth > 1.25" fo	or 10 Year Storm event
Inflow =	=	40.09 cfs @	12.12 hrs, Volume=	8.876 af	
Primary =	=	40.09 cfs @	12.12 hrs, Volume=	8.876 af, Atten=	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

### Link SN8: SN008





**On-Site 7 EX** Prepared by VHB Type II 24-hr 10 Year Storm Rainfall=3.20" Printed 4/27/2016

HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Page 2

#### Time span=0.00-24.00 hrs, dt=0.01 hrs, 2401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

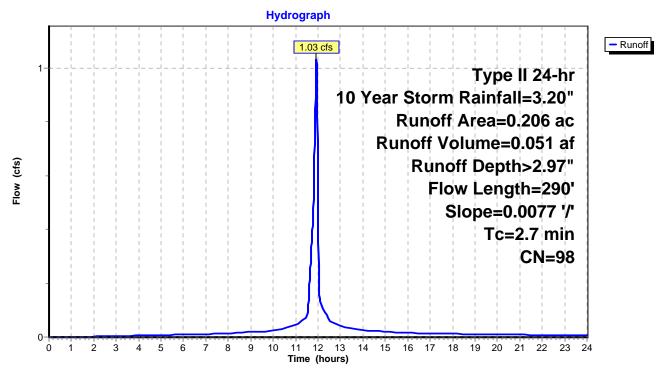
Subcatchment1: Subcat 1Runoff Area=0.206 ac 98.06% Impervious Runoff DeprFlow Length=290'Slope=0.0077 '/' Tc=2.7 min CN=98 Runoff=1.03 cfs	
Subcatchment 2: Subcat 2Runoff Area=0.068 ac 95.59% Impervious Runoff DeprFlow Length=116'Slope=0.0104 '/' Tc=0.9 min CN=97 Runoff=0.36 cfs	
Subcatchment 3: Subcat 3Runoff Area=0.059 ac89.83% ImperviousRunoff DeprFlow Length=85'Slope=0.0175 '/'Tc=0.5 minCN=96Runoff=0.31 cfs	
Subcatchment4: Subcat 4Runoff Area=0.059 ac100.00% ImperviousRunoff DeprFlow Length=103'Slope=0.0108 '/'Tc=0.8 minCN=98Runoff=0.31 cfs	
Subcatchment 5: Subcat 5Runoff Area=0.074 ac100.00% ImperviousRunoff DeprFlow Length=113'Slope=0.0104 '/'Tc=0.9 minCN=98Runoff=0.39 cfs	
Subcatchment 6: Subcat 6Runoff Area=0.284 ac 38.03% Impervious Runoff DepFlow Length=173'Tc=5.7 minCN=87Runoff=0.97 cfs	
Subcatchment7: Subcat7Runoff Area=0.461 ac 64.86% Impervious Runoff DeprFlow Length=397'Slope=0.0239 '/' Tc=2.1 min CN=92 Runoff=2.08 cfs	
Subcatchment8: Subcat8Runoff Area=0.195 ac 100.00% Impervious Runoff DeprFlow Length=277'Slope=0.0203 '/' Tc=1.6 min CN=98 Runoff=1.01 cfs	
Subcatchment 22: Subcat 22Runoff Area=0.484 ac10.95% ImperviousRunoff DeprFlow Length=214'Tc=1.7 minCN=82Runoff=1.56 cfs	
Subcatchment 50: Subcat 50Runoff Area=0.840 ac25.36% ImperviousRunoff DepFlow Length=450'Tc=8.0 minCN=85Runoff=2.44 cfs	
Subcatchment 61: Subcat R1Runoff Area=0.258 ac0.00% ImperviousRunoff DeprFlow Length=253'Slope=0.0877 '/'Tc=2.0 minCN=80Runoff=0.75 cfs	
Subcatchment OS7a: OS7aRunoff Area=1.853 ac 0.00% Impervious Runoff DepFlow Length=598'Tc=26.3 minCN=86Runoff=3.22 cfs	
Subcatchment OS7b: OS7bRunoff Area=1.485 ac0.00% ImperviousRunoff DeprFlow Length=260'Slope=0.1483 '/'Tc=6.1 minCN=81Runoff=3.89 cfs	
Reach R1: Pipe R1         Avg. Flow Depth=0.53'         Max Vel=10.24 fps         Inflow=5.69 cfs           18.0"         Round Pipe         n=0.011         L=74.5'         S=0.0298 '/'         Capacity=21.43 cfs         Outflow=5.69 cfs	
Reach X1: Pipe X1         Avg. Flow Depth=0.35'         Max Vel=3.31 fps         Inflow=1.03 cfs           18.0"         Round Pipe         n=0.011         L=69.0'         S=0.0049 '/'         Capacity=8.71 cfs         Outflow=1.03 cfs	
Reach X13: Pipe X13         Avg. Flow Depth=0.81'         Max Vel=5.16 fps         Inflow=5.02 cfs           18.0"         Round Pipe         n=0.011         L=65.1'         S=0.0051 '/'         Capacity=8.84 cfs         Outflow=5.01 cfs	

On-Site 7 EX

Type II 24-hr 10 Year Storm Rainfall=3.20" Printed 4/27/2016

Prepared by VHB	Printed 4/27/2016
	OCAD Software Solutions LLC Page 3
	Avg. Flow Depth=0.40' Max Vel=3.58 fps Inflow=1.34 cfs 0.067 af L=137.0' S=0.0050 '/' Capacity=8.75 cfs Outflow=1.34 cfs 0.067 af
	Avg. Flow Depth=0.23' Max Vel=1.75 fps Inflow=0.31 cfs 0.014 af L=101.0' S=0.0023 '/' Capacity=5.92 cfs Outflow=0.30 cfs 0.014 af
	Avg. Flow Depth=0.28' Max Vel=6.97 fps Inflow=1.62 cfs 0.082 af L=61.6' S=0.0279 '/' Capacity=20.74 cfs Outflow=1.62 cfs 0.082 af
	Avg. Flow Depth=0.69' Max Vel=6.57 fps Inflow=5.26 cfs 0.262 af L=104.6' S=0.0094 '/' Capacity=12.02 cfs Outflow=5.26 cfs 0.262 af
	Avg. Flow Depth=0.41' Max Vel=8.61 fps Inflow=3.36 cfs 0.327 af L=36.0' S=0.0278 '/' Capacity=20.69 cfs Outflow=3.36 cfs 0.327 af
	Avg. Flow Depth=0.64' Max Vel=5.55 fps Inflow=4.02 cfs 0.417 af L=69.7' S=0.0072 '/' Capacity=10.51 cfs Outflow=4.02 cfs 0.417 af
	Avg. Flow Depth=0.68' Max Vel=6.35 fps Inflow=4.95 cfs 0.465 af L=33.6' S=0.0089 '/' Capacity=11.73 cfs Outflow=4.94 cfs 0.465 af
Pond DP007: DP 007	Inflow=14.70 cfs 0.975 af Primary=14.70 cfs 0.975 af
Total Runoff Area = 6.3	26 ac Runoff Volume = 0.975 af Average Runoff Depth = 1.85"

Total Runoff Area = 6.326 acRunoff Volume = 0.975 afAverage Runoff Depth = 1.85"79.12% Pervious = 5.005 ac20.88% Impervious = 1.321 ac


### Summary for Subcatchment 1: Subcat 1

Runoff = 1.03 cfs @ 11.93 hrs, Volume= 0.051 af, Depth> 2.97"

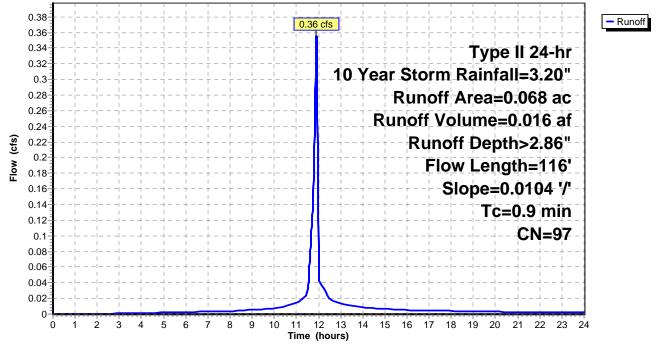
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

 Area	(ac)	CN	Desc	cription		
0.	202	98	Pave	ed roads w	/curbs & se	ewers, HSG D
 0.	004	80	>75%	% Grass co	over, Good,	, HSG D
0.	206	98	Weig	phted Aver	age	
0.	004		1.94	% Perviou	s Area	
0.	202		98.0	6% Imperv	vious Area	
 Tc (min)	Lengtł (feet		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
 2.7	290	) 0.0	0077	1.78		Shallow Concentrated Flow, Paved Kv= 20.3 fps

# Subcatchment 1: Subcat 1



### Summary for Subcatchment 2: Subcat 2


Runoff = 0.36 cfs @ 11.91 hrs, Volume= 0.016 af, Depth> 2.86"

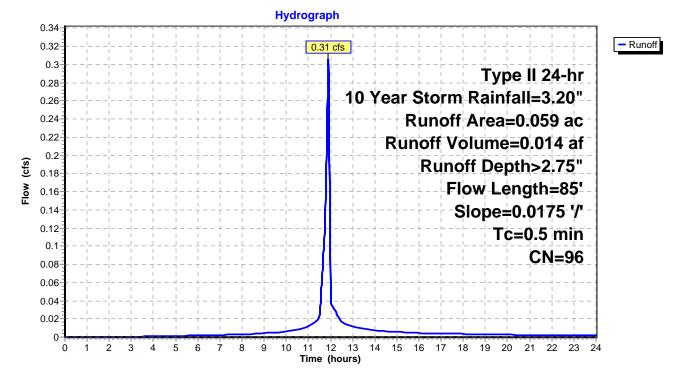
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac)	CN	Desc	cription		
0	.065	98	Pave	ed roads w	/curbs & se	ewers, HSG D
0.	.003	80	>75%	6 Grass co	over, Good	, HSG D
0.	.068	97	Weig	hted Aver	age	
0.	.003		4.41	% Perviou	s Area	
0.	.065		95.59	9% Imperv	vious Area	
-					<b>•</b> •	
TC	Length		ope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	) (1	ft/ft)	(ft/sec)	(cfs)	
0.9	116	6.0	104	2.07		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps

# Subcatchment 2: Subcat 2






### Summary for Subcatchment 3: Subcat 3

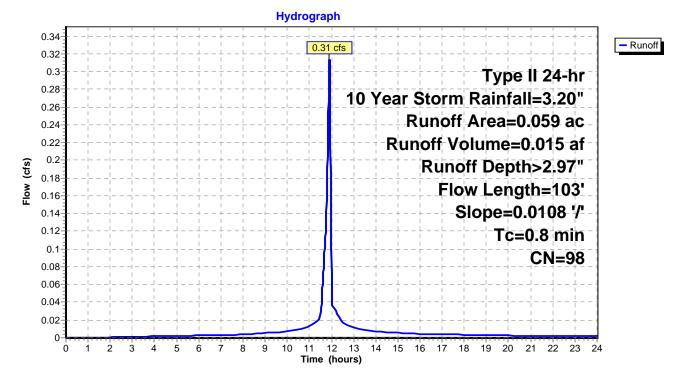
Runoff = 0.31 cfs @ 11.91 hrs, Volume= 0.014 af, Depth> 2.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac)	CN	Desc	ription		
0	.053	98	Pave	ed roads w	/curbs & se	ewers, HSG D
0	.006	80	>75%	6 Grass co	over, Good	, HSG D
0	.059	96	Weig	hted Aver	age	
0	.006		10.1	7% Pervio	us Area	
0	.053		89.8	3% Imperv	vious Area	
Τ.	1	L.	0		0	Description
Tc (rei rei)	Lengt		Slope	Velocity	Capacity	Description
(min)	(fee	/	(ft/ft)	(ft/sec)	(cfs)	
0.5	8	5 (	0.0175	2.69		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps

# Subcatchment 3: Subcat 3




### Summary for Subcatchment 4: Subcat 4

Runoff = 0.31 cfs @ 11.91 hrs, Volume= 0.015 af, Depth> 2.97"

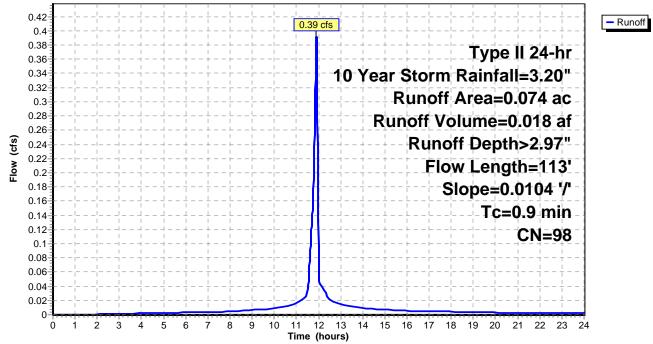
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Dese	cription				
0.	0.059 98 Paved roads w/curbs & sewers, HSG D						
0.059 100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
0.8	103	0.0108	2.11		Shallow Concentrated Flow, Paved Kv= 20.3 fps		

### Subcatchment 4: Subcat 4



### Summary for Subcatchment 5: Subcat 5


Runoff 0.39 cfs @ 11.91 hrs, Volume= 0.018 af, Depth> 2.97" =

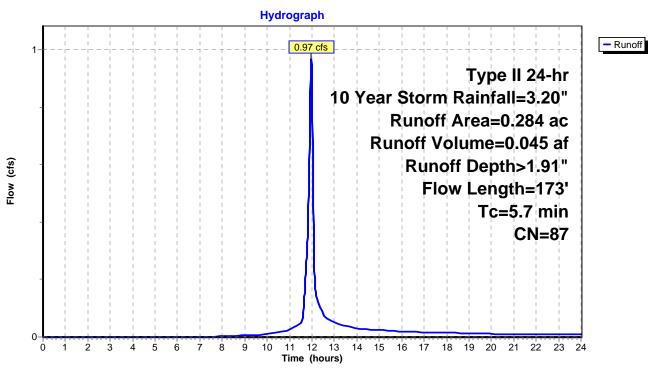
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

 Area	(ac) C	N Des	cription				
0.074 98 Paved roads w/curbs & sewers, HSG D							
0.074 100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
 0.9	113	0.0104	2.07		Shallow Concentrated Flow, Paved Kv= 20.3 fps		

### Subcatchment 5: Subcat 5






### Summary for Subcatchment 6: Subcat 6

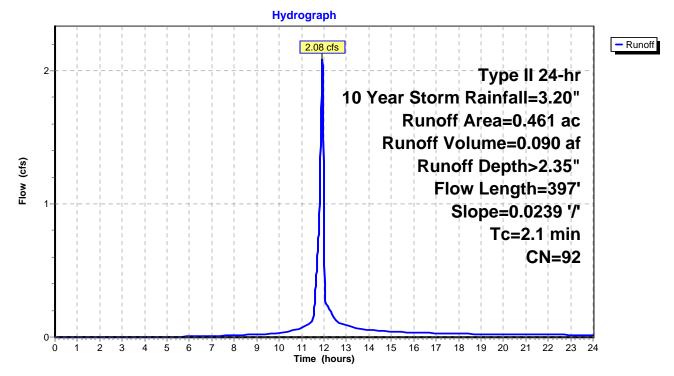
Runoff = 0.97 cfs @ 11.97 hrs, Volume= 0.045 af, Depth> 1.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) C	N Des	cription				
	0.176 80 >75% Grass cover, Good, HSG D							
0.108 98 Paved roads w/curbs & sewers, HSG D								
0.284 87 Weighted Average								
	0.	176	61.9	7% Pervio	us Area			
	0.	108	38.0	3% Imperv	vious Area			
_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	0.4	106	0.0456	4.33		Shallow Concentrated Flow,		
	5.3	67	0.0009	0.21		Paved Kv= 20.3 fps <b>Shallow Concentrated Flow,</b> Short Grass Pasture Kv= 7.0 fps		
	5.7	173	Total					

# Subcatchment 6: Subcat 6




# Summary for Subcatchment 7: Subcat 7

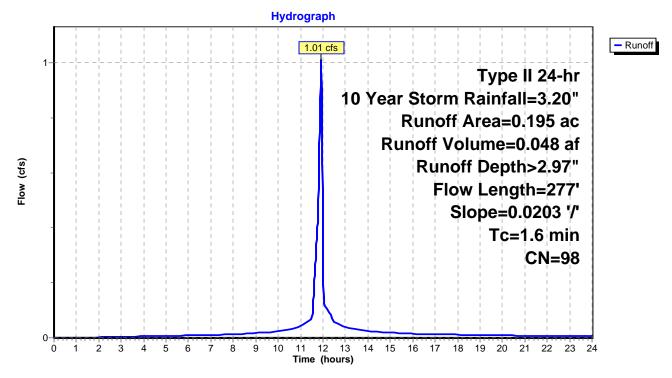
Runoff = 2.08 cfs @ 11.92 hrs, Volume= 0.090 af, Depth> 2.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac)	CN	Desc	Description						
	0.	299	98	Pave	ed roads w	/curbs & se	ewers, HSG D				
	0.162 80 >75% Grass cover, Good,						HSG D				
0.461 92 Weighted Average						age					
	0.	162			4% Pervio						
	0.299 64.86% Impervious Area					vious Area					
(	Tc (min)	Lengtl (feet		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	2.1	39	7 0.	0239	3.14		Shallow Concentrated Flow, Paved Kv= 20.3 fps				

# Subcatchment 7: Subcat 7




### Summary for Subcatchment 8: Subcat 8

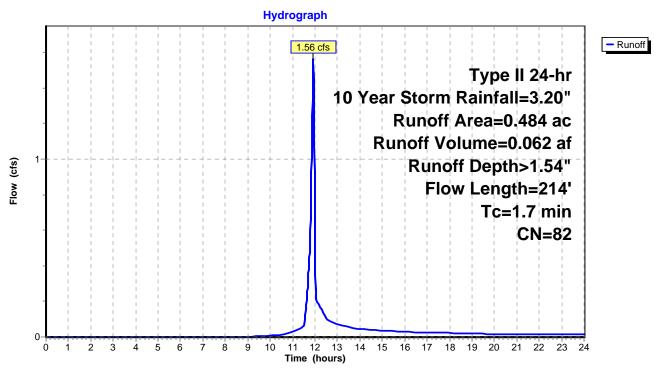
Runoff = 1.01 cfs @ 11.92 hrs, Volume= 0.048 af, Depth> 2.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Des	cription					
	0.195 98 Paved roads w/curbs & sewers, HSG D								
	0.195 100.00% Impervious Area								
(	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	1.6	277	0.0203	2.89		Shallow Concentrated Flow, Paved Kv= 20.3 fps			

### Subcatchment 8: Subcat 8




# Summary for Subcatchment 22: Subcat 22

Runoff = 1.56 cfs @ 11.92 hrs, Volume= 0.062 af, Depth> 1.54"

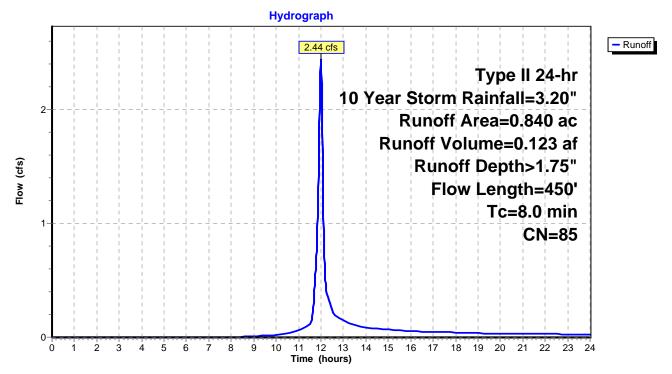
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) (	CN Des	cription				
	0.431 80 >75% Grass cover, Good, HSG D							
_	0.053 98 Paved roads w/curbs & sewers, HSG D							
	0.484 82 Weighted Average							
	0.	431	89.0	5% Pervio	us Area			
	0.	053	10.9	5% Imperv	/ious Area			
	Тс	Length	Slope		Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	0.2	63	0.0540	4.72		Shallow Concentrated Flow,		
						Paved Kv= 20.3 fps		
	1.5	151	0.0560	1.66		Shallow Concentrated Flow,		
						Short Grass Pasture Kv= 7.0 fps		
	1.7	214	Total					

# Subcatchment 22: Subcat 22



## Summary for Subcatchment 50: Subcat 50


Runoff = 2.44 cfs @ 11.99 hrs, Volume= 0.123 af, Depth> 1.75"

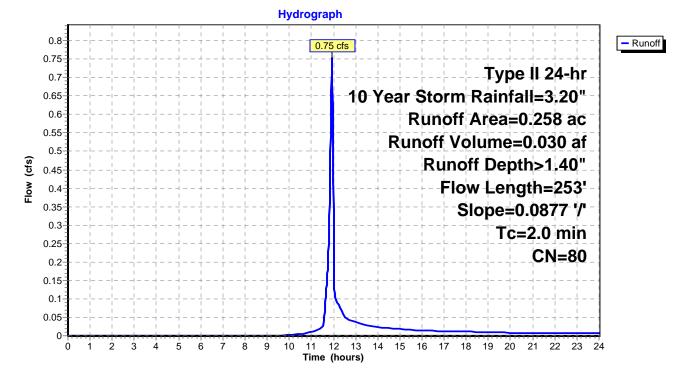
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) (	CN Des	cription				
-		212	ewers, HSG D					
	-			ed parking	,			
	0.	, HSG D						
	0.	052	80 >75°	% Grass co	over, Good	, HSG D		
_	0.	375	80 >759	% Grass co	over, Good	, HSG D		
	0.	840	85 Weig	ghted Aver	age			
	0.	627	74.6	74.64% Pervious Area				
	0.	213	25.3	25.36% Impervious Area				
	_							
	Tc	Length	Slope	Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	2.7	253	0.0513	1.59		Shallow Concentrated Flow,		
						Short Grass Pasture Kv= 7.0 fps		
	5.3	197	0.0077	0.61		Shallow Concentrated Flow,		
_						Short Grass Pasture Kv= 7.0 fps		

8.0 450 Total

### Subcatchment 50: Subcat 50




### Summary for Subcatchment 61: Subcat R1

Runoff = 0.75 cfs @ 11.93 hrs, Volume= 0.030 af, Depth> 1.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

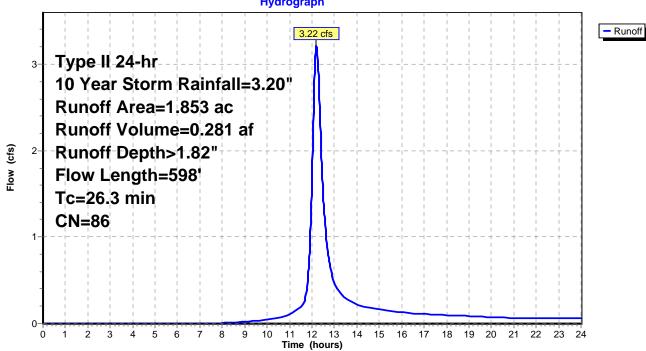
Area	(ac) C	N Dese	cription						
0.	0.258 80 >75% Grass cover, Good, HSG D								
0.	0.258 100.00% Pervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
2.0	253	0.0877	2.07		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps				

### Subcatchment 61: Subcat R1



### Printed 4/27/2016 Page 15

### Summary for Subcatchment OS7a: OS7a


3.22 cfs @ 12.19 hrs, Volume= Runoff 0.281 af, Depth> 1.82" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

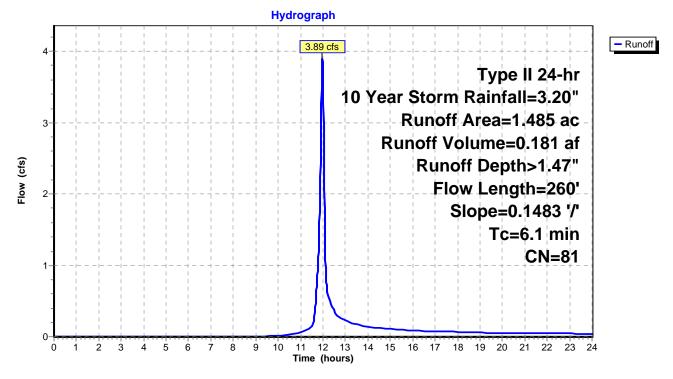
_	Area	(ac) C	N Desc	cription		
*	1.	853 8	36 weig	hted CN		
	1.853 100.00% Perv				ous Area	
_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	17.5	50	0.0132	0.05		Sheet Flow, Grass: Bermuda n= 0.410 P2= 2.30"
	8.5	410	0.0132	0.80		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
	0.1	78	0.0256	9.51	16.81	Pipe Channel, CMP_Round 18" 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
_	0.2	60	0.1455	5.72		n= 0.013 Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
	~~ ~	=	<b>—</b> / I			

26.3 598 Total

### Subcatchment OS7a: OS7a



Hydrograph


# Summary for Subcatchment OS7b: OS7b

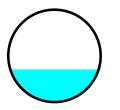
Runoff = 3.89 cfs @ 11.98 hrs, Volume= 0.181 af, Depth> 1.47"

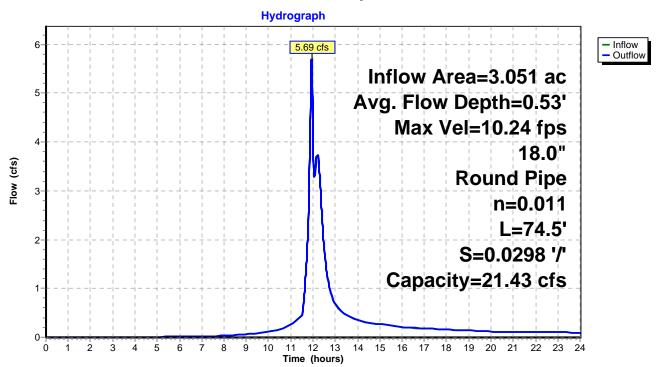
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Desc	cription		
*	1.	.485 8	31 weig	hted CN		
	1.485 100.00% Pervious Area				ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	4.3	50	0.1483	0.19		Sheet Flow,
	1.8	210	0.1483	1.93		Grass: Dense n= 0.240 P2= 2.30" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	6.1	260	Total			

### Subcatchment OS7b: OS7b




# Summary for Reach R1: Pipe R1


Inflow Area =3.051 ac, 19.73% Impervious, Inflow Depth > 1.95" for 10 Year Storm eventInflow =5.69 cfs @ 11.93 hrs, Volume=0.495 afOutflow =5.69 cfs @ 11.93 hrs, Volume=0.495 af, Atten= 0%, Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Max. Velocity= 10.24 fps, Min. Travel Time= 0.1 min Avg. Velocity = 3.19 fps, Avg. Travel Time= 0.4 min

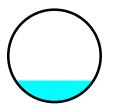
Peak Storage= 41 cf @ 11.93 hrs Average Depth at Peak Storage= 0.53' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 21.43 cfs

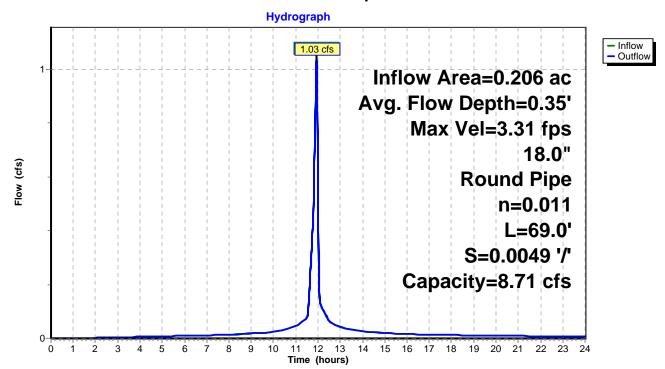
18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 74.5' Slope= 0.0298 '/' Inlet Invert= 320.27', Outlet Invert= 318.05'





### Reach R1: Pipe R1


# Summary for Reach X1: Pipe X1


Inflow Area =0.206 ac, 98.06% Impervious, Inflow Depth > 2.97" for 10 Year Storm eventInflow =1.03 cfs @11.93 hrs, Volume=0.051 afOutflow =1.03 cfs @11.93 hrs, Volume=0.051 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Max. Velocity= 3.31 fps, Min. Travel Time= 0.3 min Avg. Velocity = 0.93 fps, Avg. Travel Time= 1.2 min

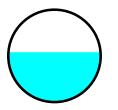
Peak Storage= 21 cf @ 11.93 hrs Average Depth at Peak Storage= 0.35' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 8.71 cfs

18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 69.0' Slope= 0.0049 '/' Inlet Invert= 323.19', Outlet Invert= 322.85'

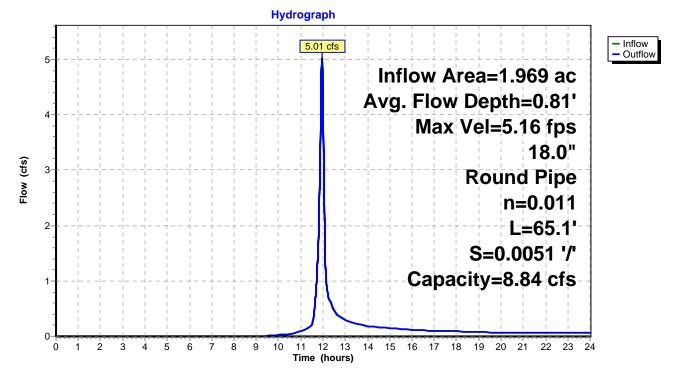




Reach X1: Pipe X1


# Summary for Reach X13: Pipe X13

Inflow Area =1.969 ac, 2.69% Impervious, Inflow Depth > 1.48" for 10 Year Storm eventInflow =5.02 cfs @11.96 hrs, Volume=0.243 afOutflow =5.01 cfs @11.96 hrs, Volume=0.243 af, Atten= 0%, Lag= 0.2 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Max. Velocity= 5.16 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.69 fps, Avg. Travel Time= 0.6 min

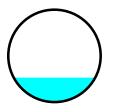
Peak Storage= 63 cf @ 11.96 hrs Average Depth at Peak Storage= 0.81' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 8.84 cfs

18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 65.1' Slope= 0.0051 '/' Inlet Invert= 321.60', Outlet Invert= 321.27'

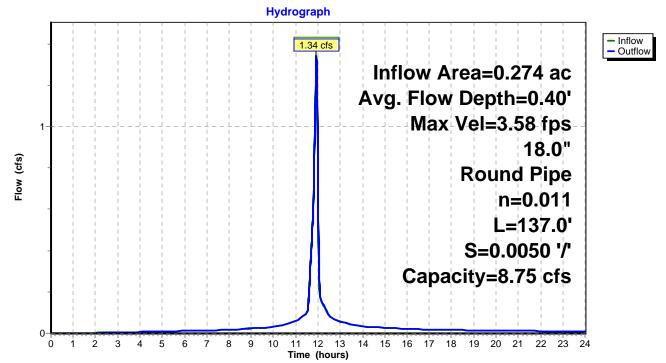


Reach X13: Pipe X13




# Summary for Reach X2: Pipe X2

Inflow Area =0.274 ac, 97.45% Impervious, Inflow Depth > 2.94" for 10 Year Storm eventInflow =1.34 cfs @ 11.92 hrs, Volume=0.067 afOutflow =1.34 cfs @ 11.93 hrs, Volume=0.067 af, Atten= 1%, Lag= 0.4 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Max. Velocity= 3.58 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.01 fps, Avg. Travel Time= 2.3 min

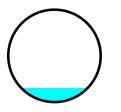
Peak Storage= 51 cf @ 11.93 hrs Average Depth at Peak Storage= 0.40' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 8.75 cfs

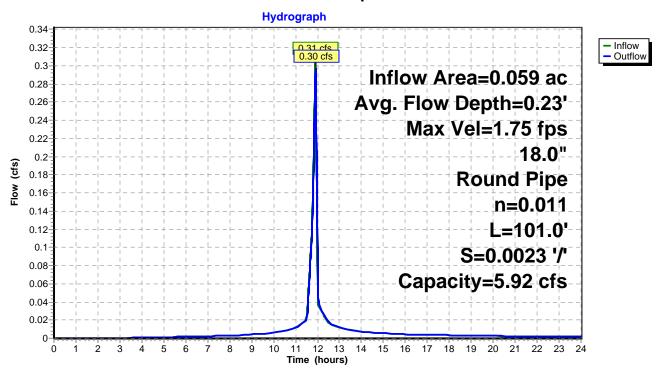
18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 137.0' Slope= 0.0050 '/' Inlet Invert= 322.76', Outlet Invert= 322.08'



# Reach X2: Pipe X2




# Summary for Reach X3: Pipe X3


Inflow Area =0.059 ac, 89.83% Impervious, Inflow Depth > 2.75" for 10 Year Storm eventInflow =0.31 cfs @11.91 hrs, Volume=0.014 afOutflow =0.30 cfs @11.91 hrs, Volume=0.014 af, Atten= 3%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Max. Velocity= 1.75 fps, Min. Travel Time= 1.0 min Avg. Velocity = 0.49 fps, Avg. Travel Time= 3.5 min

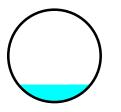
Peak Storage= 17 cf @ 11.91 hrs Average Depth at Peak Storage= 0.23' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 5.92 cfs

18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 101.0' Slope= 0.0023 '/' Inlet Invert= 318.96', Outlet Invert= 318.73'

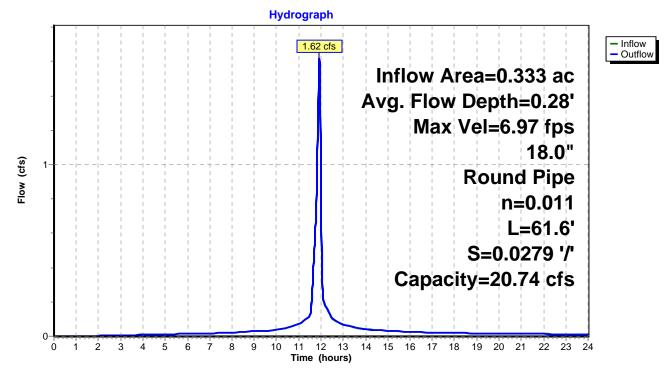




Reach X3: Pipe X3


# Summary for Reach X3a: Pipe X3a

Inflow Area =0.333 ac, 97.90% Impervious, Inflow Depth > 2.94" for 10 Year Storm eventInflow =1.62 cfs @11.92 hrs, Volume=0.082 afOutflow =1.62 cfs @11.92 hrs, Volume=0.082 af, Atten= 0%, Lag= 0.1 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Max. Velocity= 6.97 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.97 fps, Avg. Travel Time= 0.5 min

Peak Storage= 14 cf @ 11.92 hrs Average Depth at Peak Storage= 0.28' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 20.74 cfs

18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 61.6' Slope= 0.0279 '/' Inlet Invert= 321.71', Outlet Invert= 319.99'



# Reach X3a: Pipe X3a




# Summary for Reach X4: Pipe X4

Inflow Area =2.043 ac, 6.22% Impervious, Inflow Depth > 1.54" for 10 Year Storm eventInflow =5.26 cfs @ 11.95 hrs, Volume=0.262 afOutflow =5.26 cfs @ 11.96 hrs, Volume=0.262 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Max. Velocity= 6.57 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.68 fps, Avg. Travel Time= 1.0 min

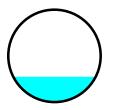
Peak Storage= 84 cf @ 11.96 hrs Average Depth at Peak Storage= 0.69' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 12.02 cfs

18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 104.6' Slope= 0.0094 '/' Inlet Invert= 321.22', Outlet Invert= 320.24'



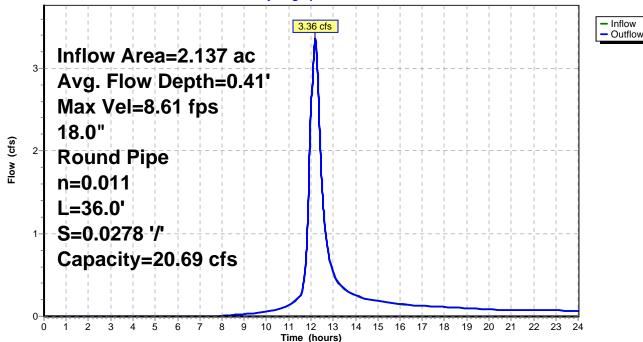
Hydrograph Inflow 5.26 cfs Outflow 5-Inflow Area=2.043 ac Avg. Flow Depth=0.69' Max Vel=6.57 fps 4-18.0" Flow (cfs) **Round Pipe** 3 n=0.011 L=104.6' 2 S=0.0094 '/' Capacity=12.02 cfs 1 0-2 8 ġ 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 3 4 5 6 Time (hours)

# Reach X4: Pipe X4


# Summary for Reach X5: Pipe X5

Inflow Area =2.137 ac, 5.05% Impervious, Inflow Depth > 1.83" for 10 Year Storm eventInflow =3.36 cfs @12.19 hrs, Volume=0.327 afOutflow =3.36 cfs @12.19 hrs, Volume=0.327 af, Atten= 0%, Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Max. Velocity= 8.61 fps, Min. Travel Time= 0.1 min Avg. Velocity = 3.20 fps, Avg. Travel Time= 0.2 min


Peak Storage= 14 cf @ 12.19 hrs Average Depth at Peak Storage= 0.41' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 20.69 cfs

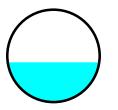
18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 36.0' Slope= 0.0278 '/' Inlet Invert= 325.00', Outlet Invert= 324.00'

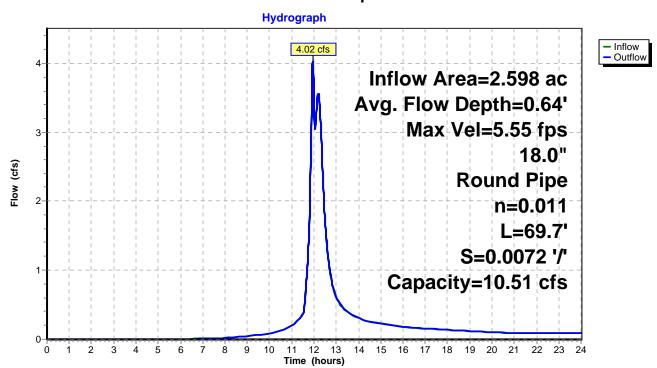


# Reach X5: Pipe X5

Hydrograph




# Summary for Reach X6: Pipe X6


Inflow Area =2.598 ac, 15.67% Impervious, Inflow Depth > 1.93" for 10 Year Storm eventInflow =4.02 cfs @ 11.94 hrs, Volume=0.417 afOutflow =4.02 cfs @ 11.94 hrs, Volume=0.417 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Max. Velocity= 5.55 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.99 fps, Avg. Travel Time= 0.6 min

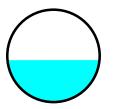
Peak Storage= 51 cf @ 11.94 hrs Average Depth at Peak Storage= 0.64' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 10.51 cfs

18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 69.7' Slope= 0.0072 '/' Inlet Invert= 323.50', Outlet Invert= 323.00'





Reach X6: Pipe X6


# Summary for Reach X7: Pipe X7

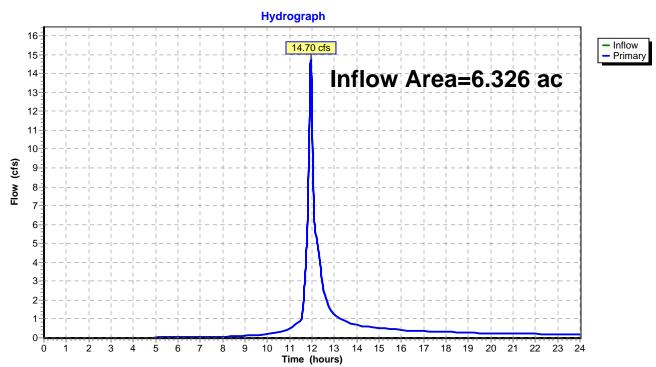
Inflow Area =2.793 ac, 21.55% Impervious, Inflow Depth >  $2.00^{"}$  for 10 Year Storm eventInflow =4.95 cfs @ 11.93 hrs, Volume=0.465 afOutflow =4.94 cfs @ 11.93 hrs, Volume=0.465 af, Atten= 0%, Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Max. Velocity= 6.35 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.05 fps, Avg. Travel Time= 0.3 min

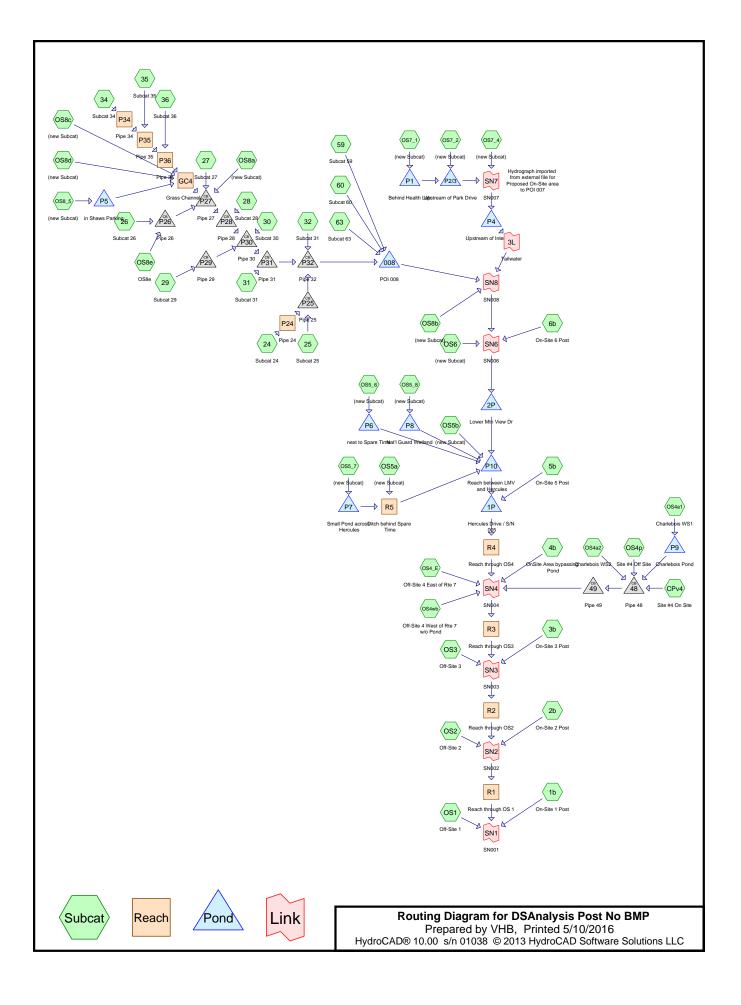
Peak Storage= 26 cf @ 11.93 hrs Average Depth at Peak Storage= 0.68' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 11.73 cfs

18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 33.6' Slope= 0.0089 '/' Inlet Invert= 322.90', Outlet Invert= 322.60'




Hydrograph 4.94 cfs Inflow Outflow 5 Inflow Area=2.793 ac Avg. Flow Depth=0.68' 4-Max Vel=6.35 fps 18.0" Flow (cfs) 3-**Round Pipe** n=0.011 2 L=33.6' S=0.0089 '/' Capacity=11.73 cfs 1 0-2 5 8 ġ 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 3 4 6 7 Time (hours)

# Reach X7: Pipe X7


# Summary for Pond DP007: DP 007

Inflow Are	a =	6.326 ac, 20.88% Impervious, Inflow Depth > 1.85" for 10 Year Storm event
Inflow	=	14.70 cfs @ 11.94 hrs, Volume= 0.975 af
Primary	=	14.70 cfs @ 11.94 hrs, Volume= 0.975 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs



## Pond DP007: DP 007



# Area Listing (all nodes)

Area	CN	Description		
(acres)		(subcatchment-numbers)		
0.681	39	>75% Grass cover, Good, HSG A (1b, 2b, 3b, CPv4)		
1.290	61	>75% Grass cover, Good, HSG B (3b, 4b, 6b, 24, 59, CPv4)		
0.201	74	>75% Grass cover, Good, HSG C (3b)		
2.925	80	>75% Grass cover, Good, HSG D (4b, 6b, 24, 25, 26, 28, 29, 30, 32, 34, 35, 36, 60,		
		63, CPv4)		
15.016	46	Composite CN (OS1)		
13.610	56	Composite CN (OS2)		
20.942	74	Composite CN (OS3)		
1.860	93	From 2005 Permit Application (OS4a1)		
0.114	80	Pasture/grassland/range, Good, HSG D (5b)		
0.186	98	Paved roads w/curbs & sewers, HSG A (3b, CPv4)		
0.751	98	Paved roads w/curbs & sewers, HSG B (6b, 24, 59, CPv4)		
0.513	98	Paved roads w/curbs & sewers, HSG C (3b, CPv4)		
5.358	98	Paved roads w/curbs & sewers, HSG D (4b, 5b, 6b, 24, 25, 26, 27, 28, 29, 30, 31,		
		32, 34, 35, 36, 60, 63, CPv4)		
1.830	83	Paved roads w/open ditches, 50% imp, HSG A (1b, 2b)		
0.243	98	Water Surface, 0% imp, HSG B (CPv4)		
0.309	32	Woods/grass comb., Good, HSG A (1b, 2b)		
16.735	73	composite (OS4_E)		
4.986	84	composite CN (OS4p)		
15.557	86	composite CN (OS4wb)		
1.120	80	from 2005 Permit Application (OS4a2)		
27.882	70	weighted CN (OS5a, OS7_1)		
141.727	74	weighted CN (OS5b, OS5_8, OS7_4)		
7.318	83	weighted CN (OS5_6)		
2.744	65	weighted CN (OS5_7)		
21.459	75	weighted CN (OS6)		
21.469	77	weighted CN (OS7_2)		
2.557	88	weighted CN (OS8a)		
5.517	82	weighted CN (OS8b)		
7.231	84	weighted CN (OS8c, OS8d, OS8e)		
17.067	91	weighted CN (OS8_5)		
359.198	75	TOTAL AREA		

# Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
3.006	HSG A	1b, 2b, 3b, CPv4
2.284	HSG B	3b, 4b, 6b, 24, 59, CPv4
0.714	HSG C	3b, CPv4
8.397	HSG D	4b, 5b, 6b, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 60, 63, CPv4
344.797	Other	OS1, OS2, OS3, OS4a1, OS4a2, OS4p, OS4wb, OS4_E, OS5a, OS5b, OS5_6,
		OS5_7, OS5_8, OS6, OS7_1, OS7_2, OS7_4, OS8a, OS8b, OS8c, OS8d, OS8e,
		OS8_5
359.198		TOTAL AREA

DSAnalysis Post No BMP Prepared by VHB HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Printed 5/10/2016 Page 4

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatch
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
 0.681	1.290	0.201	2.925	0.000	5.097	>75% Grass cover, Good	_
0.000	0.000	0.000	0.000	49.568	49.568	Composite CN	
0.000	0.000	0.000	0.000	1.860	1.860	From 2005 Permit Application	
0.000	0.000	0.000	0.114	0.000	0.114	Pasture/grassland/range, Good	
0.186	0.751	0.513	5.358	0.000	6.808	Paved roads w/curbs & sewers	
1.830	0.000	0.000	0.000	0.000	1.830	Paved roads w/open ditches, 50%	
						imp	
0.000	0.243	0.000	0.000	0.000	0.243	Water Surface, 0% imp	
0.309	0.000	0.000	0.000	0.000	0.309	Woods/grass comb., Good	
0.000	0.000	0.000	0.000	16.735	16.735	composite	
0.000	0.000	0.000	0.000	20.543	20.543	composite CN	
0.000	0.000	0.000	0.000	1.120	1.120	from 2005 Permit Application	
0.000	0.000	0.000	0.000	254.971	254.971	weighted CN	
3.006	2.284	0.714	8.397	344.797	359.198	TOTAL AREA	

# Ground Covers (all nodes)

DSAnalysis Post No BMP	Type II 24-hr	10 Year Storm Rainfall=3.20"
Prepared by VHB		Printed 5/10/2016
HvdroCAD® 10.00 s/n 01038 © 2013 HvdroCAD Software Sol	utions LLC	Page 5

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1b: On-Site 1 PostRunoff Area=0.997 ac 38.47% Impervious Runoff Depth=1.31"Flow Length=744'Tc=4.1 minCN=56/98Runoff=1.98 cfs 0.109 af
Subcatchment 2b: On-Site 2 PostRunoff Area=1.672 ac 31.79% Impervious Runoff Depth=1.05" Flow Length=727' Tc=5.8 min CN=51/98 Runoff=2.42 cfs 0.146 af
Subcatchment 3b: On-Site 3 PostRunoff Area=1.013 ac66.14% ImperviousRunoff Depth=2.10"Flow Length=457'Slope=0.0240 '/'Tc=16.2 minCN=60/98Runoff=2.31 cfs0.177 af
Subcatchment 4b: OnSite Area bypassing Runoff Area=2.506 ac 48.52% Impervious Runoff Depth=1.95" Flow Length=1,397' Tc=5.3 min CN=73/98 Runoff=7.90 cfs 0.406 af
Subcatchment 5b: On-Site 5 PostRunoff Area=0.302 ac 62.25% ImperviousRunoff Depth=2.38"Flow Length=231'Tc=1.7 minCN=80/98Runoff=1.31 cfs0.060 af
Subcatchment 6b: On-Site 6 PostRunoff Area=0.906 ac 68.54% Impervious Runoff Depth=2.25" Flow Length=349' Tc=2.7 min CN=67/98 Runoff=3.48 cfs 0.170 af
Subcatchment 24: Subcat 24Runoff Area=0.380 ac87.37% ImperviousRunoff Depth=2.69"Flow Length=376'Slope=0.0308 '/'Tc=1.8 minCN=68/98Runoff=1.78 cfs0.085 af
Subcatchment 25: Subcat 25Runoff Area=0.171 ac96.49% ImperviousRunoff Depth=2.91"Flow Length=218'Slope=0.0314 '/'Tc=1.0 minCN=80/98Runoff=0.89 cfs0.042 af
Subcatchment 26: Subcat 26Runoff Area=0.601 ac 40.43% Impervious Runoff Depth=2.03" Flow Length=643' Tc=7.5 min CN=80/98 Runoff=1.90 cfs 0.102 af
Subcatchment 27: Subcat 27Runoff Area=0.367 ac100.00% ImperviousRunoff Depth=2.97"Flow Length=429'Slope=0.0326 '/'Tc=2.0 minCN=0/98Runoff=1.88 cfs0.091 af
Subcatchment 28: Subcat 28Runoff Area=0.090 ac94.44% ImperviousRunoff Depth=2.88"Flow Length=128'Slope=0.0272 '/'Tc=0.6 minCN=80/98Runoff=0.47 cfs0.022 af
Subcatchment 29: Subcat 29Runoff Area=0.136 ac 33.09% Impervious Runoff Depth=1.92" Flow Length=178' Tc=2.1 min CN=80/98 Runoff=0.49 cfs 0.022 af
Subcatchment 30: Subcat 30Runoff Area=0.126 ac 70.63% Impervious Runoff Depth=2.51" Flow Length=115' Tc=1.4 min CN=80/98 Runoff=0.57 cfs 0.026 af
Subcatchment 31: Subcat 31Runoff Area=0.053 ac100.00% ImperviousRunoff Depth=2.97"Flow Length=97'Slope=0.0249 '/'Tc=0.5 minCN=0/98Runoff=0.28 cfs0.013 af
Subcatchment 32: Subcat 31Runoff Area=0.034 ac88.24% ImperviousRunoff Depth=2.78"Flow Length=69'Tc=0.5 minCN=80/98Runoff=0.17 cfs0.008 af
Subcatchment 34: Subcat 34Runoff Area=0.203 ac 57.14% Impervious Runoff Depth=2.30"Flow Length=161'Tc=2.3 minCN=80/98Runoff=0.84 cfs0.039 af

Type II 24-hr 10 Year Storm Rainfall=3.20"

DSAnalysis Post No BMPType II 24-hr10 Year Storm RainfaPrepared by VHBPrinted 5HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC Printed 5/10/2016 Page 6

Subcatchment 35: Subcat 35Runoff Area=0.205 ac86.34% ImperviousRunoff Depth=2.75"Flow Length=149'Slope=0.0186 '/'Tc=0.9 minCN=80/98Runoff=1.02 cfs0.047 af
Subcatchment 36: Subcat 36Runoff Area=0.196 ac 99.49% Impervious Runoff Depth=2.96"Flow Length=186'Slope=0.0429 '/' Tc=0.7 min CN=80/98Runoff=1.04 cfs 0.048 af
Subcatchment 59: Subcat 59Runoff Area=0.079 ac 56.96% Impervious Runoff Depth=1.88"Flow Length=233'Tc=2.5 minCN=61/98Runoff=0.25 cfs 0.012 af
Subcatchment 60: Subcat 60Runoff Area=0.657 ac 54.64% Impervious Runoff Depth=2.26"Flow Length=193'Tc=1.0 minCN=80/98Runoff=2.79 cfs 0.124 af
Subcatchment 63: Subcat 63Runoff Area=0.515 ac 26.99% Impervious Runoff Depth=1.82"Flow Length=331'Tc=3.7 minCN=80/98Runoff=1.70 cfs 0.078 af
Subcatchment CPv4: Site #4 On Site Flow Length=1,397' Tc=5.3 min CN=75/98 Runoff=10.75 cfs 0.552 af
Subcatchment OS1: Off-Site 1Runoff Area=15.016 ac 0.00% Impervious Runoff Depth=0.06"Flow Length=1,440' Tc=24.5 min CN=46/0 Runoff=0.09 cfs 0.072 af
Subcatchment OS2: Off-Site 2Runoff Area=13.610 ac 0.00% Impervious Runoff Depth=0.28"Flow Length=1,300' Tc=32.9 min CN=56/0 Runoff=1.34 cfs 0.317 af
Subcatchment OS3: Off-Site 3Runoff Area=20.942 ac 0.00% Impervious Runoff Depth=1.04"Flow Length=668'Slope=0.0210 '/' Tc=28.9 min CN=74/0 Runoff=18.01 cfs 1.811 af
Subcatchment OS4a1: Charlebois WS1Runoff Area=1.860 ac0.00% ImperviousRunoff Depth=2.45"Tc=5.8 minCN=93/0Runoff=7.66 cfs0.379 af
Subcatchment OS4a2: Charlebois WS2Runoff Area=1.120 ac 0.00% Impervious Runoff Depth=1.40" Tc=1.5 min CN=80/0 Runoff=3.33 cfs 0.131 af
Subcatchment OS4p: Site #4 Off SiteRunoff Area=4.986 ac0.00% ImperviousRunoff Depth=1.68"Flow Length=1,310'Tc=7.4 minCN=84/0Runoff=14.19 cfs0.699 af
Subcatchment OS4wb: Off-Site 4 West of Runoff Area=15.557 ac 0.00% Impervious Runoff Depth=1.84" Flow Length=2,060' Tc=21.8 min CN=86/0 Runoff=30.24 cfs 2.379 af
SubcatchmentOS4_E: Off-Site 4 East of Runoff Area=16.735 ac 0.00% Impervious Runoff Depth=0.98" Flow Length=1,140' Slope=0.0114 '/' Tc=38.8 min CN=73/0 Runoff=10.95 cfs 1.371 af
Subcatchment OS5a: (new Subcat)Runoff Area=19.687 ac0.00% ImperviousRunoff Depth=0.83"Flow Length=1,356'Slope=0.0012 '/'Tc=98.7 minCN=70/0Runoff=5.16 cfs1.359 af
Subcatchment OS5b: (new Subcat)Runoff Area=61.972 ac0.00% ImperviousRunoff Depth=1.04"Flow Length=3,643'Tc=207.9 minCN=74/0Runoff=12.08 cfs5.358 af
Subcatchment OS5_6: (new Subcat)Runoff Area=7.318 ac 0.00% Impervious Runoff Depth=1.61"Flow Length=660'Tc=6.1 minCN=83/0Runoff=20.95 cfs 0.981 af
Subcatchment OS5_7: (new Subcat)Runoff Area=2.744 ac 0.00% Impervious Runoff Depth=0.60"Flow Length=556'Slope=0.0010 '/' Tc=49.1 min CN=65/0 Runoff=0.76 cfs 0.137 af

DSAnalysis Post No BMP	Type II 24-hr	10 Year Storm Rainfall=3.20"
Prepared by VHB		Printed 5/10/2016
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Sol	lutions LLC	Page 7

Subcatchment OS5_8: (new Subcat) Flow Length=2,163' Tc=40.1 min CN=74/0 Runoff=45.62 cfs 5.788 af
Subcatchment OS6: (new Subcat)Runoff Area=21.459 ac0.00% ImperviousRunoff Depth=1.09"Flow Length=1,476'Tc=18.7 minCN=75/0Runoff=26.04 cfs1.956 af
Subcatchment OS7_1: (new Subcat) Flow Length=136' Slope=0.0108 '/' Tc=33.6 min CN=70/0 Runoff=4.73 cfs 0.566 af
Subcatchment OS7_2: (new Subcat)Runoff Area=21.469 ac0.00% ImperviousRunoff Depth=1.21"Flow Length=779'Tc=6.1 minCN=77/0Runoff=46.37 cfs2.168 af
Subcatchment OS7_4: (new Subcat)Runoff Area=12.807 ac0.00% ImperviousRunoff Depth=1.04"Flow Length=503'Slope=0.0219 '/'Tc=33.5 minCN=74/0Runoff=9.96 cfs1.107 af
Subcatchment OS8a: (new Subcat)Runoff Area=2.557 ac0.00% ImperviousRunoff Depth=2.00"Flow Length=680'Tc=12.7 minCN=88/0Runoff=7.09 cfs0.426 af
Subcatchment OS8b: (new Subcat)Runoff Area=5.517 ac0.00% ImperviousRunoff Depth=1.54"Flow Length=799'Tc=20.3 minCN=82/0Runoff=9.32 cfs0.707 af
SubcatchmentOS8c: (new Subcat)Runoff Area=0.298 ac0.00% ImperviousRunoff Depth=1.68"Flow Length=240'Slope=0.0504 '/'Tc=9.5 minCN=84/0Runoff=0.79 cfs0.042 af
Subcatchment OS8d: (new Subcat)Runoff Area=2.208 ac 0.00% Impervious Runoff Depth=1.68"Flow Length=740'Tc=22.9 min CN=84/0 Runoff=3.81 cfs 0.310 af
Subcatchment OS8e: OS8eRunoff Area=4.725 ac 0.00% Impervious Runoff Depth=1.68"Flow Length=370'Slope=0.0538 '/' Tc=20.9 min CN=84/0 Runoff=8.63 cfs 0.662 af
Subcatchment OS8_5: (new Subcat)Runoff Area=17.067 ac0.00% ImperviousRunoff Depth=2.26"Flow Length=1,741'Tc=7.2 minCN=91/0Runoff=63.26 cfs3.212 af
Reach GC4: Grass Channel 4         Avg. Flow Depth=0.50'         Max Vel=4.08 fps         Inflow=14.38 cfs         2.810 af           n=0.030         L=370.2'         S=0.0243 '/'         Capacity=123.15 cfs         Outflow=14.35 cfs         2.809 af
Reach P24: Pipe 24         Avg. Flow Depth=0.33'         Max Vel=6.00 fps         Inflow=1.78 cfs         0.085 af           18.0"         Round Pipe         n=0.013         L=140.7'         S=0.0237 '/'         Capacity=16.18 cfs         Outflow=1.77 cfs         0.085 af
Reach P34: Pipe 34         Avg. Flow Depth=0.34'         Max Vel=2.76 fps         Inflow=0.84 cfs         0.039 af           18.0"         Round Pipe         n=0.013         L=34.9'         S=0.0049 '/'         Capacity=7.33 cfs         Outflow=0.84 cfs         0.039 af
Reach P35: Pipe 35         Avg. Flow Depth=0.44'         Max Vel=4.19 fps         Inflow=1.82 cfs         0.086 af           18.0"         Round Pipe         n=0.013         L=84.2'         S=0.0084 '/'         Capacity=9.65 cfs         Outflow=1.81 cfs         0.086 af
Reach P36: Pipe 36         Avg. Flow Depth=0.57'         Max Vel=3.78 fps         Inflow=2.82 cfs         0.134 af           24.0"         Round Pipe         n=0.013         L=16.6'         S=0.0048 '/'         Capacity=15.70 cfs         Outflow=2.82 cfs         0.134 af
Reach R1: Reach through OS 1         Avg. Flow Depth=0.52'         Max Vel=3.95 fps         Inflow=67.23 cfs         33.177 af           n=0.035         L=590.0'         S=0.0220 '/'         Capacity=2,282.34 cfs         Outflow=67.01 cfs         33.165 af

<b>DSAnalysis Post No BMP</b> Prepared by VHB HydroCAD® 10.00 s/n 01038 © 2013 HydroCAI	Type II 24-hr10 Year Storm Rainfall=3.20"Printed 5/10/2016O Software Solutions LLCPage 8
Reach R2: Reach through OS2 Avg	Flow Depth=0.81' Max Vel=6.76 fps Inflow=66.13 cfs 32.720 af S=0.0500 '/' Capacity=1,850.26 cfs Outflow=66.01 cfs 32.714 af
	Flow Depth=0.47' Max Vel=1.48 fps Inflow=55.27 cfs 30.759 af S=0.0052 '/' Capacity=2,787.67 cfs Outflow=48.46 cfs 30.732 af
	Flow Depth=0.39' Max Vel=1.00 fps Inflow=31.94 cfs 24.907 af S=0.0020 '/' Capacity=1,717.01 cfs Outflow=31.90 cfs 24.864 af
	vg. Flow Depth=0.79' Max Vel=1.26 fps Inflow=5.16 cfs 1.411 af 5.0' S=0.0012 '/' Capacity=43.39 cfs Outflow=5.13 cfs 1.411 af
Pond 1P: Hercules Drive / S/N 005	Peak Elev=302.20' Storage=31,339 cf Inflow=32.52 cfs 24.915 af Outflow=31.94 cfs 24.907 af
Pond 2P: Lower Mtn View Dr	Peak Elev=310.00' Storage=95,999 cf Inflow=66.60 cfs 11.739 af Outflow=14.07 cfs 11.736 af
Pond 008: POI 008	Inflow=30.43 cfs 4.521 af Primary=30.43 cfs 4.521 af
Pond 48: Pipe 48 30.0" Round C	Peak Elev=325.29' Inflow=26.81 cfs 1.739 af Culvert n=0.013 L=75.0' S=0.0360 '/' Outflow=26.81 cfs 1.739 af
Pond 49: Pipe 49 30.0" Round C	Peak Elev=321.54' Inflow=26.81 cfs 1.739 af Culvert n=0.013 L=28.0' S=0.1071 '/' Outflow=26.81 cfs 1.739 af
Pond P1: Behind Health Lab	Peak Elev=310.17' Storage=24,634 cf Inflow=4.73 cfs 0.566 af Outflow=0.00 cfs 0.000 af
Pond P10: Reach between LMV and	Peak Elev=308.04' Storage=54,721 cf Inflow=32.69 cfs 25.021 af Outflow=32.49 cfs 24.855 af
Pond P2/3: Upstream of Park Drive 12.0" Round C	Peak Elev=310.77' Storage=57,533 cf Inflow=46.37 cfs 2.168 af culvert n=0.013 L=100.0' S=0.0025 '/' Outflow=1.21 cfs 1.790 af
Pond P25: Pipe 25 18.0" Round	Peak Elev=329.90' Inflow=2.63 cfs 0.127 af Culvert n=0.013 L=57.2' S=0.0552 '/' Outflow=2.63 cfs 0.127 af
Pond P26: Pipe 26 24.0" Round	Peak Elev=333.53' Inflow=9.19 cfs 0.764 af Culvert n=0.013 L=35.6' S=0.0048 '/' Outflow=9.19 cfs 0.764 af
Pond P27: Pipe 27 30.0" Round C	Peak Elev=333.16' Inflow=29.26 cfs 4.090 af Culvert n=0.013 L=71.7' S=0.0050 '/' Outflow=29.26 cfs 4.090 af
Pond P28: Pipe 28 30.0" Round C	Peak Elev=331.64' Inflow=29.31 cfs 4.111 af Culvert n=0.013 L=73.4' S=0.0050 '/' Outflow=29.31 cfs 4.111 af
Pond P29: Pipe 29 24.0" Round	Peak Elev=330.12' Inflow=0.49 cfs 0.022 af Culvert n=0.013 L=23.2' S=0.0052 '/' Outflow=0.49 cfs 0.022 af
Pond P30: Pipe 30 36.0" Round C	Peak Elev=330.12' Inflow=29.44 cfs 4.159 af culvert n=0.013 L=37.8' S=0.0050 '/' Outflow=29.44 cfs 4.159 af

DSAnalysis Post No BMP	Type II 24-hr	10 Year Storm Rainfall=3.20"
Prepared by VHB		Printed 5/10/2016
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Sol	lutions LLC	Page 9

Pond P31: Pipe 31	36.0" Round	Peak Elev=329.38' Inflow=29.47 cfs 4.173 af Culvert n=0.013 L=33.7' S=0.0050 '/' Outflow=29.47 cfs 4.173 af
Pond P32: Pipe 32	36.0" Round	Peak Elev=328.63' Inflow=29.80 cfs 4.307 af Culvert n=0.013 L=134.4' S=0.0037 '/' Outflow=29.80 cfs 4.307 af
Pond P4: Upstream of Inte 35.0" x 24.0", R=17.9"	r <b>state</b> //55.1" Pipe Arch	Peak Elev=309.75' Storage=95,534 cf Inflow=28.92 cfs 4.533 af a Culvert n=0.013 L=216.0' S=0.0053 '/' Outflow=4.23 cfs 4.385 af
Pond P5: in Shaws Parkin	g	Peak Elev=358.34' Storage=73,624 cf Inflow=63.26 cfs 3.212 af Outflow=10.02 cfs 2.325 af
Pond P6: next to Spare Tir	ne	Peak Elev=310.49' Storage=28,585 cf Inflow=20.95 cfs 0.981 af Outflow=0.41 cfs 0.887 af
Pond P7: Small Pond acro	ss Hercules	Peak Elev=313.51' Storage=3,714 cf Inflow=0.76 cfs 0.137 af Outflow=0.11 cfs 0.053 af
Pond P8: Nat'l Guard Wetl	and	Peak Elev=309.65' Storage=123,684 cf Inflow=45.62 cfs 5.788 af Outflow=4.79 cfs 5.629 af
Pond P9: Charlebois Pond	I	Peak Elev=333.57' Storage=0.296 af Inflow=7.66 cfs 0.379 af Outflow=0.80 cfs 0.357 af
Link 3L: Tailwater		Inflow=4.23 cfs 4.385 af Primary=4.23 cfs 4.385 af
Link SN1: SN001		Inflow=67.25 cfs 33.346 af Primary=67.25 cfs 33.346 af
Link SN2: SN002		Inflow=67.23 cfs 33.177 af Primary=67.23 cfs 33.177 af
Link SN3: SN003		Inflow=66.13 cfs 32.720 af Primary=66.13 cfs 32.720 af
Link SN4: SN004		Inflow=55.27 cfs 30.759 af Primary=55.27 cfs 30.759 af
Link SN6: SN006		Inflow=66.60 cfs 11.739 af Primary=66.60 cfs 11.739 af

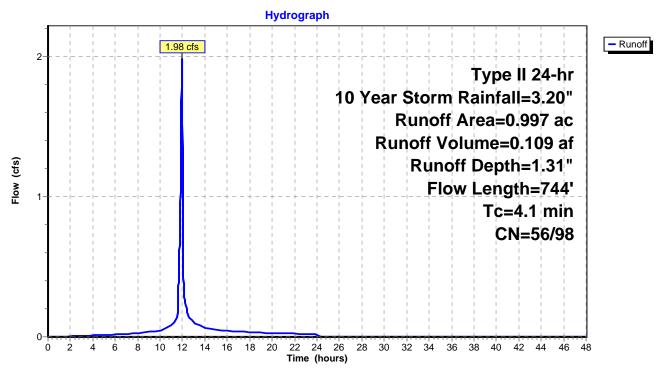
0 ColchesterLArck 250\tech\Stormwater\VTrans HydroCAD\On-Site 7 PR no Detention~Pond 007.hce Inflow=28.92 cfs 4.533 af Area= 9.375 ac 23.57% Imperv. Primary=28.92 cfs 4.533 af

Inflow=40.20 cfs 9.613 af Primary=40.20 cfs 9.613 af

Link SN8: SN008

Total Runoff Area = 359.198 acRunoff Volume = 34.317 afAverage Runoff Depth = 1.15"97.85% Pervious = 351.475 ac2.15% Impervious = 7.723 ac

# Summary for Subcatchment 1b: On-Site 1 Post


Runoff = 1.98 cfs @ 11.95 hrs, Volume= 0.109 af, Depth= 1.31"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

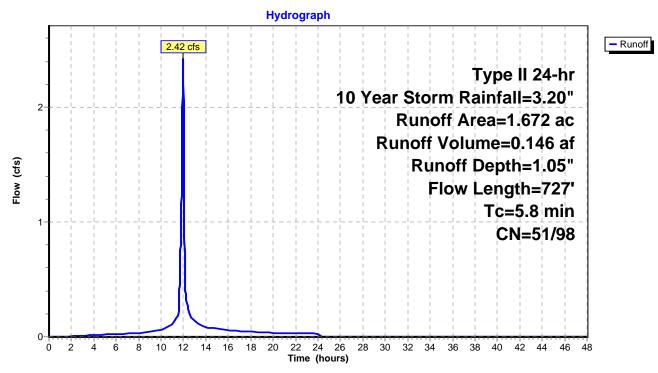
A	rea	(ac) C	N Dese	cription						
	0.767 83			Paved roads w/open ditches, 50% imp, HSG A						
	0.	140 3		>75% Grass cover, Good, HSG A						
	0.	<u>090 3</u>	<u>32 Woo</u>	Woods/grass comb., Good, HSG A						
	0.	997 7	2 Weig	Weighted Average						
	0.	613 5	56 61.5	3% Pervio	us Area					
	0.	383 9	98 38.4	7% Imper	vious Area					
	Тс	Length	Slope	Velocity	Capacity	Description				
(m	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·				
	1.1	100	0.0370	1.49		Sheet Flow, Sheet 1				
						Smooth surfaces n= 0.011 P2= 2.30"				
	0.4	89	0.0370	3.90		Shallow Concentrated Flow, Shallow 2a				
						Paved Kv= 20.3 fps				
	1.8	436	0.0573	4.14	5.38					
						Area= 1.3 sf Perim= 6.3' r= 0.21'				
	~ ~	4.4.0	0 4 4 0 4	0.04		n= 0.030 Earth, grassed & winding				
(	0.8	119	0.1424	2.64		Shallow Concentrated Flow, Shallow 1b				
						Short Grass Pasture Kv= 7.0 fps				
	4.1	744	Total							

Type II 24-hr 10 Year Storm Rainfall=3.20" Printed 5/10/2016 Itions LLC Page 11

HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC



# Subcatchment 1b: On-Site 1 Post


# Summary for Subcatchment 2b: On-Site 2 Post

Runoff = 2.42 cfs @ 11.97 hrs, Volume= 0.146 af, Depth= 1.05"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

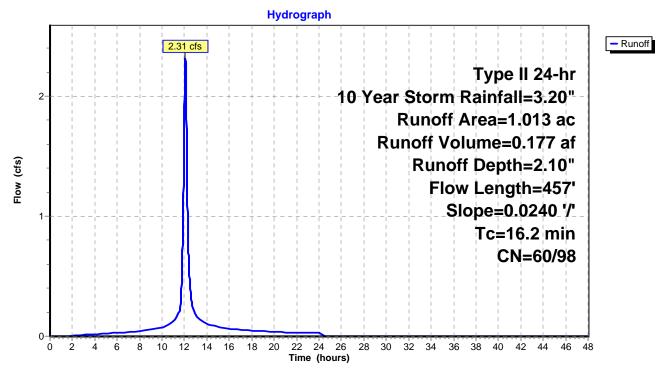
Area	(ac) C	N Desc	cription					
1.	063 8	3 Pave	Paved roads w/open ditches, 50% imp, HSG A					
0.	390 3		>75% Grass cover, Good, HSG A					
0.	<u>219 3</u>	<u>32 Woo</u>	Woods/grass comb., Good, HSG A					
		6 Weig	phted Aver	age				
1.	140 5		1% Pervio					
0.	531 9	98 31.7	9% Imperv	vious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
1.6	100	0.0144	1.02	(010)	Sheet Flow, Sheet 2			
1.0	100	0.0111	1.02		Smooth surfaces $n=0.011$ P2= 2.30"			
4.1	595	0.0144	2.44		Shallow Concentrated Flow, Shallow 2a			
					Paved Kv= 20.3 fps			
0.1	25	0.0792	4.87	6.33	Channel Flow, Channel 2			
					Area= 1.3 sf Perim= 6.3' r= 0.21'			
					n= 0.030 Earth, grassed & winding			
0.0	7	0.5368	5.13		Shallow Concentrated Flow, Shallow 2b			
					Short Grass Pasture Kv= 7.0 fps			
5.8	727	Total						

HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC



# Subcatchment 2b: On-Site 2 Post

## Summary for Subcatchment 3b: On-Site 3 Post

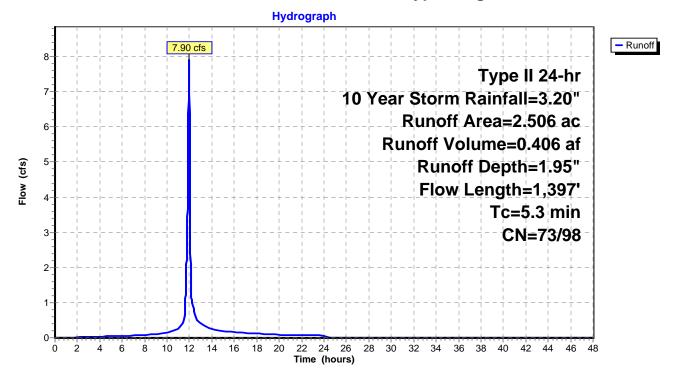

Runoff = 2.31 cfs @ 12.08 hrs, Volume= 0.177 af, Depth= 2.10"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) C	N Des	cription						
	0.129 39 >75% Grass cover, Good, HSG A									
	0.013 61 >75% Grass cover, Good, HSG B									
	0.201 74 >75% Grass cover, Good, HSG C									
	0.	160 9	98 Pave	ed roads w	/curbs & se	ewers, HSG A				
_	0.	<u>510</u>	98 Pave	ed roads w	/curbs & se	ewers, HSG C				
	1.013 85 Weighted Average									
0.343 60 33.86% Pervious Area										
	0.	670 9	98 66.1	4% Imperv	vious Area					
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.5	357	0.0240	1.08		Shallow Concentrated Flow, Shallow 3				
						Short Grass Pasture Kv= 7.0 fps				
	10.7	100	0.0240	0.16		Sheet Flow, Sheet 3				
_						Grass: Short n= 0.150 P2= 2.30"				
	40.0	457	Tatal							

16.2 457 Total

# Subcatchment 3b: On-Site 3 Post




# Summary for Subcatchment 4b: OnSite Area bypassing Pond

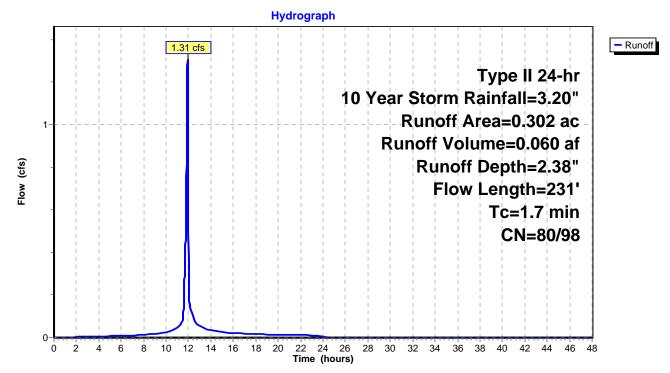
Runoff = 7.90 cfs @ 11.96 hrs, Volume= 0.406 af, Depth= 1.95"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Dese	cription						
0.	.000 3								
0.	.000	98 Pave	Paved roads w/curbs & sewers, HSG A						
0.			>75% Grass cover, Good, HSG B						
			Water Surface, 0% imp, HSG B						
			Paved roads w/curbs & sewers, HSG B						
			>75% Grass cover, Good, HSG C						
			Paved roads w/curbs & sewers, HSG C						
			>75% Grass cover, Good, HSG D Paved roads w/curbs & sewers, HSG D						
-					ewers, HSG D				
			ghted Aver						
			8% Pervio						
1.	.216 9	98 48.5	2% Imperv	ious Area/					
_		<u>.</u>		<b>a</b> 1					
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
1.2	67	0.0147	0.95		Sheet Flow, Sheet Flow				
		0 0 4 4 0			Smooth surfaces $n=0.011$ P2= 2.30"				
0.3	68	0.0413	4.13		Shallow Concentrated Flow, Shallow Pave 1				
4 5		0 0004	4.00	20.04	Paved Kv= 20.3 fps				
1.5	444	0.0091	4.86	38.91	Channel Flow, Grass Channel 1				
					Area= 8.0 sf Perim= 12.2' r= 0.66'				
0.2	61	0.0311	5.45	0.62	n= 0.022 Earth, clean & straight				
0.2	01	0.0311	5.45	9.63	Pipe Channel, Culvert 1 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'				
					n = 0.025 Corrugated metal				
1.8	632	0.0131	5.84	46.68	Channel Flow, Channel 2				
1.0	032	0.0131	5.04	40.00	Area= 8.0 sf Perim= $12.2'$ r= 0.66'				
					n = 0.022 Earth, clean & straight				
0.3	125	0.0649	7.87	13.92	Pipe Channel, Culvert 2				
0.0	120	0.0040	1.01	10.02	18.0" Round Area= 1.8 sf Perim= $4.7'$ r= 0.38'				
					n=0.025 Corrugated metal				
5.3	1,397	Total							
5.5	1,597	illai							



# Subcatchment 4b: OnSite Area bypassing Pond


## Summary for Subcatchment 5b: On-Site 5 Post

Runoff = 1.31 cfs @ 11.92 hrs, Volume= 0.060 af, Depth= 2.38"

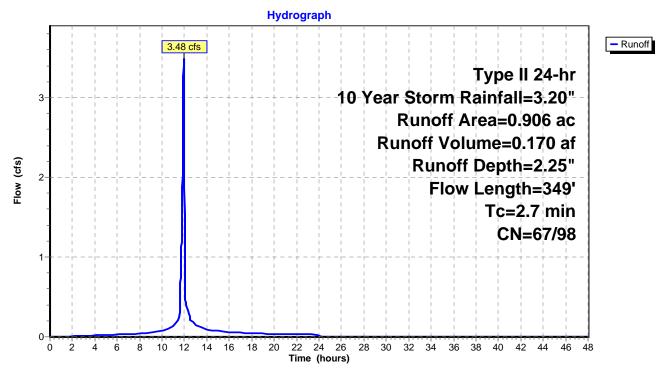
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	Area (ac) CN Description									
	0.188	9	8 Pave	ed roads w	/curbs & se	ewers, HSG D				
	0.114	8	0 Past	Pasture/grassland/range, Good, HSG D						
	0.302	9	1 Weig	hted Aver	age					
	0.114	8	0 37.7	5% Pervio	us Area					
	0.188	9	8 62.2	5% Imperv	vious Area					
_					•					
Тс	: Leng	th	Slope	Velocity	Capacity	Description				
(min)	) (fee	et)	(ft/ft)	(ft/sec)	(cfs)					
1.1	10	00	0.0351	1.46		Sheet Flow, Sheet 5				
						Smooth surfaces n= 0.011 P2= 2.30"				
0.4	4 9	99	0.0351	3.80		Shallow Concentrated Flow, Shallow 5a				
						Paved Kv= 20.3 fps				
0.2	2 3	32	0.1243	2.47		Shallow Concentrated Flow, Shallow 5b				
						Short Grass Pasture Kv= 7.0 fps				
1.7	<b>'</b> 23	31	Total							

#### Subcatchment 5b: On-Site 5 Post



# Summary for Subcatchment 6b: On-Site 6 Post


Runoff = 3.48 cfs @ 11.93 hrs, Volume= 0.170 af, Depth= 2.25"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Dese	cription						
0.	.207 9	98 Pave	ed roads w	/curbs & se	ewers, HSG B				
0.	.198 6	51 >759	>75% Grass cover, Good, HSG B						
0.	.414 🧐	98 Pave	Paved roads w/curbs & sewers, HSG D						
0.	.087 8	30 >759	% Grass co	over, Good	, HSG D				
0.	.906 8	38 Weig	ghted Aver	age					
0.	.285 6	67 31.4	6% Pervio	us Area					
0.	.621 9	98 68.5	4% Imperv	/ious Area					
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
0.9	130	0.0115	2.53	3.29	Channel Flow, Channel 6a				
					Area= 1.3 sf Perim= 6.3' r= 0.21'				
					n= 0.022 Earth, clean & straight				
1.1	100	0.0418	1.57		Sheet Flow, Sheet 6				
					Smooth surfaces $n= 0.011$ P2= 2.30"				
0.1	20	0.0418	4.15		Shallow Concentrated Flow, Shallow 6a				
		0 0000	<b>5</b> 00	7 70	Paved Kv= 20.3 fps				
0.1	32	0.0630	5.92	7.70	,				
					Area= 1.3 sf Perim= 6.3' r= 0.21'				
0 5	07	0 4 4 0 4	0.40		n= 0.022 Earth, clean & straight				
0.5	67	0.1194	2.42		Shallow Concentrated Flow, Shallow 6b				
0.7	0.40	<b>T</b> . ( . )			Short Grass Pasture Kv= 7.0 fps				
2.7	349	Total							

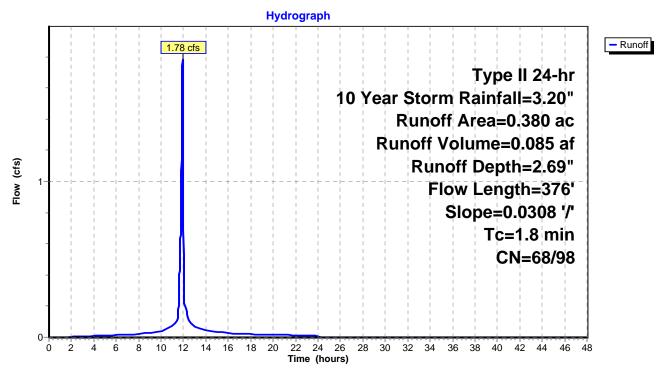
Type II 24-hr 10 Year Storm Rainfall=3.20" Printed 5/10/2016 titions LLC Page 19

HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC



# Subcatchment 6b: On-Site 6 Post

## Summary for Subcatchment 24: Subcat 24


Runoff = 1.78 cfs @ 11.92 hrs, Volume= 0.085 af, Depth= 2.69"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

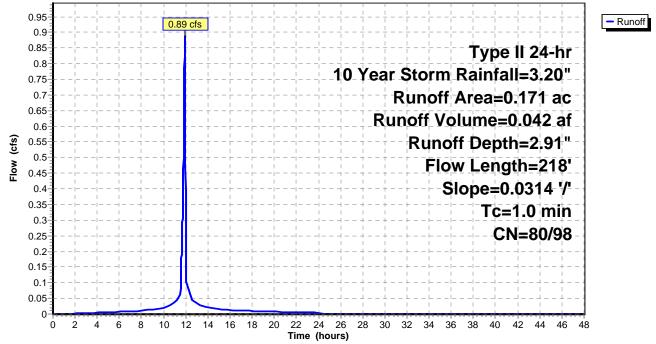
_	Area	(ac)	CN	Desc	ription		
	0.3	308	98	Pave	ed roads w	/curbs & se	ewers, HSG D
0.024 98 Paved roads w/curbs & sewers, HS							ewers, HSG B
	0.030 61 >75% Grass cover, Good, HSG B						
0.016 80 >75% Grass cover, Good, HSG D							, HSG D
	0.0	002	80	>75%	6 Grass co	over, Good,	, HSG D
	0.3	380	94	Weig	hted Aver	age	
	0.0	048	68	12.6	3% Pervio	us Area	
	0.3	332	98	87.3	7% Imperv	rious Area	
	Тс	Lengt	th	Slope	Velocity	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	1.8	37	6	0.0308	3.56		Shallow Concentrated Flow,

Paved Kv= 20.3 fps

#### Subcatchment 24: Subcat 24



## Summary for Subcatchment 25: Subcat 25


Runoff = 0.89 cfs @ 11.91 hrs, Volume= 0.042 af, Depth= 2.91"

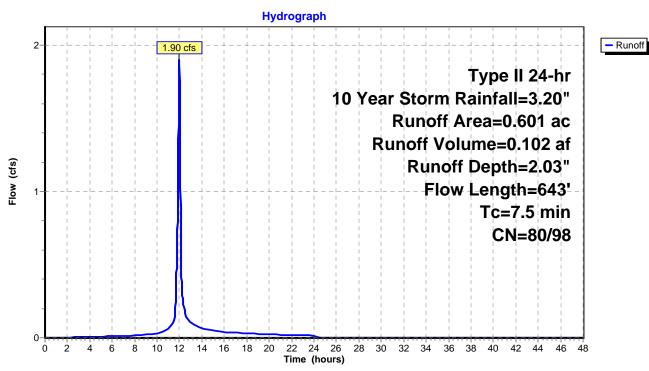
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	a (ac)	CN	Desc	Description							
0.165 98 Paved roads w/curbs & sewers, HSG D											
(	0.006 80 >75% Grass cover, Good, HSG D										
(	).171	97	Weig	hted Aver	age						
(	0.006	80	3.51	3.51% Pervious Area							
(	0.165 98			96.49% Impervious Area							
Tc (min)			Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
1.0	21	8 0.	.0314	3.60		Shallow Concentrated Flow, Paved Kv= 20.3 fps					

# Subcatchment 25: Subcat 25

Hydrograph




# Summary for Subcatchment 26: Subcat 26

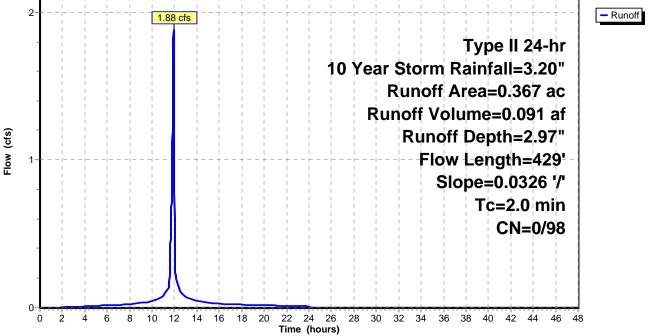
Runoff = 1.90 cfs @ 11.99 hrs, Volume= 0.102 af, Depth= 2.03"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac)	CN E	Desc	ription				
0.	.079	98 F	Pave	d roads w	/curbs & se	ewers, HSG D		
0.043 98 Paved roads w/curbs & sewers, HSG D								
0.	.191	80 >	>75%	Grass co	over, Good,	, HSG D		
0.	.018	80 >	>75%	Grass co	over, Good,	, HSG D		
0.	0.014 80 >75% Grass cover, Good, HSG D							
0.	.106	98 F	Pave	d roads w	/curbs & se	ewers, HSG D		
0.	.075	80 >	>75%	Grass co	over, Good,	, HSG D		
0.	.015					ewers, HSG D		
0.	.016				over, Good,			
	.030				over, Good,			
0	.014	80 >	<u>-75%</u>	Grass co	over, Good,	, HSG D		
0.	.601	87 V	Neig	hted Aver	age			
0.	.358	80 5	59.57	'% Pervio	us Area			
0.	.243	98 4	10.43	3% Imperv	ious Area			
Tc	Length	Slo	ре	Velocity	Capacity	Description		
(min)	(feet)	(ft	:/ft)	(ft/sec)	(cfs)			
0.1	26	0.06	23	5.07		Shallow Concentrated Flow,		
						Paved Kv= 20.3 fps		
7.4	617	0.03	93	1.39		Shallow Concentrated Flow,		
						Short Grass Pasture Kv= 7.0 fps		
7.5	643	Tota	l					

Prepared by VHB HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC




## Subcatchment 26: Subcat 26

# Summary for Subcatchment 27: Subcat 27

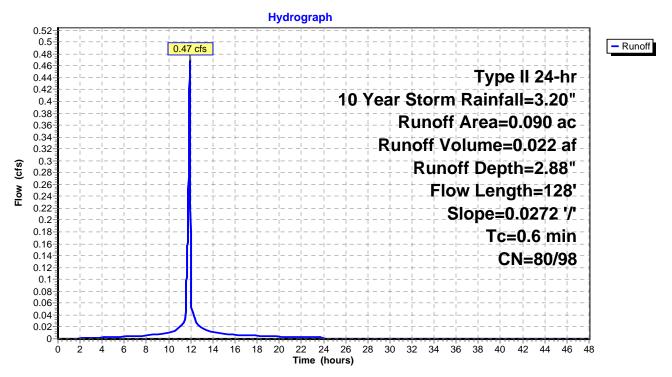
Runoff = 1.88 cfs @ 11.92 hrs, Volume= 0.091 af, Depth= 2.97"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Des	cription						
0.367 98 Paved roads w/curbs & sewers, HSG D									
0.367 98 100.00% Impervious Area									
Tc (min)									
2.0	429	0.0326	3.67		<b>Shallow Concentrated Flow,</b> Paved Kv= 20.3 fps				
	Subcatchment 27: Subcat 27								
	Hydrograph								
2-									



## Summary for Subcatchment 28: Subcat 28


Runoff = 0.47 cfs @ 11.91 hrs, Volume= 0.022 af, Depth= 2.88"

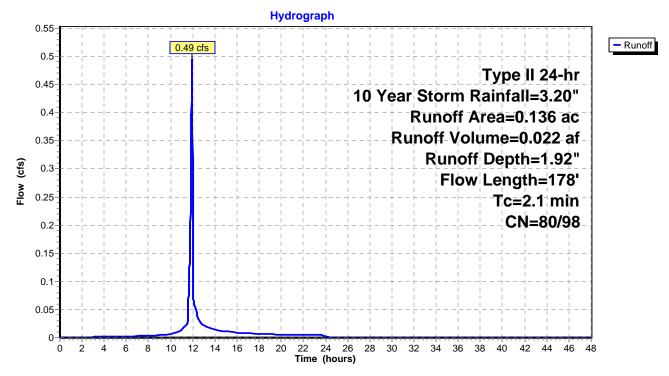
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) C	N Des	Description							
	0.079 98 Paved roads w/curbs & sewers, HSG D										
	0.006 98 Paved roads w/curbs & sewers, HSG D										
_	0.005 80 >75% Grass cover, Good, HSG D										
	0.										
	0.	005	80 5.56	% Perviou	s Area						
	0.	085	98 94.4	94.44% Impervious Area							
	Та	المربع مرالم	Clana	Valasitu	Canadity	Description					
	ŢĊ	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	0.6	128	0.0272	3.35		Shallow Concentrated Flow,					
						Payod Ky-20.3 fps					

Paved Kv= 20.3 fps

#### Subcatchment 28: Subcat 28




## Summary for Subcatchment 29: Subcat 29

Runoff = 0.49 cfs @ 11.93 hrs, Volume= 0.022 af, Depth= 1.92"

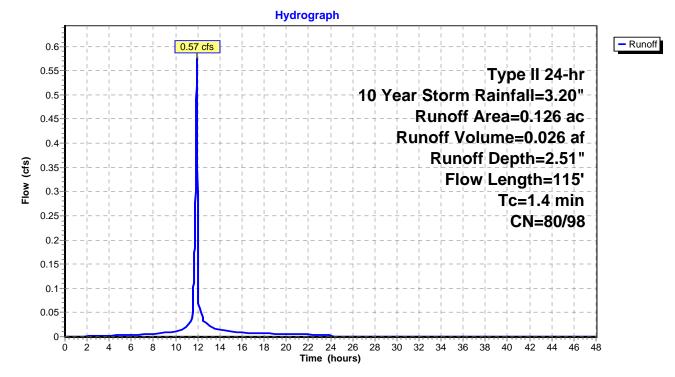
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac)	CN	Desc	Description							
	0.039 98 Paved roads w/curbs & sewers, HSG D											
	0.006 98 Paved roads w/curbs & sewers, HSG D											
	0.088 80 >75% Grass cover, Good, HSG D											
	0.	003	80	>75%	6 Grass co	over, Good	, HSG D					
	0.136 86 Weighted Average											
	0.	091	80	66.9	, 1% Pervio	us Area						
	0.045 98				33.09% Impervious Area							
	Тс	Lengt	h S	Slope	Velocity	Capacity	Description					
_	(min)	(feet	t)	(ft/ft)	(ft/sec)	(cfs)						
	0.1	1	50.	.0353	3.81		Shallow Concentrated Flow,					
							Paved Kv= 20.3 fps					
	2.0	16	30.	.0388	1.38		Shallow Concentrated Flow,					
							Short Grass Pasture Kv= 7.0 fps					
	2.1	17	8 T	otal								

#### Subcatchment 29: Subcat 29



## Summary for Subcatchment 30: Subcat 30


Runoff = 0.57 cfs @ 11.92 hrs, Volume= 0.026 af, Depth= 2.51"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

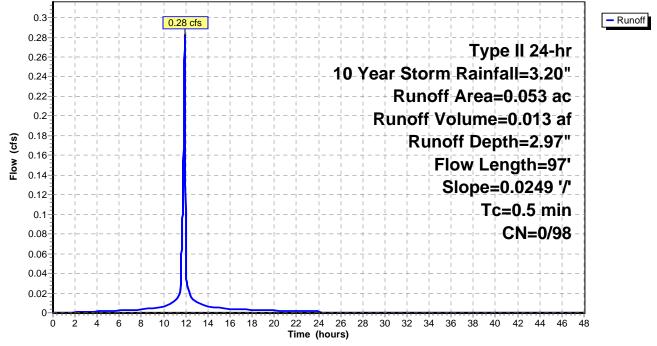
_	Area	(ac) (	CN Des	Description						
	0.	089	ewers, HSG D							
	0.	, HSG D								
	0.010 80 >75% Grass cover, Good, HSG D									
	0.126 93 Weighted Average									
0.037 80 29.37% Pervious Area										
	0.089 98 70.63% Impervious Area									
				-						
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	1.2	75	0.0213	1.02		Shallow Concentrated Flow,				
						Short Grass Pasture Kv= 7.0 fps				
	0.2	40	0.0324	3.65		Shallow Concentrated Flow,				
						Paved Kv= 20.3 fps				
			-							

1.4 115 Total

## Subcatchment 30: Subcat 30



## Summary for Subcatchment 31: Subcat 31


Runoff = 0.28 cfs @ 11.91 hrs, Volume= 0.013 af, Depth= 2.97"

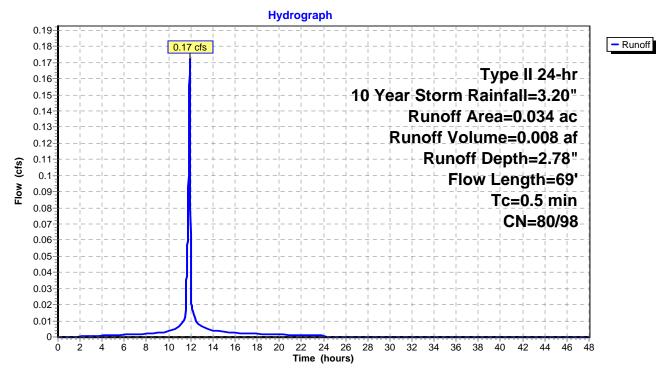
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Des	cription					
0.	053 9	98 Pav	Paved roads w/curbs & sewers, HSG D					
0.053 98 100.00% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
0.5	97	0.0249	3.20		<b>Shallow Concentrated Flow,</b> Paved Kv= 20.3 fps			

#### Subcatchment 31: Subcat 31






### Summary for Subcatchment 32: Subcat 31

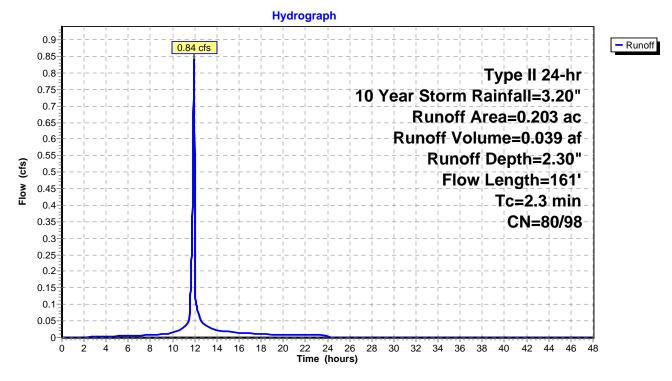
Runoff = 0.17 cfs @ 11.91 hrs, Volume= 0.008 af, Depth= 2.78"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area (ac) CN Description								
0.030 98 Paved roads w/curbs & sewers, HSG D									
0.004 80 >75% Grass cover, Good, HSG D									
0.034 96 Weighted Average									
	0.004 80 11.76% Pervious Area								
	0.	030 9	98 88.2	4% Imperv	vious Area				
	_								
	Tc	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.2	13	0.0423	1.44		Shallow Concentrated Flow,			
						Short Grass Pasture Kv= 7.0 fps			
	0.3	56	0.0310	3.57		Shallow Concentrated Flow,			
						Paved Kv= 20.3 fps			
	0.5	69	Total						

### Subcatchment 32: Subcat 31




### Summary for Subcatchment 34: Subcat 34

Runoff = 0.84 cfs @ 11.93 hrs, Volume= 0.039 af, Depth= 2.30"

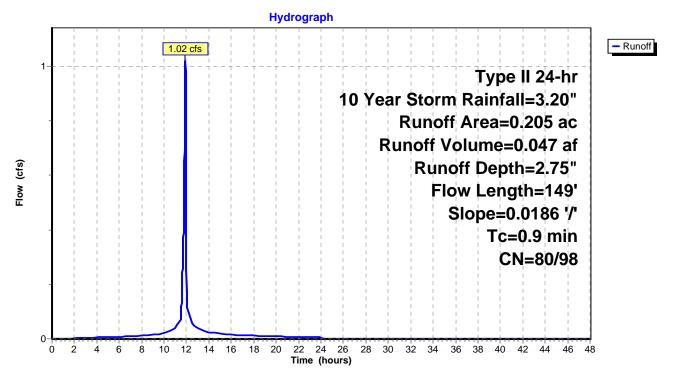
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac)	CN	Desc	cription			
0.039 98 Paved roads w/curbs & sev							ewers, HSG D	
0.045 98 Paved roads w/curbs & sewers, HSG D								
0.032 98 Paved roads w/curbs & sewers, HSG D								
0.087 80 >75% Grass cover, Good, HSG D							, HSG D	
	0.203 90 Weighted Average							
	0.	087	80	42.8	6% Pervio	us Area		
	0.116 98 57.14% Imperviou					vious Area		
	Tc (min)	Length (feet		lope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
_	0.2	38	3 0.0	0197	2.85		Shallow Concentrated Flow,	
	2.1	123	3 0.0	0186	0.95		Paved Kv= 20.3 fps <b>Shallow Concentrated Flow,</b> Short Grass Pasture Kv= 7.0 fps	
	2.3	161	То	otal				

#### Subcatchment 34: Subcat 34



#### Summary for Subcatchment 35: Subcat 35


Runoff = 1.02 cfs @ 11.91 hrs, Volume= 0.047 af, Depth= 2.75"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

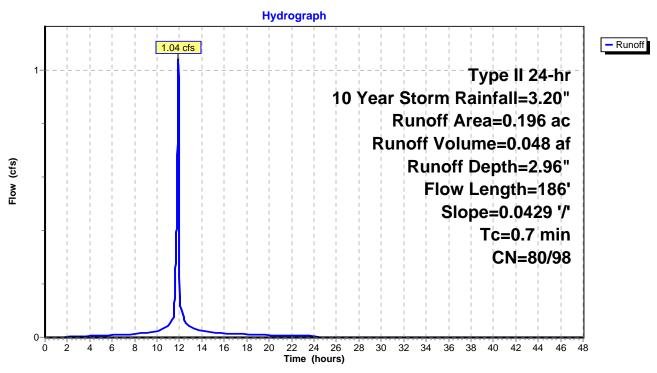
_	Area	(ac)	CN	Desc	Description							
	0.	177	98	Pave	ed roads w	/curbs & se	ewers, HSG D					
	0.007 80 >75% Grass cover, Good, I						, HSG D					
0.021 80 >75% Grass cover, Good, HSG D							, HSG D					
	0.205 96 Weighted Average											
	0.	028	80	13.6	6% Pervio	us Area						
	0.177 9			86.34	4% Imperv	vious Area						
	_			<b>.</b> .		•	-					
	Тс	Length		Slope	Velocity	Capacity	Description					
_	(min)	(feet	)	(ft/ft)	(ft/sec)	(cfs)						
	0.9	149	9 0	.0186	2.77		Shallow Concentrated Flow,					
							Payed $K_{V} = 20.3$ fps					

Paved Kv= 20.3 fps

Subcatchment 35: Subcat 35



### Summary for Subcatchment 36: Subcat 36


Runoff = 1.04 cfs @ 11.91 hrs, Volume= 0.048 af, Depth= 2.96"

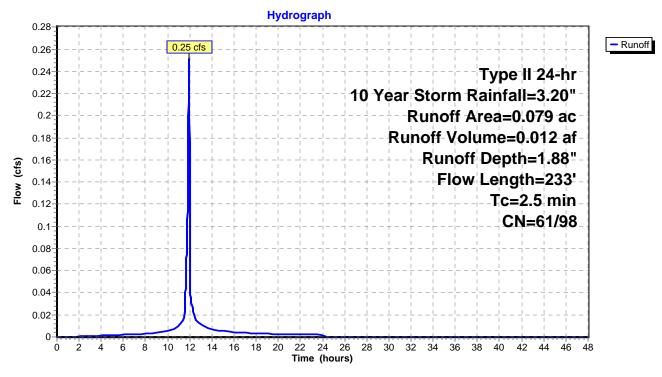
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area (ac)	CI	N Desc	cription			
0.187	9	8 Pave	ed roads w	/curbs & se	ewers, HSG D	
0.006	9	8 Pave	ed roads w	/curbs & se	ewers, HSG D	
0.001 98 Paved roads w/curbs & sewers, HSG D						
0.001 98 Paved roads w/curbs & sewers, HSG D						
0.001	8	0 >75%	% Grass co	over, Good	, HSG D	
0.196	9	8 Weig	ghted Aver	age		
0.001	8	0 0.51	% Perviou	s Area		
0.195	9	8 99.4	9% Imperv	vious Area		
Tc Lei	ngth	Slope	Velocity	Capacity	Description	
(min) (f	eet)	(ft/ft)	(ft/sec)	(cfs)		
0.7	186	0.0429	4.20		Shallow Concentrated Flow,	

Paved Kv= 20.3 fps

#### Subcatchment 36: Subcat 36




#### Summary for Subcatchment 59: Subcat 59

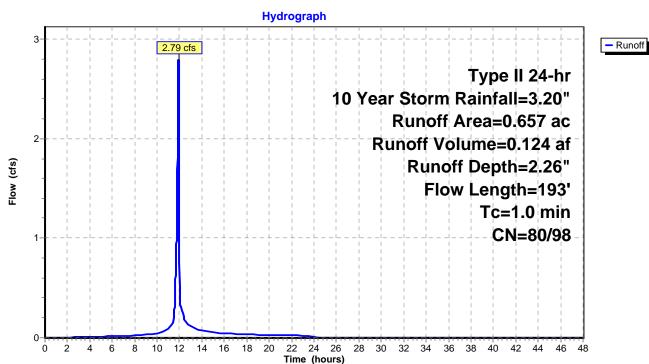
Runoff = 0.25 cfs @ 11.93 hrs, Volume= 0.012 af, Depth= 1.88"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Des	Description						
	0.045 98 Paved roads w/curbs & sewers, HSG B									
0.034 61 >75% Grass cover, Good, HSG B										
0.079 82 Weighted Average										
	0.	034	61 43.0	4% Pervio	us Area					
	0.	045	98 56.9	6% Imperv	vious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	0.1	6	0.0050	1.44		Shallow Concentrated Flow,				
	2.4	227	0.0515	1.59		Paved Kv= 20.3 fps <b>Shallow Concentrated Flow,</b> Short Grass Pasture Kv= 7.0 fps				
	2.5	233	Total							

### Subcatchment 59: Subcat 59




## Summary for Subcatchment 60: Subcat 60

Runoff = 2.79 cfs @ 11.91 hrs, Volume= 0.124 af, Depth= 2.26"

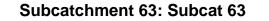
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

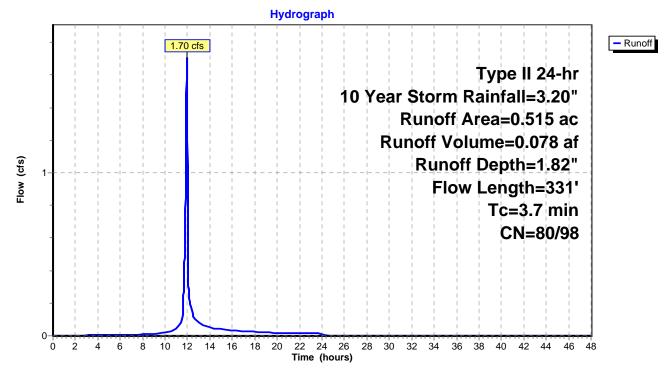
Area	(ac) (	CN	Desc	ription		
0.	.228	98	Pave	d roads w	/curbs & se	ewers, HSG D
0.	.007	98	Pave	ed roads w	/curbs & se	ewers, HSG D
0.	.016	98	Pave	ed roads w	/curbs & se	ewers, HSG D
0.	.008	98	Pave	ed roads w	/curbs & se	ewers, HSG D
0.	.100	98	Pave	ed roads w	/curbs & se	ewers, HSG D
0.	.001	80	>75%	6 Grass co	over, Good	, HSG D
0.	.014	80	>75%	6 Grass co	over, Good	, HSG D
0.	.259	80	>75%	6 Grass co	over, Good	, HSG D
	.004	80			over, Good	
	.014	80			over, Good	
0	.006	80	>75%	<u>6 Grass co</u>	over, Good	, HSG D
0.	.657	90	Weig	hted Aver	age	
0.	.298	80	45.36	5% Pervio	us Area	
0.	.359	98	54.64	4% Imperv	/ious Area	
Tc	Length		Slope	Velocity	Capacity	Description
(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	
0.4	100	0.0	0461	4.36		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
0.6	93	0.	1199	2.42		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
1.0	193	To	otal			

HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC



## Subcatchment 60: Subcat 60


## Summary for Subcatchment 63: Subcat 63

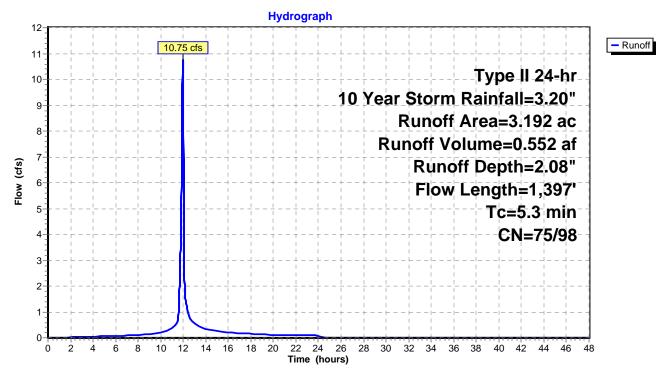

Runoff = 1.70 cfs @ 11.95 hrs, Volume= 0.078 af, Depth= 1.82"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac)	CN De	escription					
0	.187	80 >7	5% Grass c	over, Good	, HSG D			
0	.135	98 Pa	aved roads v	v/curbs & se	ewers, HSG D			
	.004				ewers, HSG D			
0	.011		'5% Grass c	,				
	.001		>75% Grass cover, Good, HSG D					
0	.177	80 >7	75% Grass c	over, Good	, HSG D			
0	.515	85 W	eighted Ave	rage				
0	.376		73.01% Pervious Area					
0	.139	98 26	5.99% Imper	vious Area				
Та	المرم مرا			Conceitur	Description			
Tc (reise)	Length				Description			
(min)	(feet	· · · · ·	/ / /	(cfs)				
0.7	32	0.010	0 0.70		Shallow Concentrated Flow,			
	_				Short Grass Pasture Kv= 7.0 fps			
0.6	83	3 0.013	9 2.39		Shallow Concentrated Flow,			
			~		Paved Kv= 20.3 fps			
2.4	217	0.045	3 1.49		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
3.7	331	Total						

HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC






## Summary for Subcatchment CPv4: Site #4 On Site

Runoff = 10.75 cfs @ 11.96 hrs, Volume= 0.552 af, Depth= 2.08"

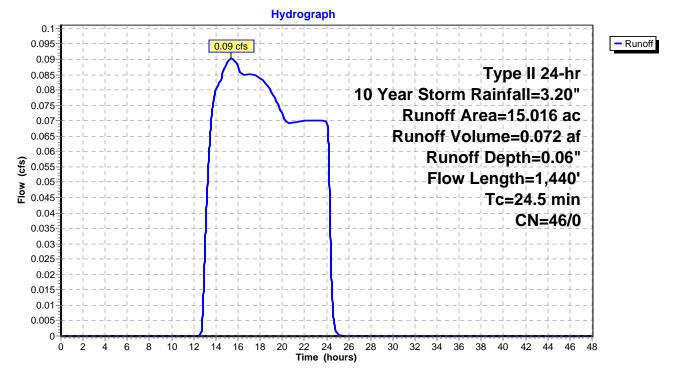
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Des	cription						
0.	022	39 >759	% Grass co	over, Good	, HSG A				
		98 Pave	aved roads w/curbs & sewers, HSG A						
0.	562	61 >75°	>75% Grass cover, Good, HSG B						
			Water Surface, 0% imp, HSG B						
			Paved roads w/curbs & sewers, HSG B						
				over, Good					
					ewers, HSG C				
				over, Good					
					ewers, HSG D				
			ghted Aver	•					
			9% Pervio						
1.	673	98 52.4	1% Imperv	/ious Area					
_		-							
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
1.2	67	0.0147	0.95		Sheet Flow, Sheet Flow				
					Smooth surfaces $n = 0.011$ P2= 2.30"				
0.3	68	0.0413	4.13		Shallow Concentrated Flow, Shallow Pave 1				
4 5		0.0004	4.00	20.04	Paved Kv= 20.3 fps				
1.5	444	0.0091	4.86	38.91	Channel Flow, Grass Channel 1				
					Area= 8.0 sf Perim= 12.2' r= 0.66'				
0.2	61	0.0311	5.45	9.63	n= 0.022 Earth, clean & straight Pipe Channel, Culvert 1				
0.2	01	0.0311	5.45	9.05	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'				
					n=0.025 Corrugated metal				
1.8	632	0.0131	5.84	46.68	Channel Flow, Channel 2				
1.0	052	0.0131	5.04	40.00	Area= 8.0 sf Perim= $12.2'$ r= 0.66'				
					n = 0.022 Earth, clean & straight				
0.3	125	0.0649	7.87	13.92	Pipe Channel, Culvert 2				
0.0	120	0.0040	7.07	10.02	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'				
					n=0.025 Corrugated metal				
5.3	1,397	Total							
0.0	1,537	rotai							



### Subcatchment CPv4: Site #4 On Site

### Summary for Subcatchment OS1: Off-Site 1


Runoff = 0.09 cfs @ 15.38 hrs, Volume= 0.072 af, Depth= 0.06"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

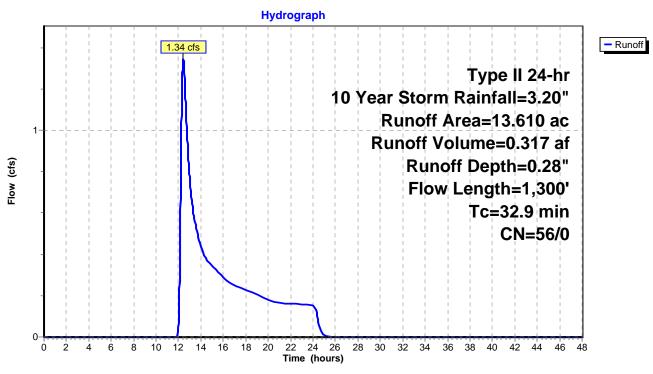
_	Area	(ac) C	N Dese	cription		
*	15.	016 4	l6 Com	posite CN		
	15.	016 4	46 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	18.7	100	0.0426	0.09		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.30"
	2.3	464	0.0426	3.32		Shallow Concentrated Flow, woods segment Unpaved Kv= 16.1 fps
	2.9	586	0.0427	3.33		Shallow Concentrated Flow, grass segment Unpaved Kv= 16.1 fps
	0.1	156	0.1731	29.96	94.12	Pipe Channel, 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
_	0.5	134	0.0746	4.10		n= 0.013 <b>Shallow Concentrated Flow,</b> Grassed Waterway Kv= 15.0 fps

24.5 1,440 Total

## Subcatchment OS1: Off-Site 1



### Summary for Subcatchment OS2: Off-Site 2


Runoff = 1.34 cfs @ 12.43 hrs, Volume= 0.317 af, Depth= 0.28"

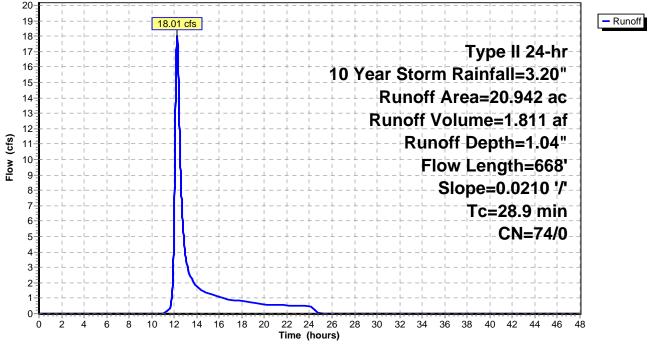
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

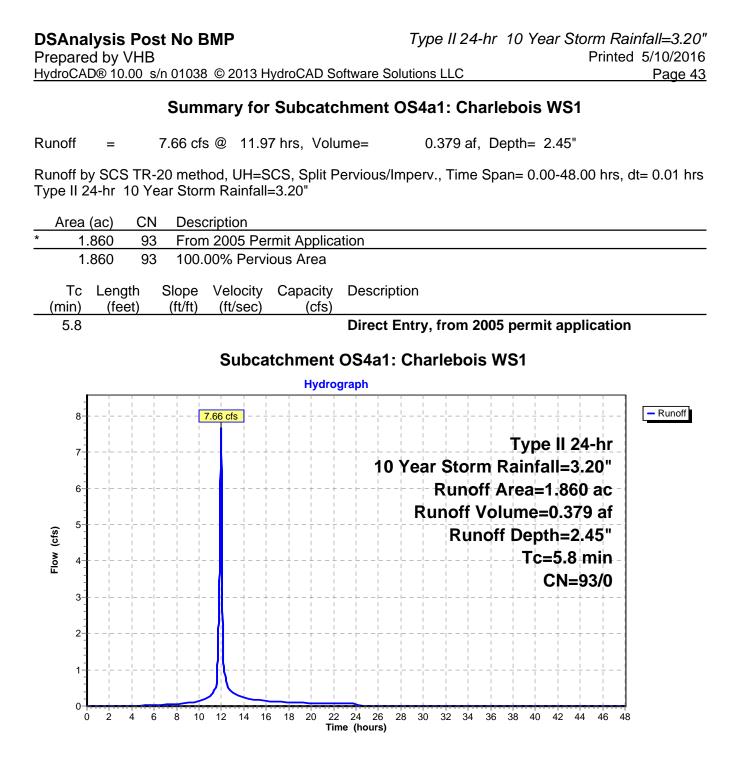
	Area	(ac) C	N Dese	cription		
*	13.	610 5	56 Com	posite CN		
	13.610		56 100.00% Pervi		ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	26.7	100	0.0176	0.06		<b>Sheet Flow,</b> Woods: Light underbrush n= 0.400 P2= 2.30"
	5.4	690	0.0176	2.14		Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	0.8	510	0.0585	10.87	41.30	<b>Trap/Vee/Rect Channel Flow, channel</b> Bot.W=2.50' D=1.00' Z= 1.3 '/' Top.W=5.10' n= 0.025
	~~~~	4 0 0 0	<b>T</b> ( )			

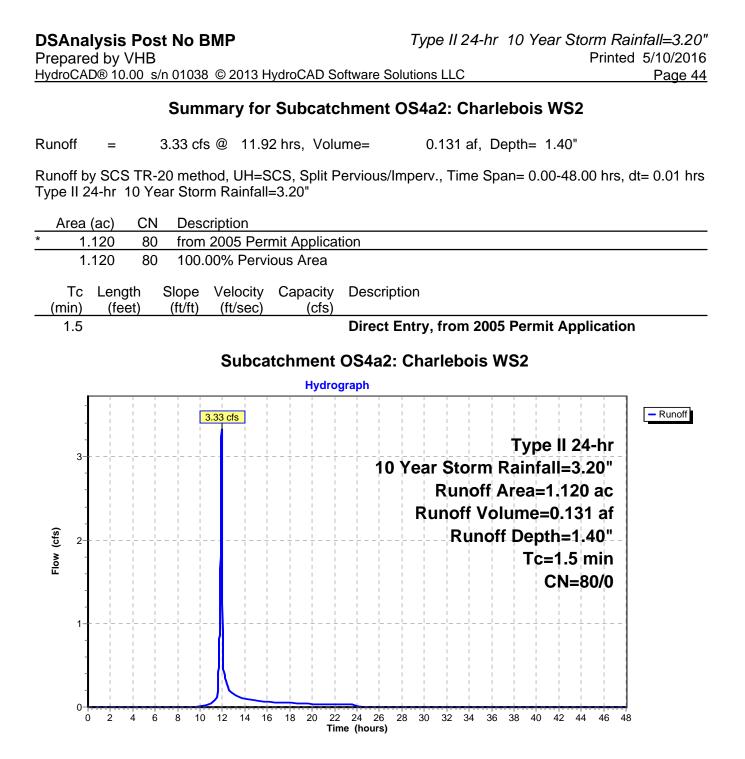
32.9 1,300 Total

Subcatchment OS2: Off-Site 2

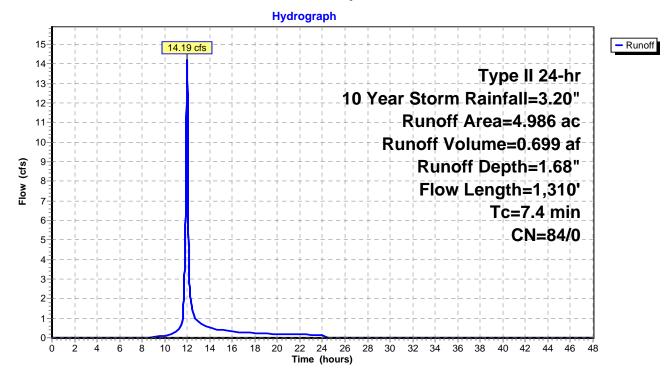
Summary for Subcatchment OS3: Off-Site 3


Runoff = 18.01 cfs @ 12.24 hrs, Volume= 1.811 af, Depth= 1.04"


Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"


	Area	(ac) C	N Dese	cription		
*	20.	942 7	74 Com	posite CN		
	20.	942 7	74 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	24.8	100	0.0210	0.07		Sheet Flow,
	4.1	568	0.0210	2.33		Woods: Light underbrush n= 0.400 P2= 2.30" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	28.9	668	Total			

Subcatchment OS3: Off-Site 3

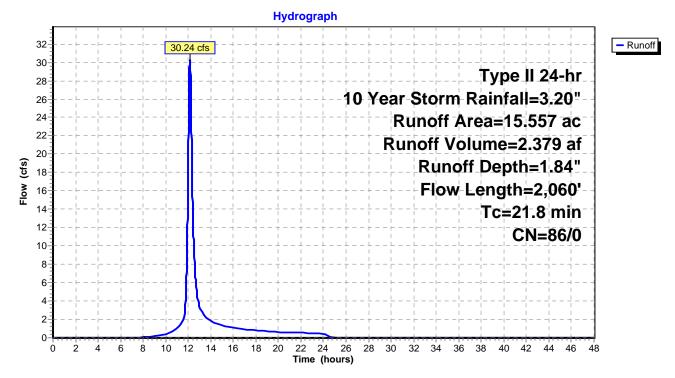


Summary for Subcatchment OS4p: Site #4 Off Site

Runoff = 14.19 cfs @ 11.99 hrs, Volume= 0.699 af, Depth= 1.68"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	a (ac) C	N Dese	cription		
<u>*</u>	1.986 8	34 com	posite CN		
4	4.986 8	³⁴ 100.	00% Pervi	ous Area	
_				. .	
Tc	- 3	Slope	Velocity		Description
(min)		(ft/ft)	(ft/sec)	(cfs)	
0.5	191	0.0200	6.33	50.63	Trap/Vee/Rect Channel Flow,
					Bot.W=4.00' D=1.00' Z= 4.0 '/' Top.W=12.00'
	4.40	0.0400	0.05	74.00	n= 0.025 Earth, clean & straight
0.3	149	0.0400	8.95	71.60	
					Bot.W=4.00' D=1.00' Z= 4.0 '/' Top.W=12.00'
0.2	477	0 0700	11 46	90.25	n= 0.025
0.3	177	0.0700	11.46	80.25	Trap/Vee/Rect Channel Flow, Bot.W=3.00' D=1.00' Z= 4.0 '/' Top.W=11.00'
					n=0.025
0.2	161	0.0900	13.29	79.74	Trap/Vee/Rect Channel Flow,
0.2	101	0.0900	13.29	79.74	Bot.W=3.00' D=1.00' Z= 3.0 '/' Top.W=9.00'
					n = 0.025
1.7	17/	0.1200	1.73		Shallow Concentrated Flow,
1.7	174	0.1200	1.75		Woodland Kv= 5.0 fps
2.2	206	0.0970	1.56		Shallow Concentrated Flow,
2.2	200	0.0070	1.00		Woodland Kv= 5.0 fps
0.9	106	0.1500	1.94		Shallow Concentrated Flow,
0.0	100	0.1000	1.01		Woodland Kv= 5.0 fps
1.3	146	0.1370	1.85		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
7.4	1,310	Total			
	.,				


Subcatchment OS4p: Site #4 Off Site

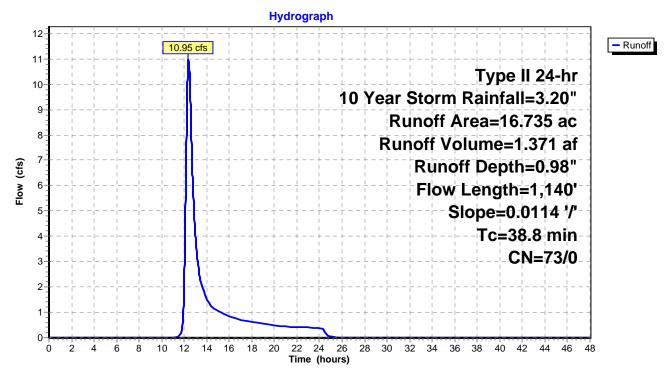
Summary for Subcatchment OS4wb: Off-Site 4 West of Rte 7 w/o Pond

Runoff = 30.24 cfs @ 12.14 hrs, Volume= 2.379 af, Depth= 1.84"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Desc	cription		
*	15.	557 8	6 com	posite CN		
	15.	557 8	6 100.	00% Pervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	14.1	100	0.0312	0.12		Sheet Flow,
						Grass: Dense n= 0.240 P2= 2.30"
	1.9	320	0.0312	2.84		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	4.4	940	0.0137	3.55	7.98	
						Bot.W=3.00' D=0.50' Z= 4.0 & 2.0 '/' Top.W=6.00'
						n= 0.025
	0.1	110	0.0357	13.61	42.74	
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
						n= 0.013
	0.5	160	0.0123	5.10	214.24	Trap/Vee/Rect Channel Flow,
						Bot.W=5.00' D=2.00' Z= 8.0 '/' Top.W=37.00'
						n= 0.035
	0.4	320	0.0402	14.44	45.36	Pipe Channel,
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
						n= 0.013
	0.4	110	0.0826	4.31		Shallow Concentrated Flow,
						Grassed Waterway Kv= 15.0 fps
	21.8	2,060	Total			

Subcatchment OS4wb: Off-Site 4 West of Rte 7 w/o Pond


Summary for Subcatchment OS4_E: Off-Site 4 East of Rte 7

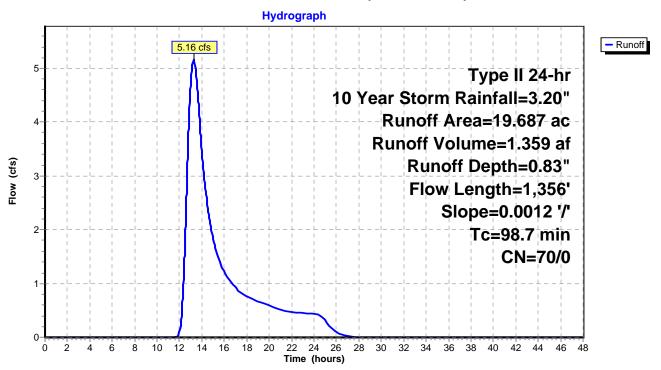
Runoff = 10.95 cfs @ 12.37 hrs, Volume= 1.371 af, Depth= 0.98"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) C	N Dese	cription		
*	16.	735 7	73 com	posite		
16.735 73 100.00% Pervious Area				00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	29.2	150	0.0114	0.09	(/ /	Sheet Flow,
	9.6	990	0.0114	1.72		Grass: Dense n= 0.240 P2= 2.30" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	38.8	1,140	Total			· · ·

Subcatchment OS4_E: Off-Site 4 East of Rte 7

Summary for Subcatchment OS5a: (new Subcat)

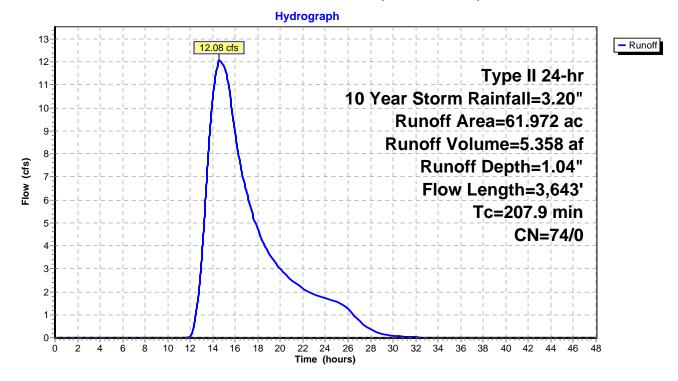

Runoff = 5.16 cfs @ 13.27 hrs, Volume= 1.359 af, Depth= 0.83"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) C	N Desc	cription		
*	19.	687 7	70 weig	hted CN		
	19.	687 7	70 100.00% Per		ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	78.0	100	0.0012	0.02		Sheet Flow,
	9.4	313	0.0012	0.56		Woods: Light underbrush n= 0.400 P2= 2.30" Shallow Concentrated Flow,
	8.3	489	0.0012	0.98	1.95	Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, Bot.W=2.00' D=0.50' Z= 4.0 '/' Top.W=6.00'
	3.0	454	0.0012	2.49	7.84	n= 0.025 Pipe Channel, 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
						n= 0.013

98.7 1,356 Total

Subcatchment OS5a: (new Subcat)



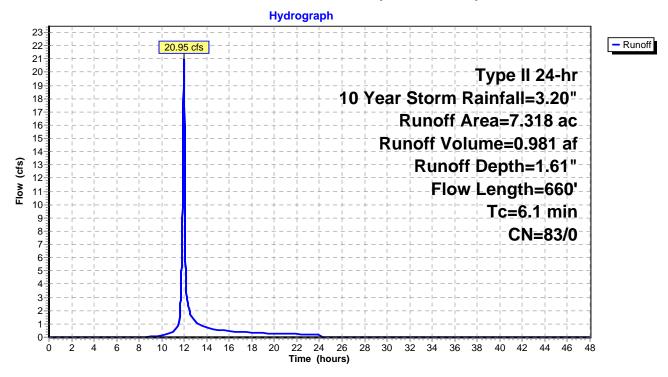
Summary for Subcatchment OS5b: (new Subcat)

Runoff = 12.08 cfs @ 14.56 hrs, Volume= 5.358 af, Depth= 1.04"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Dese	cription		
* 61.	.972 7	'4 weig	hted CN		
61	.972 7	' 4 100.	00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
47.4	100	0.0015	0.04		Sheet Flow,
					Grass: Dense n= 0.240 P2= 2.30"
1.4	50	0.0015	0.58		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
113.4	1,318	0.0015	0.19		Shallow Concentrated Flow,
24.8	670	0.0081	0.45		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woodland Kv= 5.0 fps
10.2	666	0.0009	1.08	3.25	Trap/Vee/Rect Channel Flow,
					Bot.W=0.00' D=1.00' Z= 3.0 '/́' Top.W=6.00' n= 0.025
10.7	839	0.0048	1.31	8.19	Trap/Vee/Rect Channel Flow,
					Bot.W=4.00' D=0.50' Z= 17.0 '/' Top.W=21.00'
					n= 0.035
207.9	3,643	Total			

Subcatchment OS5b: (new Subcat)

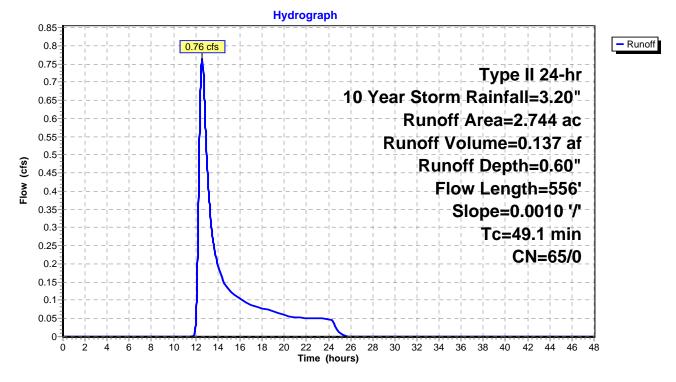

Summary for Subcatchment OS5_6: (new Subcat)

Runoff = 20.95 cfs @ 11.98 hrs, Volume= 0.981 af, Depth= 1.61"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
*	7.	.318 8	33 weig	hted CN		
	7.318 83		33 100.	3 100.00% Pervious Ar		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	1.0	50	0.0130	0.85		Sheet Flow, Smooth surfaces n= 0.011 P2= 2.30"
	2.4	340	0.0130	2.31		Shallow Concentrated Flow,
	2.7	270	0.0110	1.69		Paved Kv= 20.3 fps Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	6.1	660	Total			

Subcatchment OS5_6: (new Subcat)


Summary for Subcatchment OS5_7: (new Subcat)

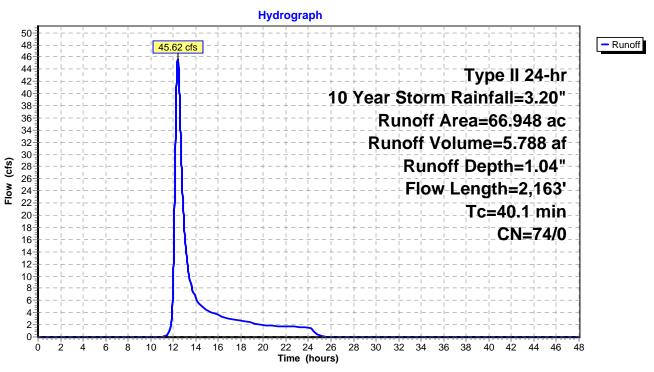
Runoff = 0.76 cfs @ 12.60 hrs, Volume= 0.137 af, Depth= 0.60"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) C	N Desc	cription		
*	2.	744 6	5 weig	hted CN		
	2.	744 6	65 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	34.2	100	0.0010	0.05	(015)	Sheet Flow,
	54.2	100	0.0010	0.05		Range n= 0.130 P2= 2.30"
	14.9	456	0.0010	0.51		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	49.1	556	Total			

Subcatchment OS5_7: (new Subcat)

Summary for Subcatchment OS5_8: (new Subcat)

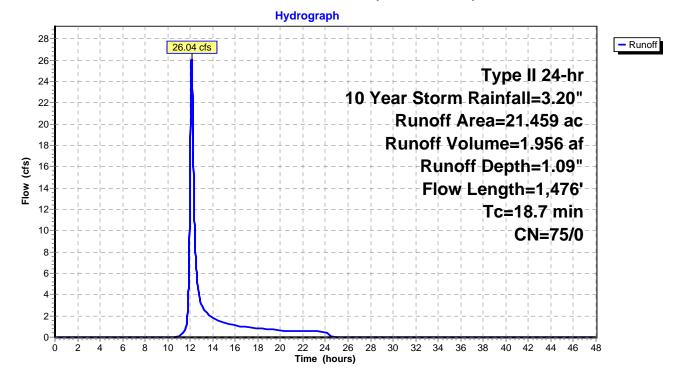

Runoff = 45.62 cfs @ 12.39 hrs, Volume= 5.788 af, Depth= 1.04"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Des	cription		
*	66.	948 7	74 weig	hted CN		
	66.948 74		74 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	1.9	50	0.0025	0.44		Sheet Flow,
	5.7	345	0.0025	1.02		Smooth surfaces n= 0.011 P2= 2.30" Shallow Concentrated Flow, Paved Kv= 20.3 fps
	32.5	1,768	0.0023	0.91	5.67	Trap/Vee/Rect Channel Flow, Bot.W=4.00' D=0.50' Z= 17.0 '/' Top.W=21.00' n= 0.035
_						II- 0.000

40.1 2,163 Total

Subcatchment OS5_8: (new Subcat)

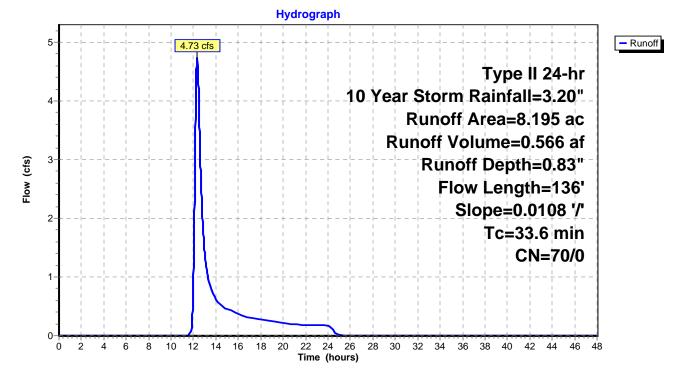

Summary for Subcatchment OS6: (new Subcat)

Runoff = 26.04 cfs @ 12.12 hrs, Volume= 1.956 af, Depth= 1.09"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
*	21.	459 7	75 weig	hted CN		
	21.	459 7	75 100.	.00% Pervious Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	1.1	50	0.0093	0.75		Sheet Flow,
	1.7	488	0.0930	4.91		Smooth surfaces n= 0.011 P2= 2.30" Shallow Concentrated Flow,
	15.9	938	0.0043	0.98		Unpaved Kv= 16.1 fps Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
_	18.7	1,476	Total			

Subcatchment OS6: (new Subcat)


Summary for Subcatchment OS7_1: (new Subcat)

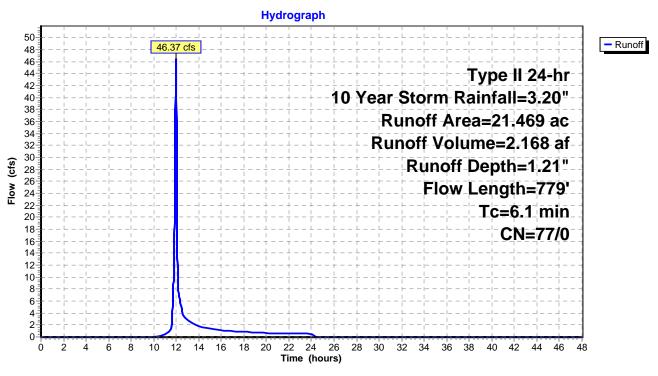
Runoff = 4.73 cfs @ 12.32 hrs, Volume= 0.566 af, Depth= 0.83"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) C	N Dese	cription		
*	8.	195 7	70 weig	hted CN		
8.195 70 100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	32.4	100	0.0108	0.05	(0.0)	Sheet Flow,
	1.2	36	0.0108	0.52		Woods: Light underbrush n= 0.400 P2= 2.30" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	33.6	136	Total			

Subcatchment OS7_1: (new Subcat)

Summary for Subcatchment OS7_2: (new Subcat)

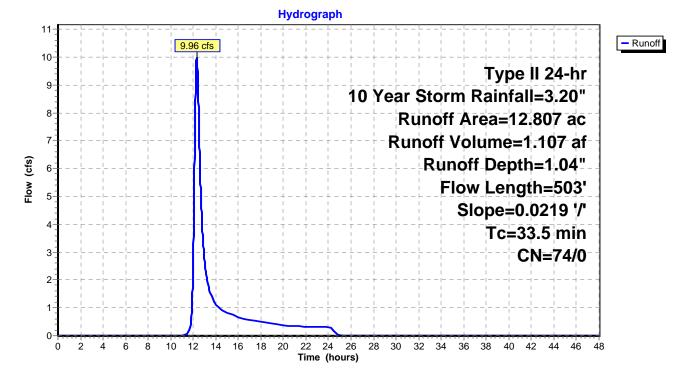

Runoff = 46.37 cfs @ 11.98 hrs, Volume= 2.168 af, Depth= 1.21"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
*	21.	469 7	77 weig	hted CN		
	21.469 77 100.00% Pervious Area				ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	1.1	50	0.0093	0.75		Sheet Flow, Smooth surfaces n= 0.011 P2= 2.30"
	2.3	273	0.0093	1.96		Shallow Concentrated Flow, Paved Kv= 20.3 fps
_	2.7	456	0.0175	2.81	4.22	Trap/Vee/Rect Channel Flow, Bot.W=2.00' D=0.50' Z= 2.0 '/' Top.W=4.00' n= 0.035
	0.4	770	T . (.)			

6.1 779 Total

Subcatchment OS7_2: (new Subcat)


Summary for Subcatchment OS7_4: (new Subcat)

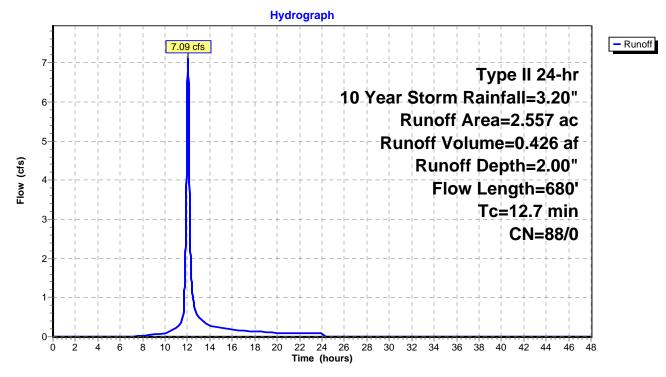
Runoff = 9.96 cfs @ 12.32 hrs, Volume= 1.107 af, Depth= 1.04"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Des	cription		
*	12.	807 7	74 weig	hted CN		
12.807 74 100.00% Pervious Area				00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	24.4	100	0.0219	0.07		Sheet Flow,
	9.1	403	0.0219	0.74		Woods: Light underbrush n= 0.400 P2= 2.30" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	33.5	503	Total			

Subcatchment OS7_4: (new Subcat)

Summary for Subcatchment OS8a: (new Subcat)


Runoff = 7.09 cfs @ 12.04 hrs, Volume= 0.426 af, Depth= 2.00"

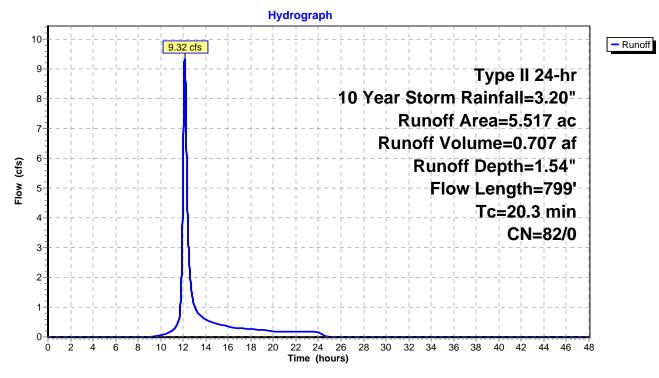
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) C	N Dese	cription		
*	2.	557 8	38 weig	hted CN		
	2.557 88 100.00% Pe		00% Pervi	ous Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	8.1	60	0.1228	0.12		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.30"
	2.3	290	0.0103	2.06		Shallow Concentrated Flow, Paved Kv= 20.3 fps
	0.6	90	0.1319	2.54		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
	1.7	240	0.0243	2.34		Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
	107	600	Total			

12.7 680 Total

Subcatchment OS8a: (new Subcat)

Summary for Subcatchment OS8b: (new Subcat)


Runoff = 9.32 cfs @ 12.13 hrs, Volume= 0.707 af, Depth= 1.54"

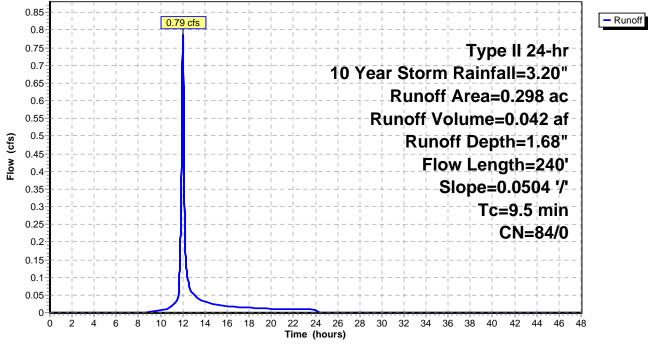
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area (ac) CN		N Dese	cription		
*	5.	517 8	82 weighted CN			
	5.517 82 100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	10.0	100	0.0032	0.17		Sheet Flow, roadside channel
	9.5	518	0.0032	0.91		Fallow n= 0.050 P2= 2.30" Shallow Concentrated Flow, roadside channel Unpaved Kv= 16.1 fps
	0.8	181	0.0055	3.86	17.89	Pipe Channel, CMP_Arch_1/2 35x24 35.0" x 24.0", R=17.9"/55.1" Pipe Arch Area= 4.6 sf Perim= 7.9' n= 0.020 Corrugated PE, corrugated interior
	20.3	799	Total			

r=

Subcatchment OS8b: (new Subcat)

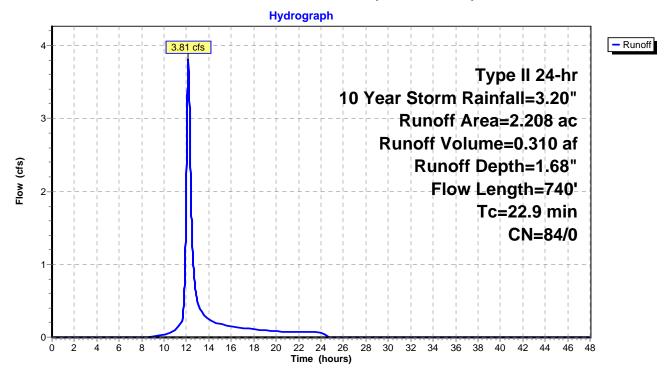
Summary for Subcatchment OS8c: (new Subcat)


Runoff = 0.79 cfs @ 12.01 hrs, Volume= 0.042 af, Depth= 1.68"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Des	cription		
*	0.	.298 8	34 weig	hted CN		
	0.298 84 100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	8.0	100	0.0504	0.21		Sheet Flow,
	1.5	140	0.0504	1.57		Grass: Short n= 0.150 P2= 2.30" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
_	9.5	240	Total			

Subcatchment OS8c: (new Subcat)

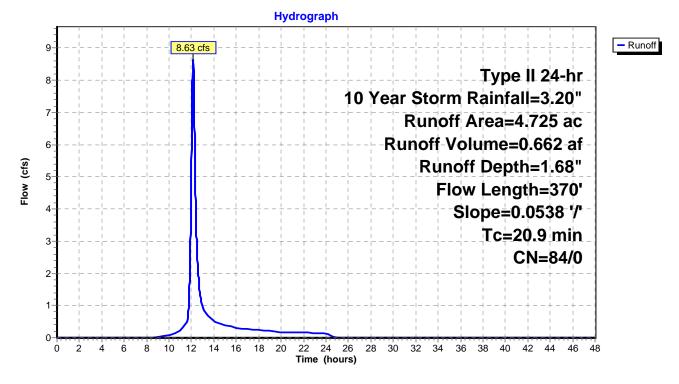

Summary for Subcatchment OS8d: (new Subcat)

Runoff = 3.81 cfs @ 12.16 hrs, Volume= 0.310 af, Depth= 1.68"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
*	2.	.208 8	34 weig	hted CN		
	2.208 84 100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	14.8	100	0.0766	0.11		Sheet Flow,
	2.8	240	0.0796	1.41		Woods: Light underbrush n= 0.400 P2= 2.30" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	5.3	400	0.0327	1.27		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
	22.9	740	Total			

Subcatchment OS8d: (new Subcat)


Summary for Subcatchment OS8e: OS8e

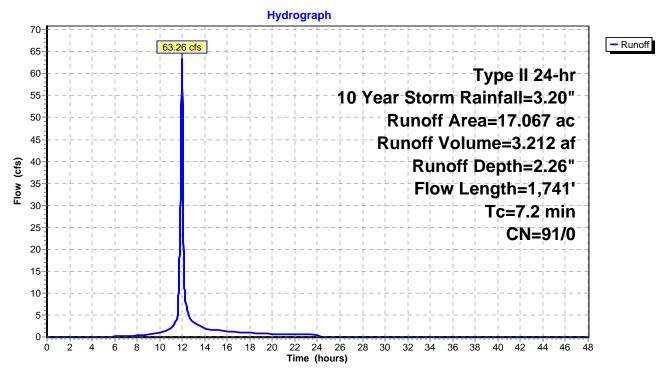
Runoff = 8.63 cfs @ 12.14 hrs, Volume= 0.662 af, Depth= 1.68"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
*	4.	725 8	34 weig	hted CN		
	4.725 84 100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	17.0	100	0.0538	0.10		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.30"
	3.9	270	0.0538	1.16		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
_	20.9	370	Total			

Subcatchment OS8e: OS8e

Summary for Subcatchment OS8_5: (new Subcat)


Runoff = 63.26 cfs @ 11.98 hrs, Volume= 3.212 af, Depth= 2.26"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
*	17.	067 9	91 weig	hted CN		
	17.	067 9	91 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	0.6	50	0.0398	1.34		Sheet Flow, Smooth surfaces n= 0.011 P2= 2.30"
	1.8	427	0.0398	4.05		Shallow Concentrated Flow, Paved Kv= 20.3 fps
	4.8	1,264	0.0498	4.41	3.03	Trap/Vee/Rect Channel Flow, Bot.W=2.00' D=0.25' Z= 3.0 '/' Top.W=3.50' n= 0.025
			-			

7.2 1,741 Total

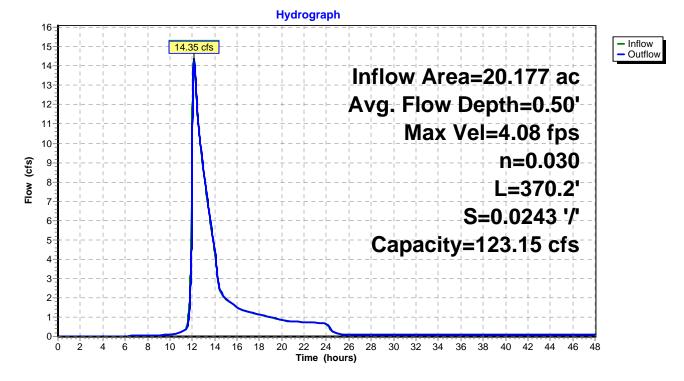
Subcatchment OS8_5: (new Subcat)

Summary for Reach GC4: Grass Channel 4

 Inflow Area =
 20.177 ac, 2.42% Impervious, Inflow Depth > 1.67" for 10 Year Storm event

 Inflow =
 14.38 cfs @
 12.16 hrs, Volume=
 2.810 af

 Outflow =
 14.35 cfs @
 12.18 hrs, Volume=
 2.809 af, Atten= 0%, Lag= 1.1 min

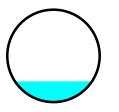

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.08 fps, Min. Travel Time= 1.5 min Avg. Velocity = 1.03 fps, Avg. Travel Time= 6.0 min

Peak Storage= 1,300 cf @ 12.18 hrs Average Depth at Peak Storage= 0.50' Bank-Full Depth= 1.50' Flow Area= 16.5 sf, Capacity= 123.15 cfs

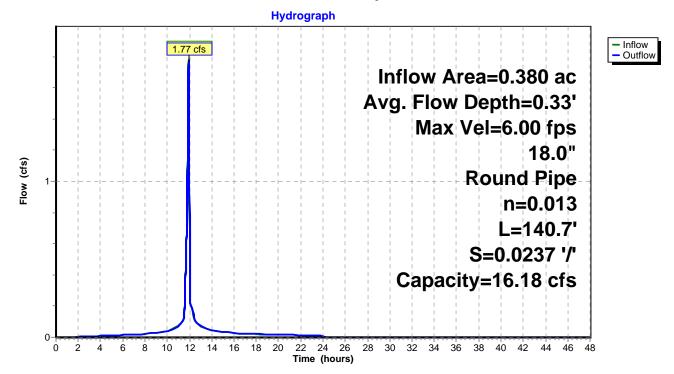
5.00' x 1.50' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 4.0 '/' Top Width= 17.00' Length= 370.2' Slope= 0.0243 '/' Inlet Invert= 342.69', Outlet Invert= 333.69'

‡

Reach GC4: Grass Channel 4


Summary for Reach P24: Pipe 24

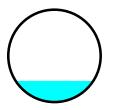
Inflow Area =0.380 ac, 87.37% Impervious, Inflow Depth =2.69" for 10 Year Storm eventInflow =1.78 cfs @11.92 hrs, Volume =0.085 afOutflow =1.77 cfs @11.93 hrs, Volume =0.085 af, Atten = 1%, Lag = 0.3 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 6.00 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.67 fps, Avg. Travel Time= 1.4 min

Peak Storage= 41 cf @ 11.93 hrs Average Depth at Peak Storage= 0.33' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 16.18 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 140.7' Slope= 0.0237 '/' Inlet Invert= 332.99', Outlet Invert= 329.65'

Reach P24: Pipe 24


Summary for Reach P34: Pipe 34

Inflow Area =0.203 ac, 57.14% Impervious, Inflow Depth =2.30" for 10 Year Storm eventInflow =0.84 cfs @11.93 hrs, Volume =0.039 afOutflow =0.84 cfs @11.93 hrs, Volume =0.039 af, Atten = 0%, Lag = 0.1 min

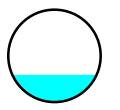
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.76 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.75 fps, Avg. Travel Time= 0.8 min

Peak Storage= 11 cf @ 11.93 hrs Average Depth at Peak Storage= 0.34' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 7.33 cfs

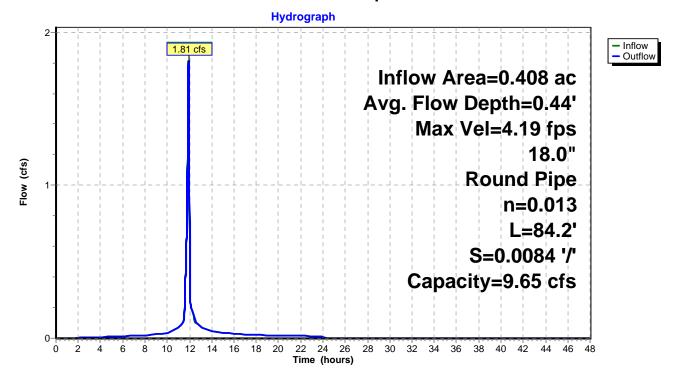
18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 34.9' Slope= 0.0049 '/' Inlet Invert= 343.87', Outlet Invert= 343.70'

Hydrograph 0.9 - Inflow 0.84 cfs 0.85 Outflow 0.8 Inflow Area=0.203 ac 0.75 Avg. Flow Depth=0.34' 0.7 0.65 Max Vel=2.76 fps 0.6 18.0" 0.55 (cfs) 0.5 **Round Pipe** Flow 0.45 n=0.013 04 0.35 L=34.9' 0.3 S=0.0049 '/' 0.25 0.2 Capacity=7.33 cfs 0.15 0.1 0.05 0 Ò Ż 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 6 Time (hours)

Reach P34: Pipe 34


Summary for Reach P35: Pipe 35

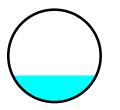
Inflow Area =0.408 ac, 71.81% Impervious, Inflow Depth =2.53" for 10 Year Storm eventInflow =1.82 cfs @11.91 hrs, Volume=0.086 afOutflow =1.81 cfs @11.92 hrs, Volume=0.086 af, Atten= 0%, Lag= 0.3 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.19 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.15 fps, Avg. Travel Time= 1.2 min

Peak Storage= 36 cf @ 11.92 hrs Average Depth at Peak Storage= 0.44' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 9.65 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 84.2' Slope= 0.0084 '/' Inlet Invert= 343.59', Outlet Invert= 342.88'

Reach P35: Pipe 35


Summary for Reach P36: Pipe 36

Inflow Area =0.604 ac, 80.79% Impervious, Inflow Depth =2.67" for 10 Year Storm eventInflow =2.82 cfs @11.91 hrs, Volume =0.134 afOutflow =2.82 cfs @11.91 hrs, Volume =0.134 af, Atten = 0%, Lag = 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.78 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.04 fps, Avg. Travel Time= 0.3 min

Peak Storage= 12 cf @ 11.91 hrs Average Depth at Peak Storage= 0.57' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 15.70 cfs

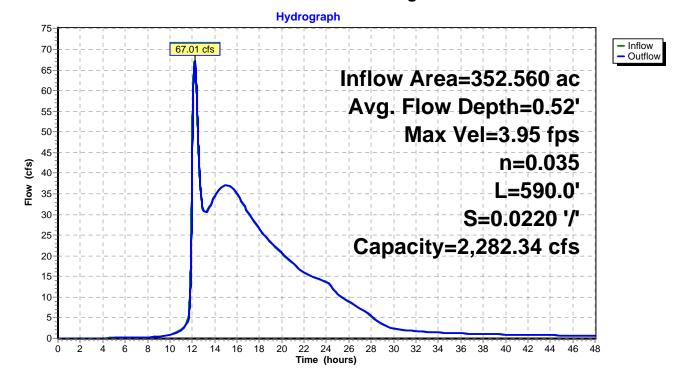
24.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 16.6' Slope= 0.0048 '/' Inlet Invert= 342.77', Outlet Invert= 342.69'

Hydrograph 3 Inflow 2.82 cfs Outflow Inflow Area=0.604 ac Avg. Flow Depth=0.57' Max Vel=3.78 fps 2 24.0" Flow (cfs) **Round Pipe** n=0.013 L=16.6' 1 S=0.0048 '/' Capacity=15.70 cfs 0ò Ż 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)

Reach P36: Pipe 36

Summary for Reach R1: Reach through OS 1

Inflow Area =352.560 ac,2.71% Impervious, Inflow Depth >1.13" for 10 Year Storm eventInflow =67.23 cfs12.23 hrs, Volume=33.177 afOutflow =67.01 cfs12.25 hrs, Volume=33.165 af, Atten= 0%, Lag= 1.4 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.95 fps, Min. Travel Time= 2.5 min Avg. Velocity = 1.42 fps, Avg. Travel Time= 6.9 min

Peak Storage= 10,021 cf @ 12.25 hrs Average Depth at Peak Storage= 0.52' Bank-Full Depth= 4.00' Flow Area= 172.0 sf, Capacity= 2,282.34 cfs

31.00' x 4.00' deep channel, n= 0.035 Side Slope Z-value= 3.0 '/' Top Width= 55.00' Length= 590.0' Slope= 0.0220 '/' Inlet Invert= 266.00', Outlet Invert= 253.00'

Reach R1: Reach through OS 1

337.278 ac.

Inflow Area =

Summary for Reach R2: Reach through OS2

2.67% Impervious, Inflow Depth > 1.16" for 10 Year Storm event

Inflow 66.13 cfs @ 12.20 hrs. Volume= 32,720 af = 66.01 cfs @ 12.22 hrs, Volume= Outflow 32.714 af, Atten= 0%, Lag= 1.0 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 6.76 fps, Min. Travel Time= 1.4 min Avg. Velocity = 2.69 fps, Avg. Travel Time= 3.6 min Peak Storage= 5,665 cf @ 12.22 hrs Average Depth at Peak Storage= 0.81' Bank-Full Depth= 4.00' Flow Area= 112.0 sf, Capacity= 1,850.26 cfs 8.00' x 4.00' deep channel, n= 0.035 Side Slope Z-value= 5.0 '/' Top Width= 48.00' Length= 580.0' Slope= 0.0500 '/' Inlet Invert= 295.00', Outlet Invert= 266.00' ‡ Reach R2: Reach through OS2 Hydrograph 70- Inflow 66.01 cfs Outflow 65 Inflow Area=337.278 ac 60 Avg. Flow Depth=0.81' 55 50 Max Vel=6.76 fps 45 n=0.035 (cfs) 40-L=580.0' Flow 35 30 S=0.0500 '/' 25 Capacity=1,850.26 cfs 20 15 10 5 0 Ż 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 46 48 0 6 8 44 Time (hours)

Summary for Reach R3: Reach through OS3

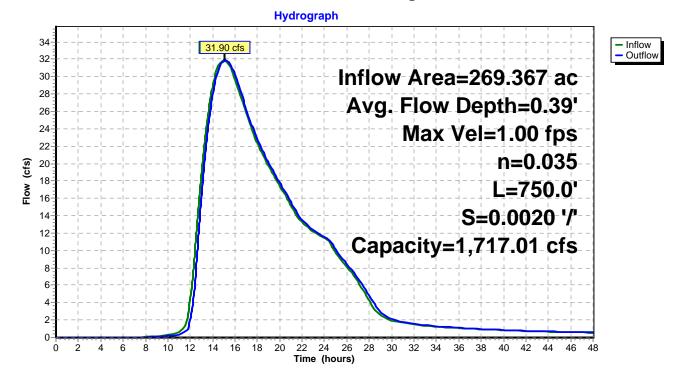
Inflow Area = 2.65% Impervious, Inflow Depth > 1.17" for 10 Year Storm event 315.323 ac, Inflow 55.27 cfs @ 11.99 hrs. Volume= 30.759 af = 48.46 cfs @ 12.07 hrs, Volume= Outflow 30.732 af, Atten= 12%, Lag= 4.9 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.48 fps, Min. Travel Time= 6.5 min Avg. Velocity = 0.61 fps, Avg. Travel Time= 15.8 min Peak Storage= 18,927 cf @ 12.07 hrs Average Depth at Peak Storage= 0.47' Bank-Full Depth= 4.00' Flow Area= 560.0 sf, Capacity= 2,787.67 cfs 60.00' x 4.00' deep channel, n= 0.040 Winding stream, pools & shoals Side Slope Z-value= 20.0 '/' Top Width= 220.00' Length= 580.0' Slope= 0.0052 '/' Inlet Invert= 298.00', Outlet Invert= 295.00' ‡ Reach R3: Reach through OS3 Hydrograph 60- Inflow 55.27 cfs Outflow 55 Inflow Area=315.323 ac 48.46 cfs 50-Avg. Flow Depth=0.47' 45-Max Vel=1.48 fps 40 n=0.040 35 (cfs) L=580.0' Flow 30 25 S=0.0052 '/' 20 Capacity=2,787.67 cfs 15 10-5-0 2 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 48 0 6 8 44 46 Time (hours)

Summary for Reach R4: Reach through OS4

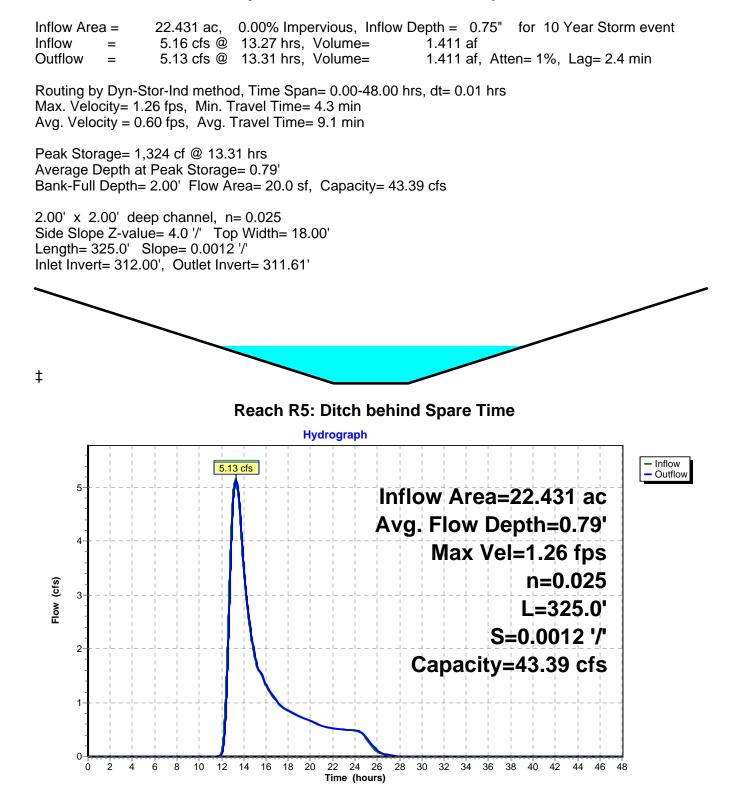
 Inflow Area =
 269.367 ac, 2.03% Impervious, Inflow Depth > 1.11" for 10 Year Storm event

 Inflow =
 31.94 cfs @
 14.98 hrs, Volume=
 24.907 af

 Outflow =
 31.90 cfs @
 15.12 hrs, Volume=
 24.864 af, Atten= 0%, Lag= 8.3 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.00 fps, Min. Travel Time= 12.6 min Avg. Velocity = 0.43 fps, Avg. Travel Time= 28.9 min

Peak Storage= 24,032 cf @ 15.12 hrs Average Depth at Peak Storage= 0.39' Bank-Full Depth= 4.00' Flow Area= 412.0 sf, Capacity= 1,717.01 cfs

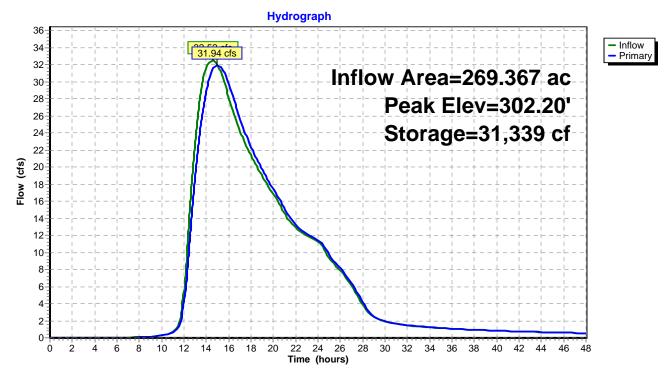

80.00' x 4.00' deep channel, n= 0.035 Side Slope Z-value= 5.0 6.5 '/' Top Width= 126.00' Length= 750.0' Slope= 0.0020 '/' Inlet Invert= 299.50', Outlet Invert= 298.00'

Reach R4: Reach through OS4

Summary for Reach R5: Ditch behind Spare Time

Summary for Pond 1P: Hercules Drive / S/N 005

Inflow Area =	269.367 ac,	2.03% Impervious, Inflow I	Depth > 1.11" for 10 Year Storm event
Inflow =	32.52 cfs @	14.56 hrs, Volume=	24.915 af
Outflow =	31.94 cfs @	14.98 hrs, Volume=	24.907 af, Atten= 2%, Lag= 25.5 min
Primary =	31.94 cfs @	14.98 hrs, Volume=	24.907 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 300.01' Surf.Area= 698 sf Storage= 262 cf Peak Elev= 302.20' @ 14.98 hrs Surf.Area= 37,683 sf Storage= 31,339 cf (31,077 cf above start)

Plug-Flow detention time= 12.8 min calculated for 24.896 af (100% of inflow) Center-of-Mass det. time= 11.7 min (1,172.2 - 1,160.5)

Volume	Inv	ert Avai	I.Storage	Storage Descripti	on	
#1	299.0	00' 2	89,977 cf	Custom Stage D	ata (Irregular) Liste	ed below (Recalc)
Elevatio		Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>
299.0	00	12	38.0	0	0	12
300.0	00	664	524.0	255	255	21,749
301.0	00	8,419	934.0	3,816	4,071	69,324
302.0	00	34,889	1,232.0	20,149	24,220	120,701
303.0	00	50,252	1,311.0	42,338	66,557	136,738
304.0	00	63,333	1,347.0	56,667	123,224	144,468
306.0	00	105,180	1,900.0	166,753	289,977	287,393
Device	Routing	In	vert Outle	et Devices		
#1	Primary	300	.01' 36.0	" Round Culvert		
	,,		L= 7	6.0' CMP, project		
						= 0.0067 '/' Cc= 0.900
				.025, Flow Area=	7.07 sf	
#2	Primary	300		" Round Culvert		
				6.0' CMP, project		
				/ Outlet Invert= 29		= -0.0046 '/' Cc= 0.900
			n= 0	.025, Flow Area=	7.07 sf	
Drimer	OutFlow	Max 21.0	1 of a @ 1 4	00 hrs LIM/ 200 0		Dynamia Tailwatar)
_ ·				.98 hrs HW=302.2 @ 4.23 fps)	U IVV=299.89 (Dynamic Tailwater)

Jivert (Barrel Controls 16.73 cts @ 4.23 fps)

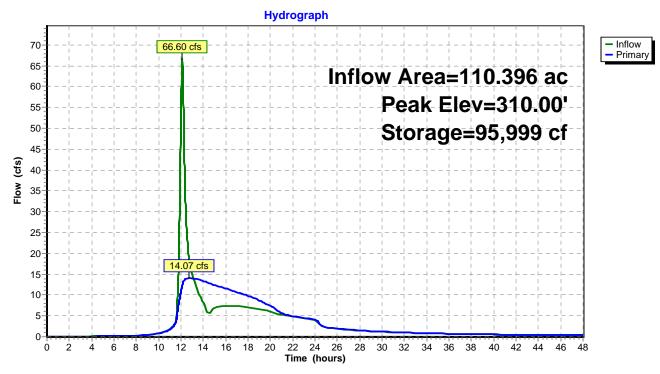
-2=Culvert (Barrel Controls 15.21 cfs @ 3.31 fps)

Pond 1P: Hercules Drive / S/N 005

Summary for Pond 2P: Lower Mtn View Dr

Inflow Area =	110.396 ac,	4.77% Impervious, Inflo	w Depth > 1.28" f	for 10 Year Storm event
Inflow =	66.60 cfs @	12.11 hrs, Volume=	11.739 af	
Outflow =	14.07 cfs @	12.73 hrs, Volume=	11.736 af, Atter	n= 79%, Lag= 36.9 min
Primary =	14.07 cfs @	12.73 hrs, Volume=	11.736 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 307.54' Surf.Area= 1,916 sf Storage= 898 cf Peak Elev= 310.00' @ 13.10 hrs Surf.Area= 98,228 sf Storage= 95,999 cf (95,100 cf above start)

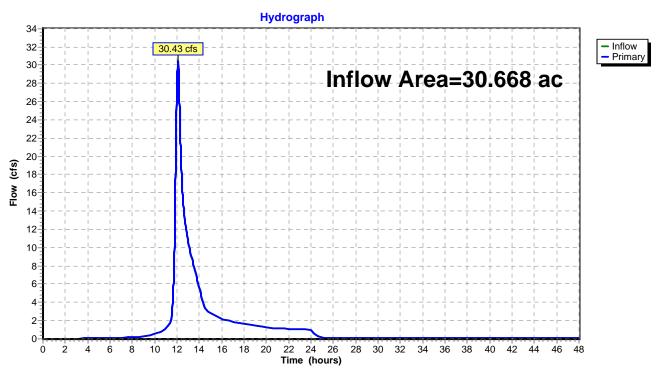

Plug-Flow detention time= 52.3 min calculated for 11.715 af (100% of inflow) Center-of-Mass det. time= 47.0 min (1,131.2 - 1,084.2)

Volume	Inv	ert Ava	il.Storage	Storage Descript	on				
#1	305.8	81' 2,6	97,851 cf	Custom Stage D	ata (Irregular)List	ted below (Recalc)			
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
305.8		<u>(34-11)</u> 0	20.0						
305.0		86	20.0 86.0	0 5	0 5	0 557			
307.0		523	295.0	274	279	6,896			
308.0		3,791	669.0	1,907	2,187	35,591			
309.0		48,653	2,441.0	22,008	24,195	474,139			
310.0	00	98,391	2,208.0	72,077	96,272	560,370			
312.0	00	463,287	3,621.0	516,787	613,059	1,215,826			
316.	50	463,287	3,621.0	2,084,792	2,697,851	1,232,120			
Device	Routing	In	vert Outl	et Devices					
#1	Primary	305	5.81' 24.0	" Round Culvert					
			L= 1	02.0' CMP, proje	cting, no headwall	, Ke= 0.900			
			Inlet	/ Outlet Invert= 30	5.81'/304.74' S	= 0.0105 '/' Cc= 0.900			
				0.025 Corrugated r					
#2	Primary	316				sted Rectangular Weir			
				d (feet) 0.20 0.40					
			Coe	t. (English) 2.68 2	2.70 2.70 2.64 2.	.63 2.64 2.64 2.63			
Primary	Primary OutFlow Max-14.06 cfs @ 12.73 brs. HW -309.97' TW-307.92' (Dynamic Tailwater)								

Primary OutFlow Max=14.06 cfs @ 12.73 hrs HW=309.97' TW=307.92' (Dynamic Tailwater) 1=Culvert (Outlet Controls 14.06 cfs @ 4.48 fps) 2 Bread Croated Baston gular Wair (Controls 0.00 cfa)

2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC



Pond 2P: Lower Mtn View Dr

Summary for Pond 008: POI 008

Inflow Are	a =	30.668 ac,	7.96% Impervious, Inflow De	epth > 1.77" for 10 Year Storr	n event
Inflow	=	30.43 cfs @	12.09 hrs, Volume=	4.521 af	
Primary	=	30.43 cfs @	12.09 hrs, Volume=	4.521 af, Atten= 0%, Lag= 0.0	min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Pond 008: POI 008

Summary for Pond 48: Pipe 48

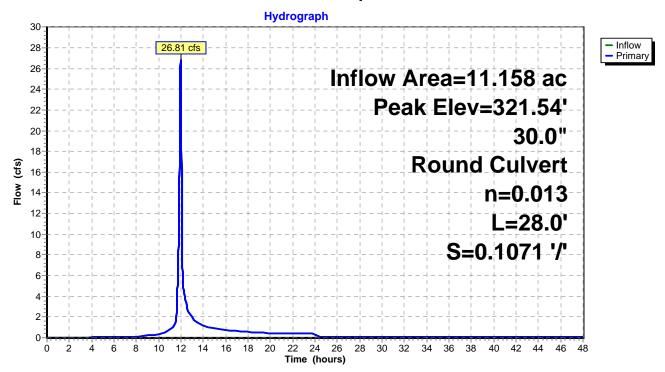
Inflow Area =11.158 ac, 14.99% Impervious, Inflow Depth > 1.87" for 10 Year Storm eventInflow =26.81 cfs @ 11.97 hrs, Volume=1.739 afOutflow =26.81 cfs @ 11.97 hrs, Volume=1.739 af, Atten= 0%, Lag= 0.0 minPrimary =26.81 cfs @ 11.97 hrs, Volume=1.739 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 325.29' @ 11.97 hrs Flood Elev= 326.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	322.75'	30.0" Round Culvert L= 75.0' Ke= 0.500 Inlet / Outlet Invert= 322.75' / 320.05' S= 0.0360 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf

Primary OutFlow Max=26.78 cfs @ 11.97 hrs HW=325.28' TW=321.53' (Dynamic Tailwater) ↓ 1=Culvert (Inlet Controls 26.78 cfs @ 5.46 fps)

Pond 48: Pipe 48


Summary for Pond 49: Pipe 49

Inflow Area =11.158 ac, 14.99% Impervious, Inflow Depth > 1.87" for 10 Year Storm eventInflow =26.81 cfs @ 11.97 hrs, Volume=1.739 afOutflow =26.81 cfs @ 11.97 hrs, Volume=1.739 af, Atten= 0%, Lag= 0.0 minPrimary =26.81 cfs @ 11.97 hrs, Volume=1.739 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 321.54' @ 11.97 hrs Flood Elev= 324.50'

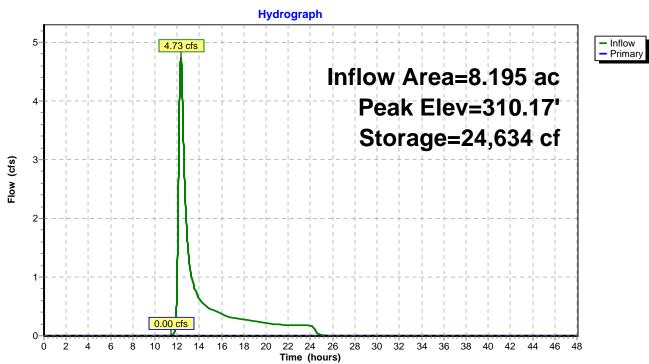
Device	Routing	Invert	Outlet Devices
#1	Primary	319.00'	30.0" Round Culvert L= 28.0' Ke= 0.500 Inlet / Outlet Invert= 319.00' / 316.00' S= 0.1071 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf

Primary OutFlow Max=26.78 cfs @ 11.97 hrs HW=321.53' TW=0.00' (Dynamic Tailwater) ↓ 1=Culvert (Inlet Controls 26.78 cfs @ 5.46 fps)

Pond 49: Pipe 49

Summary for Pond P1: Behind Health Lab

Inflow Area =	8.195 ac,	0.00% Impervious, Inf	flow Depth = 0.83" for 10 Year Storm event	
Inflow =	4.73 cfs @	12.32 hrs, Volume=	0.566 af	
Outflow =	0.00 cfs @	11.47 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min	
Primary =	0.00 cfs @	11.47 hrs, Volume=	0.000 af	


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 310.17' @ 25.92 hrs Surf.Area= 141,660 sf Storage= 24,634 cf

Plug-Flow detention time= 3.3 min calculated for 0.000 af (0% of inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

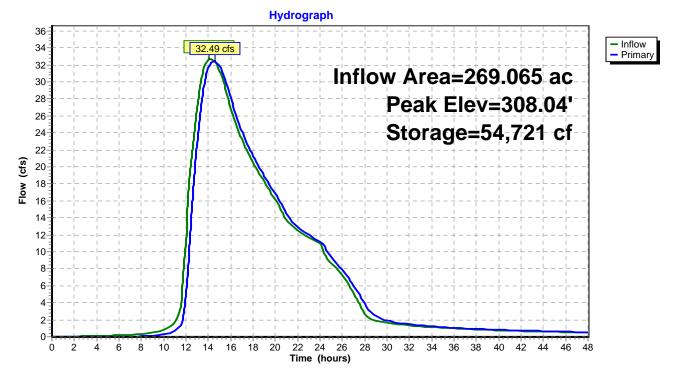
Volume	Inv	ert Avai	il.Storage	Storage Descript	ion		
#1	310.0	00' 3	72,741 cf	Custom Stage D)ata (Irregular) List	ted below (Recalc)
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
310.0 312.5		140,477 157,885	1,706.0 1,775.0	0 372,741	0 372,741	140,477 160,080	
Device	Routing	In	vert Outl	et Devices			
#1	Primary	310	Hea	tom Weir/Orifice, d (feet) 0.00 1.00 th (feet) 3.00 9.00)	8)	

Primary OutFlow Max=0.00 cfs @ 11.47 hrs HW=310.00' TW=310.03' (Dynamic Tailwater)

HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Pond P1: Behind Health Lab

Summary for Pond P10: Reach between LMV and Hercules


Inflow Area	=	269.065 ac,	1.96% Impervious, Inflow [Depth > 1.12" for 10 Year Storm event
Inflow	=	32.69 cfs @	14.10 hrs, Volume=	25.021 af
Outflow	=	32.49 cfs @	14.56 hrs, Volume=	24.855 af, Atten= 1%, Lag= 27.4 min
Primary	=	32.49 cfs @	14.56 hrs, Volume=	24.855 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 307.54' Surf.Area= 88,869 sf Storage= 3,516 cf Peak Elev= 308.04' @ 14.56 hrs Surf.Area= 115,570 sf Storage= 54,721 cf (51,205 cf above start)

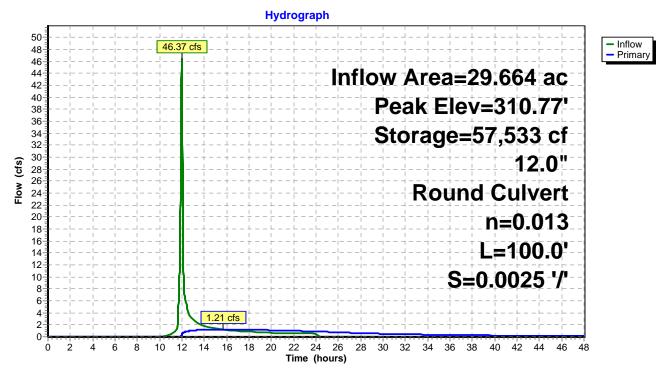
Plug-Flow detention time= 48.9 min calculated for 24.769 af (99% of inflow) Center-of-Mass det. time= 31.4 min (1,161.4 - 1,130.0)

Volume	Inv	ert Ava	il.Storage	Storage Descripti	on		
#1	307.	50' 1	14,777 cf	Storage 1066' DS	6 of LMV (Irregula	r) Listed below (Red	calc)
Elevatio (fee 307.9 308.0 308.9	et) 50 00	Surf.Area (sq-ft) 86,932 112,678 148,186	Perim. (feet) 3,099.0 3,270.0 3,641.0	Inc.Store (cubic-feet) 0 49,764 65,014	Cum.Store (cubic-feet) 0 49,764 114,777	Wet.Area (sq-ft) 86,932 173,614 377,657	
Device	Routing	In	vert Outl	et Devices			
#1	Primary	307		mmetrical Weir, C et (feet) -143.00 -		00 21 00 11 00	
				0 38.00 60.00 88		.00 -21.00 -11.00	0.00
				r. (feet) 310.00 30		34 308.76 307.71	307.54
			307.	.67 308.66 309.24	. 310.00		

Primary OutFlow Max=32.49 cfs @ 14.56 hrs HW=308.04' TW=302.17' (Dynamic Tailwater)

Pond P10: Reach between LMV and Hercules

Summary for Pond P2/3: Upstream of Park Drive


Inflow Area =	29.664 ac,	0.00% Impervious, Inflow I	Depth = 0.88" for 10 Year Storm event
Inflow =	46.37 cfs @	11.98 hrs, Volume=	2.168 af
Outflow =	1.21 cfs @	15.63 hrs, Volume=	1.790 af, Atten= 97%, Lag= 219.0 min
Primary =	1.21 cfs @	15.63 hrs, Volume=	1.790 af

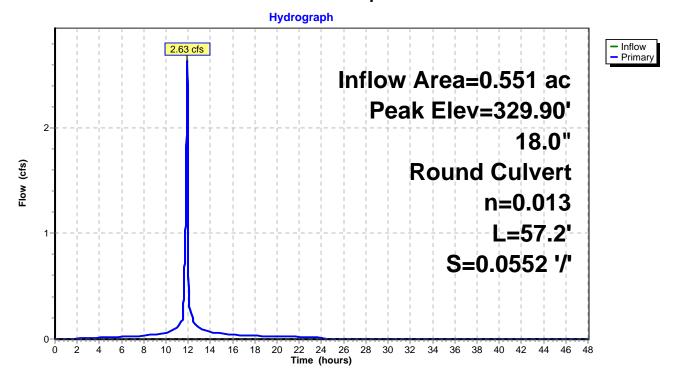
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 310.77' @ 15.63 hrs Surf.Area= 84,106 sf Storage= 57,533 cf

Plug-Flow detention time= 647.0 min calculated for 1.790 af (83% of inflow) Center-of-Mass det. time= 568.5 min (1,417.6 - 849.1)

Volume	Invert	Avail	.Storage	Storage Description	n		
#1	310.00'	00' 128,517 cf		Pond 2 (Irregular) Listed below (Recalc)			
#2	310.00'	3	33,492 cf	Pond 3 (Irregular)	Listed below (Re	calc)	
		2′	12,008 cf	Total Available Sto	rage		
Elevation (feet)	Su	ırf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
310.00		39,781	975.0	0	0	39,781	
312.25		76,433	1,197.0	128,517	128,517	78,230	
Elevation (feet)	Su	ırf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
310.00		25,767	687.0	0	0	25,767	
312.25		49,751	855.0	83,492	83,492	46,455	
Device R	outing	١n	vert Outle	et Devices			
#1 Pi	rimary	310.	L= 1 Inlet	" Round Culvert 00.0' RCP, sq.cut e / Outlet Invert= 310 .013, Flow Area= 0	.00' / 309.75' S=	e= 0.500 0.0025 '/' Cc= 0.90)0

Primary OutFlow Max=1.21 cfs @ 15.63 hrs HW=310.77' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 1.21 cfs @ 2.57 fps)

Pond P2/3: Upstream of Park Drive


Summary for Pond P25: Pipe 25

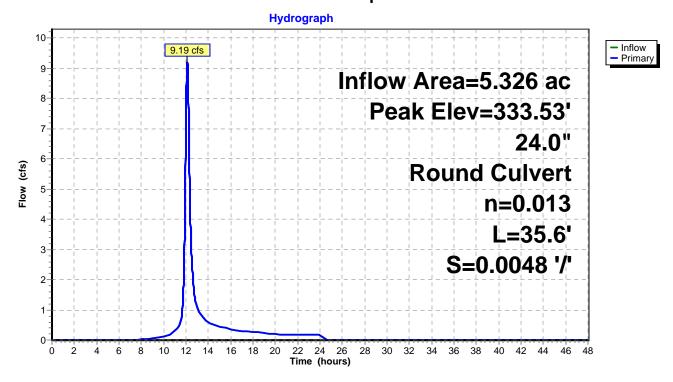
Inflow Area =0.551 ac, 90.20% Impervious, Inflow Depth =2.76" for 10 Year Storm eventInflow =2.63 cfs @11.92 hrs, Volume=0.127 afOutflow =2.63 cfs @11.92 hrs, Volume=0.127 afPrimary =2.63 cfs @11.92 hrs, Volume=0.127 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 329.90' @ 11.92 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	329.15'	18.0" Round Culvert L= 57.2' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= $329.15' / 325.99'$ S= 0.0552 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=2.62 cfs @ 11.92 hrs HW=329.90' TW=327.97' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 2.62 cfs @ 2.95 fps)

Pond P25: Pipe 25


Summary for Pond P26: Pipe 26

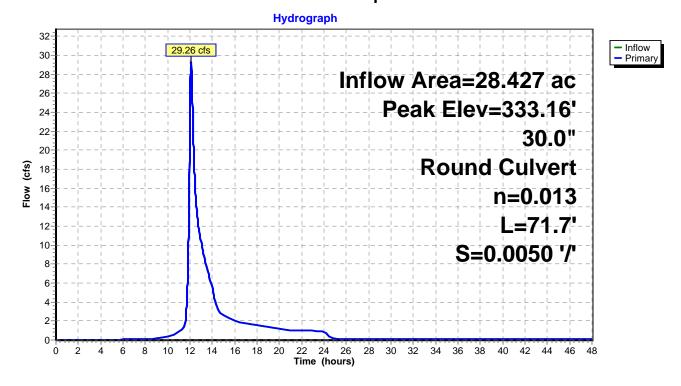
Inflow Area =5.326 ac, 4.56% Impervious, Inflow Depth =1.72" for 10 Year Storm eventInflow =9.19 cfs @12.12 hrs, Volume=0.764 afOutflow =9.19 cfs @12.12 hrs, Volume=0.764 af, Atten= 0%, Lag= 0.0 minPrimary =9.19 cfs @12.12 hrs, Volume=0.764 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 333.53' @ 12.12 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	329.02'	24.0" Round Culvert L= 35.6' Ke= 0.500 Inlet / Outlet Invert= 329.02' / 328.85' S= 0.0048 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=9.35 cfs @ 12.12 hrs HW=333.52' TW=333.14' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 9.35 cfs @ 2.98 fps)

Pond P26: Pipe 26


Summary for Pond P27: Pipe 27

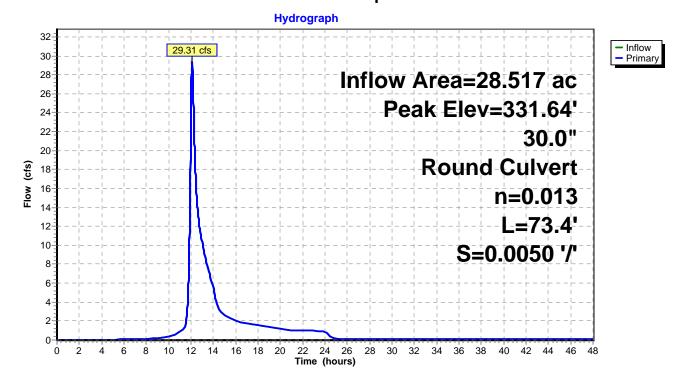
Inflow Area =28.427 ac, 3.86% Impervious, Inflow Depth > 1.73" for 10 Year Storm eventInflow =29.26 cfs @12.10 hrs, Volume=4.090 afOutflow =29.26 cfs @12.10 hrs, Volume=4.090 afPrimary =29.26 cfs @12.10 hrs, Volume=4.090 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 333.16' @ 12.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	328.75'	30.0" Round Culvert L= 71.7' Ke= 0.500 Inlet / Outlet Invert= 328.75' / 328.39' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf

Primary OutFlow Max=28.79 cfs @ 12.10 hrs HW=333.11' TW=331.62' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 28.79 cfs @ 5.87 fps)

Pond P27: Pipe 27


Summary for Pond P28: Pipe 28

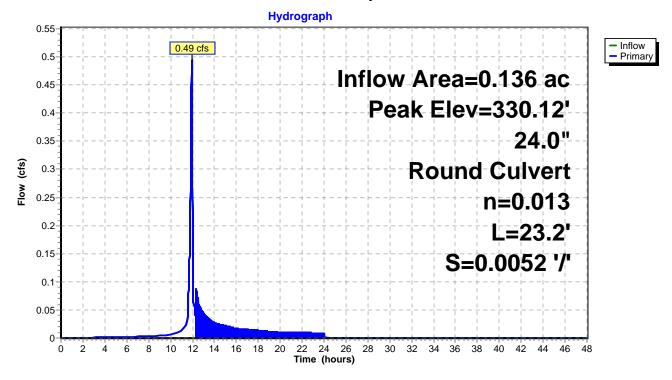
Inflow Area =28.517 ac, 4.15% Impervious, Inflow Depth > 1.73" for 10 Year Storm eventInflow =29.31 cfs @12.10 hrs, Volume=4.111 afOutflow =29.31 cfs @12.10 hrs, Volume=4.111 af, Atten= 0%, Lag= 0.0 minPrimary =29.31 cfs @12.10 hrs, Volume=4.111 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 331.64' @ 12.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	328.29'	30.0" Round Culvert L= 73.4' Ke= 0.500 Inlet / Outlet Invert= 328.29' / 327.92' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf

Primary OutFlow Max=29.06 cfs @ 12.10 hrs HW=331.62' TW=330.11' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 29.06 cfs @ 5.92 fps)

Pond P28: Pipe 28


Summary for Pond P29: Pipe 29

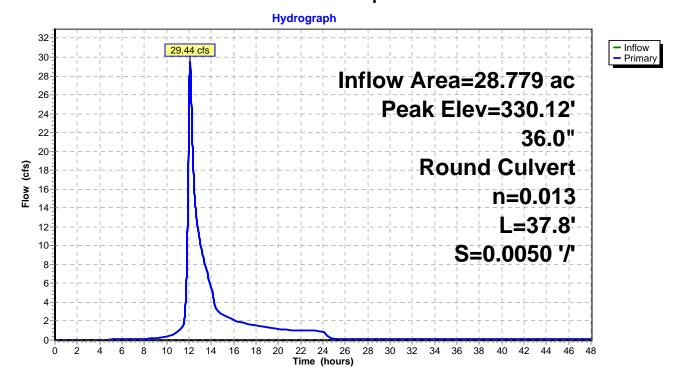
Inflow Area =0.136 ac, 33.09% Impervious, Inflow Depth =1.92" for 10 Year Storm eventInflow =0.49 cfs @11.93 hrs, Volume=0.022 afOutflow =0.49 cfs @11.93 hrs, Volume=0.022 af, Atten= 0%, Lag= 0.0 minPrimary =0.49 cfs @11.93 hrs, Volume=0.022 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 330.12' @ 12.12 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	326.67'	24.0" Round Culvert L= $23.2'$ Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= $326.67'$ / $326.55'$ S= $0.0052'$ /' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=0.00 cfs @ 11.93 hrs HW=328.70' TW=328.78' (Dynamic Tailwater)

Pond P29: Pipe 29


Summary for Pond P30: Pipe 30

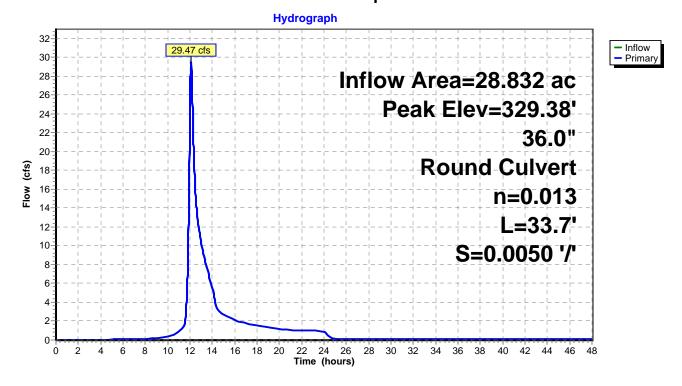
Inflow Area =28.779 ac, 4.58% Impervious, Inflow Depth > 1.73" for 10 Year Storm eventInflow =29.44 cfs @12.10 hrs, Volume=4.159 afOutflow =29.44 cfs @12.10 hrs, Volume=4.159 afPrimary =29.44 cfs @12.10 hrs, Volume=4.159 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 330.12' @ 12.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	326.45'	36.0" Round Culvert L= 37.8' Ke= 0.500 Inlet / Outlet Invert= 326.45' / 326.26' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 7.07 sf

Primary OutFlow Max=29.20 cfs @ 12.10 hrs HW=330.11' TW=329.37' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 29.20 cfs @ 4.13 fps)

Pond P30: Pipe 30


Summary for Pond P31: Pipe 31

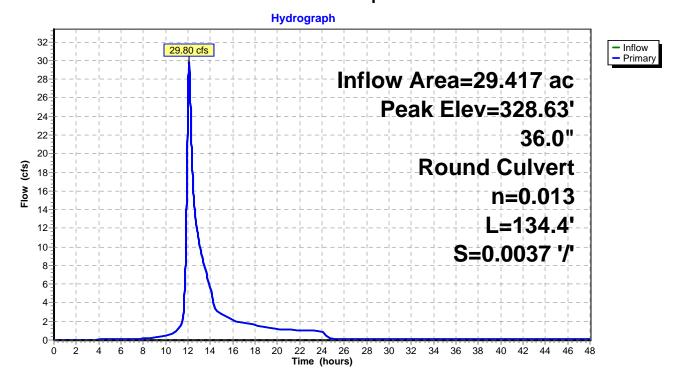
Inflow Area =28.832 ac, 4.75% Impervious, Inflow Depth > 1.74" for 10 Year Storm eventInflow =29.47 cfs @12.10 hrs, Volume=4.173 afOutflow =29.47 cfs @12.10 hrs, Volume=4.173 af, Atten= 0%, Lag= 0.0 minPrimary =29.47 cfs @12.10 hrs, Volume=4.173 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 329.38' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	326.16'	36.0" Round Culvert L= 33.7' Ke= 0.500 Inlet / Outlet Invert= 326.16' / 325.99' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 7.07 sf

Primary OutFlow Max=29.40 cfs @ 12.10 hrs HW=329.37' TW=328.63' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 29.40 cfs @ 4.16 fps)

Pond P31: Pipe 31


Summary for Pond P32: Pipe 32

Inflow Area =29.417 ac,6.45% Impervious, Inflow Depth >1.76" for 10 Year Storm eventInflow =29.80 cfs @12.10 hrs, Volume=4.307 afOutflow =29.80 cfs @12.10 hrs, Volume=4.307 af, Atten= 0%, Lag= 0.0 minPrimary =29.80 cfs @12.10 hrs, Volume=4.307 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 328.63' @ 12.10 hrs

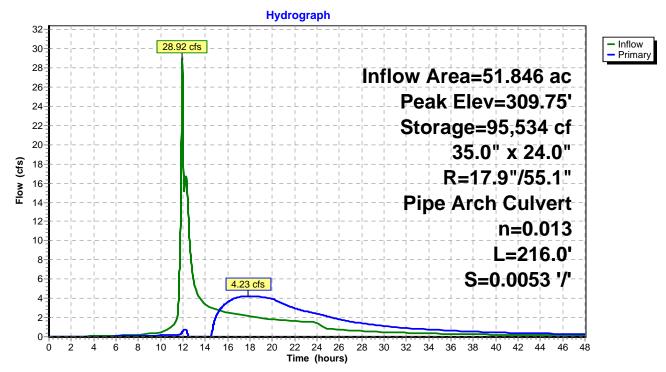
Device	Routing	Invert	Outlet Devices
#1	Primary	325.89'	36.0" Round Culvert L= 134.4' Ke= 0.500 Inlet / Outlet Invert= 325.89' / 325.39' S= 0.0037 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 7.07 sf

Primary OutFlow Max=29.78 cfs @ 12.10 hrs HW=328.63' TW=0.00' (Dynamic Tailwater) ☐ 1=Culvert (Barrel Controls 29.78 cfs @ 5.78 fps)

Pond P32: Pipe 32

Summary for Pond P4: Upstream of Interstate

Page 97


Inflow Area = 51.846 ac, 4.26% Impervious, Inflow Depth > 1.05" for 10 Year Storm event Inflow 28.92 cfs @ 11.94 hrs. Volume= 4.533 af = 4.23 cfs @ 17.82 hrs, Volume= Outflow 4.385 af, Atten= 85%, Lag= 352.8 min = 4.23 cfs @ 17.82 hrs, Volume= Primary = 4.385 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 309.75' @ 15.27 hrs Surf.Area= 125,070 sf Storage= 95,534 cf

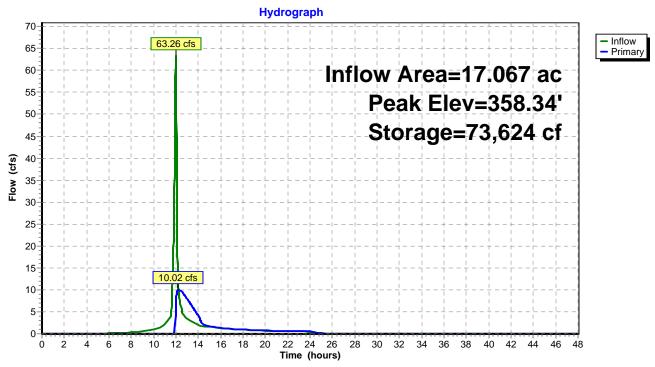
Plug-Flow detention time= 406.6 min calculated for 4.384 af (97% of inflow) Center-of-Mass det. time= 356.4 min (1,419.7 - 1,063.3)

Volume	Inv	rert Avai	I.Storage	e Storage Description			
#1	308.8	84' 2	64,873 cf	f Custom Stage Data (Irregular)Listed below (Recalc)			
Elevatio		Surf.Area Pe (sq-ft) (f		Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
308.8	34	100	40.0	0	0	100	
309.0	00	113,232	2,956.0		6,224	695,316	
311.0	00	146,115	3,003.0	258,649	264,873	718,386	
Device #1	Routing Primary		.84' 35.0 L= 2 Inle	216.0' Ke= 0.500	8.84' / 307.69' S=	Arch CMP_Arch_1/2 3 = 0.0053 '/' Cc= 0.900 I.63 sf	35x24

Primary OutFlow Max=4.24 cfs @ 17.82 hrs HW=309.65' TW=308.98' (Dynamic Tailwater) **1=CMP_Arch_1/2 35x24** (Outlet Controls 4.24 cfs @ 2.96 fps)

Pond P4: Upstream of Interstate

Summary for Pond P5: in Shaws Parking


Data from Champlain Consulting Engineers 8 SEP 00

-							
Inflow Are Inflow Outflow Primary	= =	17.067 ac, 0.0 63.26 cfs @ 1 10.02 cfs @ 12 10.02 cfs @ 12	1.98 hrs, Volu 2.22 hrs, Volu	me= 3.2 ² me= 2.32	= 2.26" for 10 Year Storm event 12 af 25 af, Atten= 84%, Lag= 14.0 min 25 af		
				00-48.00 hrs, dt= ,910 sf Storage			
		on time= 279.0 n et. time= 185.0 n		for 2.324 af (72%) 00.5)	of inflow)		
Volume	Inve	ert Avail.Sto	rage Storage	e Description			
#1	354.5				ismatic)Listed below		
Elevation	1	Surf.Area	Inc.Store	Cum.Store			
(feet)		(sq-ft)	(cubic-feet)	(cubic-feet)			
354.50)	16,374	0	0			
356.00		18,340	26,036	26,036			
358.00)	21,318	39,658	65,694			
360.00)	24,759	46,077	111,771			
362.00)	31,577	56,336	168,107			
Device F	Routing	Invert	Outlet Device	es			
#1 F	Primary	356.10'	2.0" Horiz. 2	" ORIFICE/GRA	TE C= 0.600		
	Primary	357.00'	6.0" Horiz. 6	" HORIZONTAL	ORIFICE/GRATE X9 X 9.00 C= 0.600		
	,			ir flow at low hea			
#3 F	Primary	359.60'	18.0" Horiz. 18" HORIZONTAL ORIFICE/GRATE C= 0.600 Limited to weir flow at low heads				
Drimon (Limited to well now at low neads						

Primary OutFlow Max=10.02 cfs @ 12.22 hrs HW=358.34' TW=343.19' (Dynamic Tailwater) -1=2" ORIFICE/GRATE (Orifice Controls 0.16 cfs @ 7.21 fps) -2=6" HORIZONTAL ORIFICE/GRATE X9 (Orifice Controls 9.86 cfs @ 5.58 fps)

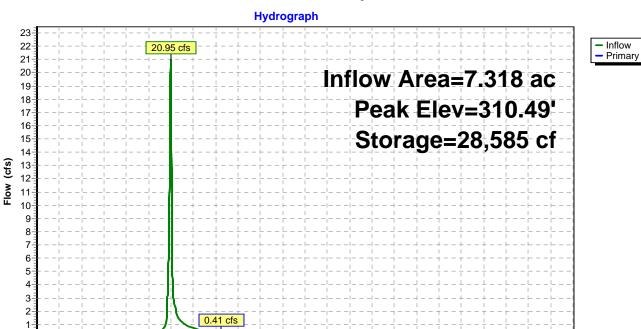
-3=18" HORIZONTAL ORIFICE/GRATE (Controls 0.00 cfs)

_ .__ . _ . .

Pond P5: in Shaws Parking

Summary for Pond P6: next to Spare Time

Inflow Are	a =	7.318 ac,	0.00% Impervious, Inflow I	Depth = 1.61" for 10 Y	ear Storm event
Inflow	=	20.95 cfs @	11.98 hrs, Volume=	0.981 af	
Outflow	=	0.41 cfs @	16.49 hrs, Volume=	0.887 af, Atten= 98%,	Lag= 270.9 min
Primary	=	0.41 cfs @	16.49 hrs, Volume=	0.887 af	


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 310.49' @ 16.49 hrs Surf.Area= 14,614 sf Storage= 28,585 cf

Plug-Flow detention time= 844.7 min calculated for 0.887 af (90% of inflow) Center-of-Mass det. time= 795.3 min (1,625.2 - 829.8)

Volume	Inv	ert Avail	.Storage	Storage Description	n		
#1	308.	00' 5	52,935 cf	Custom Stage Da	ita (Irregular) Liste	ed below (Recalc)	
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
308.0	00	8,207	459.0	0	0	8,207	
310.0	00	13,684	465.0	21,659	21,659	9,231	
312.0	00	17,677	465.0	31,276	52,935	10,161	
Device	Routing			et Devices	0.000		
#1	Primary	308.		Vert. Orifice/Grate	C = 0.600		
#2	Primary	310.		Round Culvert	to conform to fill	Ko- 0 700	
				4.0' CPP, mitered / Outlet Invert= 310	-	: 0.0015 '/' Cc= 0.900	
				.120, Flow Area= 1			
Primary OutFlow Max=0.41 cfs @ 16.49 hrs HW=310.49' TW=307.99' (Dynamic Tailwater)							

-1=Orifice/Grate (Orifice Controls 0.36 cfs @ 7.40 fps)

-2=Culvert (Barrel Controls 0.05 cfs @ 0.23 fps)

Time (hours)

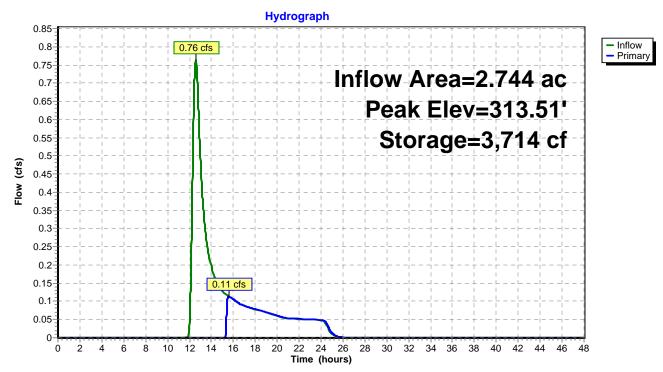
 0-

Ó

Pond P6: next to Spare Time

Page 102

Summary for Pond P7: Small Pond across Hercules


Inflow Area =	2.744 ac,	0.00% Impervious, Inflow D	epth = 0.60" for 10 Year Storm event
Inflow =	0.76 cfs @	12.60 hrs, Volume=	0.137 af
Outflow =	0.11 cfs @	15.57 hrs, Volume=	0.053 af, Atten= 85%, Lag= 178.6 min
Primary =	0.11 cfs @	15.57 hrs, Volume=	0.053 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 313.51' @ 15.57 hrs Surf.Area= 3,312 sf Storage= 3,714 cf

Plug-Flow detention time= 402.5 min calculated for 0.053 af (38% of inflow) Center-of-Mass det. time= 230.1 min (1,163.1 - 932.9)

Volume	Inv	ert Ava	il.Storage	Storage Description	on		
#1	312.	00'	5,495 cf	Custom Stage Da	ata (Irregular) List	ed below (Recalc)	
Elevatio (fee 312.0 314.0	et) 00	Surf.Area (sq-ft) 1,699 3,952	Perim. (feet) 250.0 313.0	Inc.Store (cubic-feet) 0 5,495	Cum.Store (cubic-feet) 0 5,495	Wet.Area (sq-ft) 1,699 4,577	
Device #1	Routing Primary		3.50' 50.0 Head	d (feet) 0.20 0.40	0.60 0.80 1.00	ed Rectangular We 1.20 1.40 1.60 63 2.64 2.64 2.63	ir

Primary OutFlow Max=0.11 cfs @ 15.57 hrs HW=313.51' TW=312.45' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir** (Weir Controls 0.11 cfs @ 0.25 fps)

Pond P7: Small Pond across Hercules

Summary for Pond P8: Nat'l Guard Wetland

Inflow Area =66.948 ac, 0.00% Impervious, Inflow Depth = 1.04" for 10 Year Storm eventInflow =45.62 cfs @12.39 hrs, Volume=5.788 afOutflow =4.79 cfs @16.83 hrs, Volume=5.629 af, Atten= 90%, Lag= 266.2 minPrimary =4.79 cfs @16.83 hrs, Volume=5.629 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 309.65' @ 14.69 hrs Surf.Area= 209,352 sf Storage= 123,684 cf

Plug-Flow detention time= 295.4 min calculated for 5.628 af (97% of inflow) Center-of-Mass det. time= 279.9 min (1,170.3 - 890.4)

Volume	Inv	ert Avai	I.Storage	Storage Descripti	on			
#1	306.	60' 2,7	25,483 cf	S cf Custom Stage Data (Irregular)Listed below (Recalc)				
Elevatior (feet)	-	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
306.60)	3,900	2,500.0	0	0	3,900		
308.60 312.60		19,200 1,822,000	7,100.0 6,500.0	,	21,169 2,725,483	3,518,054 4,167,976		
Device	Routing	In	vert Out	let Devices				
#1	Primary	306		" Round Culvert				
#2	#2 Primary 312.30' Inlet / Outlet Invert= 306.60' / 306.50' S= 0.0020 '/' Cc= 0.900 #2 Primary 312.30' 60.0' long x 25.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.63							
Primary OutFlow Max=4.79 cfs @ 16.83 hrs HW=309.62' TW=307.98' (Dynamic Tailwater) -1=Culvert (Outlet Controls 4.79 cfs @ 6.10 fps)								

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Hydrograph 50-- Inflow 48-45.62 cfs 46 Primary 44 Inflow Area=66.948 ac 42 40 Peak Elev=309.65' 38-36-Storage=123,684 cf 34-32-30-28-Flow (cfs) 26 24-22-20 18-16-14-12-10-8 4.79 cfs 6 4 2 0-2 10 12 14 16 18 28 30 32 42 6 8 20 22 24 26 34 36 38 40 44 46 48 Ó 4 Time (hours)

Pond P8: Nat'l Guard Wetland

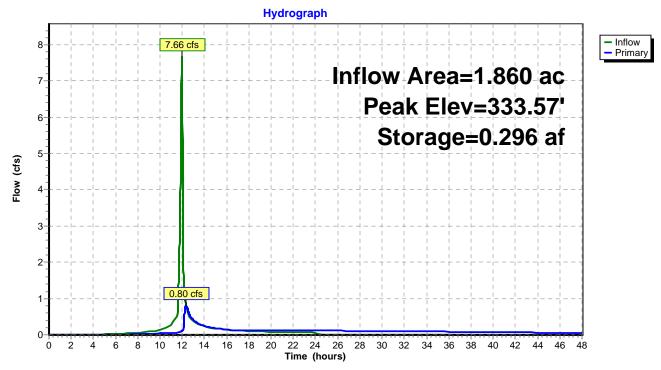
Summary for Pond P9: Charlebois Pond

Inflow = $7.66 \text{ cfs} @ 11.97 \text{ hrs}$, Volume= 0.379 af Outflow = $0.80 \text{ cfs} @ 12.34 \text{ hrs}$ Volume= 0.357 af Atten= 90% Lag= 22.4 min	Inflow Area =	1.860 ac, 0.00% Impervious, Infle	ow Depth = 2.45" for 10 Year Storm event
Outflow – 0.80 cfs @ 12.34 brs Volume 0.357 af Atten - 90% Lag - 22.4 min	Inflow =	7.66 cfs @ 11.97 hrs, Volume=	0.379 af
0.007 al, Auen-3070, Lag-22.4 min	Outflow =	0.80 cfs @ 12.34 hrs, Volume=	0.357 af, Atten= 90%, Lag= 22.4 min
Primary = 0.80 cfs @ 12.34 hrs, Volume= 0.357 af	Primary =	0.80 cfs @ 12.34 hrs, Volume=	0.357 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 331.00' Surf.Area= 0.050 ac Storage= 0.082 af Peak Elev= 333.57' @ 12.34 hrs Surf.Area= 0.119 ac Storage= 0.296 af (0.214 af above start)

Plug-Flow detention time= 979.3 min calculated for 0.274 af (72% of inflow) Center-of-Mass det. time= 670.0 min (1,459.3 - 789.3)

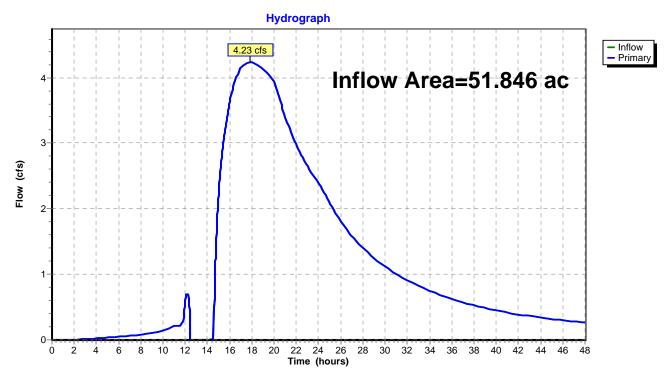
Volume	Invert	Avail.Stora	ge St	orage Description
#1	327.00'	0.351	af C	ustom Stage Data (Prismatic)Listed below (Recalc)
Elevatior (feet)			c.Store e-feet)	
327.00)03	0.000	
328.00		009	0.006	
329.00) 0.0)18	0.014	0.020
330.00) 0.0)29	0.024	0.043
331.00) 0.0)50	0.039	
332.00)75	0.062	0.145
333.00		02	0.088	
334.00) 0.1	32	0.117	0.351
Device	Routing	Invert	Outlet	Devices
#1	Primary	331.00'	15.0"	Round Culvert
#2	Device 1	331.00'	Inlet / n= 0.0	5' CPP, square edge headwall, Ke= 0.500 Outlet Invert= 331.00' / 330.00' S= 0.0220 '/' Cc= 0.900 12, Flow Area= 1.23 sf ert. Orifice/Grate C= 0.600
	Primary	333.50'	36.0"	x 36.0" Horiz. Orifice/Grate C= 0.600 d to weir flow at low heads
Primary (DutFlow Ma	x=0.80 cfs @	12.34	hrs HW=333.57' TW=323.54' (Dynamic Tailwater)


-1=Culvert (Passes 0.12 cfs of 8.23 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.12 cfs @ 7.61 fps)

-3=Orifice/Grate (Weir Controls 0.68 cfs @ 0.85 fps)

HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

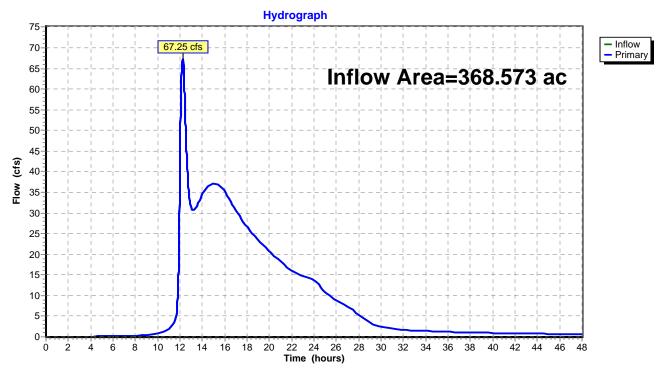


Summary for Link 3L: Tailwater

Inflow Area =51.846 ac,4.26% Impervious, Inflow Depth > 1.01" for 10 Year Storm eventInflow =4.23 cfs @17.82 hrs, Volume=4.385 afPrimary =4.23 cfs @17.82 hrs, Volume=4.385 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

49 Point man	nual elevatio	n table, To	= 0.00 hrs,	dt= 1.00 hr	s, feet =			
307.54	307.54	307.54	307.54	307.55	307.55	307.56	307.56	307.57
307.59	307.61	307.67	308.98	310.00	309.90	309.62	309.39	309.16
308.94	308.71	308.45	308.19	308.10	308.06	308.02	307.87	307.83
307.80	307.75	307.71	307.70	307.68	307.68	307.67	307.66	307.66
307.65	307.65	307.65	307.64	307.64	307.64	307.63	307.63	307.63
307.63	307.63	307.62	307.62					



Link 3L: Tailwater

Summary for Link SN1: SN001

Inflow Area	a =	368.573 ac,	2.69% Impervious, Inflow [Depth > 1.09"	for 10 Year Storm event
Inflow	=	67.25 cfs @	12.25 hrs, Volume=	33.346 af	
Primary	=	67.25 cfs @	12.25 hrs, Volume=	33.346 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Link SN1: SN001

Summary for Link SN2: SN002

Inflow Are	a =	352.560 ac,	2.71% Impervious, Inflow I	Depth > 1.13"	for 10 Year Storm event
Inflow	=	67.23 cfs @	12.23 hrs, Volume=	33.177 af	
Primary	=	67.23 cfs @	12.23 hrs, Volume=	33.177 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Hydrograph 75- Inflow Primary 67.23 cfs 70-65-Inflow Area=352.560 ac 60-55 50 45 Flow (cfs) 40 35-30-25 20-15 10 5-0 22 24 26 Time (hours) 2 10 12 14 16 18 20 28 30 32 34 36 Ó 4 6 8 38 40 42 44 46 48

Link SN2: SN002

Summary for Link SN3: SN003

Inflow Are	a =	337.278 ac,	2.67% Impervious, Inflow I	Depth > 1.16"	for 10 Year Storm event
Inflow	=	66.13 cfs @	12.20 hrs, Volume=	32.720 af	
Primary	=	66.13 cfs @	12.20 hrs, Volume=	32.720 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

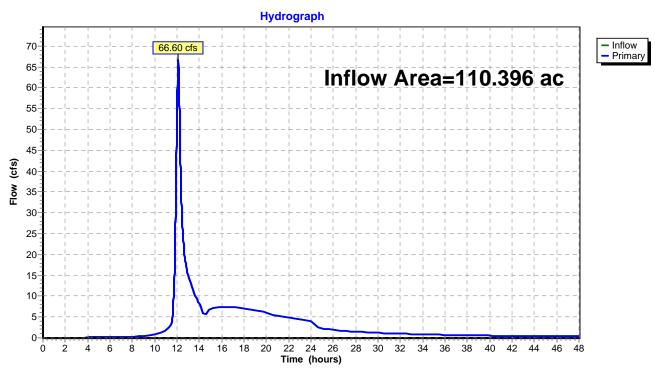
Hydrograph 70- Inflow Primary 66.13 cfs 65 Inflow Area=337.278 ac 60 55 50 45 Flow (cfs) 40 35 30-25 20 15-10 5-0 22 24 26 Time (hours) 28 30 32 2 8 10 12 14 16 18 20 34 36 Ó 4 6 38 40 42 44 46 48

Link SN3: SN003

Summary for Link SN4: SN004

Inflow Are	a =	315.323 ac,	2.65% Impervious, Inflow [Depth > 1.17"	for 10 Year Storm event
Inflow	=	55.27 cfs @	11.99 hrs, Volume=	30.759 af	
Primary	=	55.27 cfs @	11.99 hrs, Volume=	30.759 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

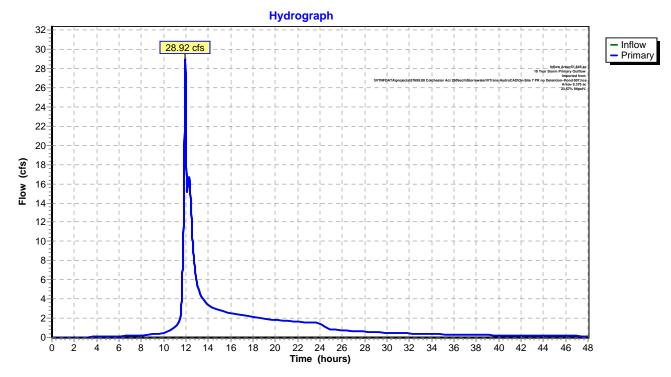

Hydrograph 60- Inflow Primary 55.27 cfs 55-Inflow Area=315.323 ac 50-45 40-35-Flow (cfs) 30 25 20-15-10-5-0-2 28 30 32 34 36 4 10 12 14 16 18 20 22 24 26 38 Ó 6 8 40 42 44 46 48 Time (hours)

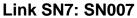
Link SN4: SN004

Summary for Link SN6: SN006

Inflow Are	a =	110.396 ac,	4.77% Impervious, Inflow [Depth > 1.28"	for 10 Year Storm event
Inflow	=	66.60 cfs @	12.11 hrs, Volume=	11.739 af	
Primary	=	66.60 cfs @	12.11 hrs, Volume=	11.739 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

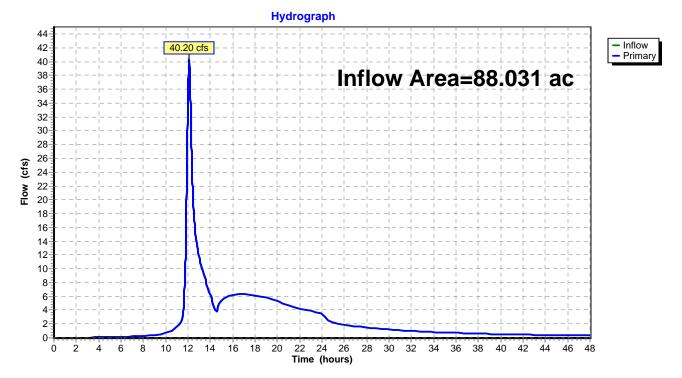

Link SN6: SN006

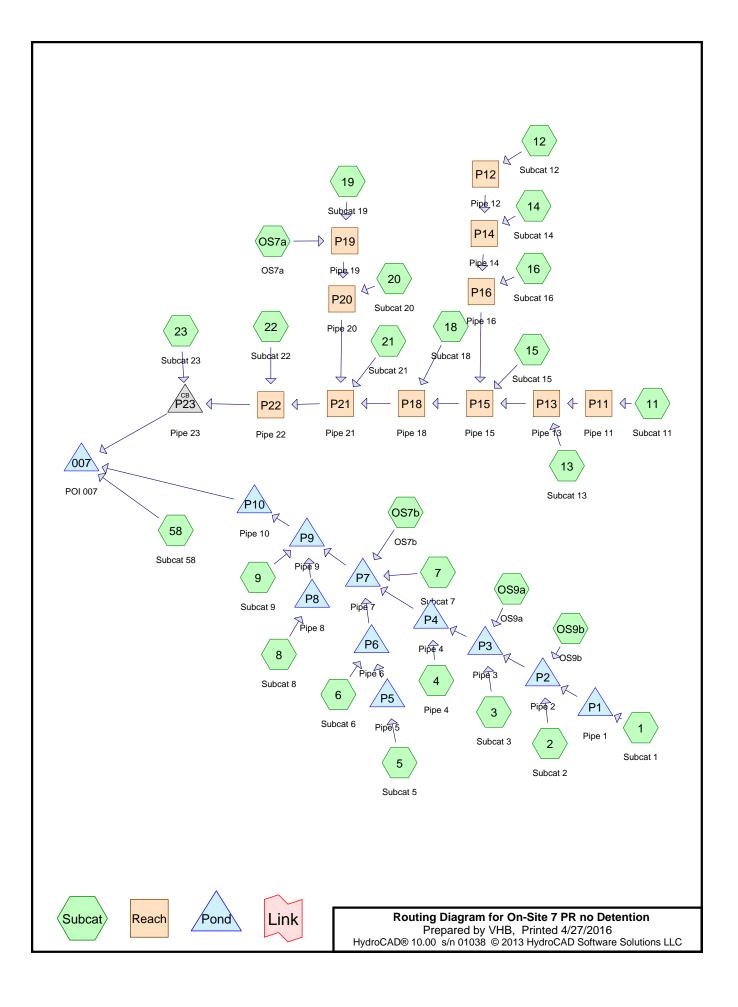

Summary for Link SN7: SN007

Inflow Are	a =	51.846 ac,	4.26% Impervious, Inflow Dep	oth > 1.05" for 10 Year Storm event
Inflow	=	28.92 cfs @	11.94 hrs, Volume=	4.533 af
Primary	=	28.92 cfs @	11.94 hrs, Volume= 4	4.533 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

10 Year Storm Primary Outflow Imported from \\VTNFDATA\projects\57699.00 Colchester Act 250\tech\Stormwater\V




Summary for Link SN8: SN008

Inflow Are	a =	88.031 ac,	5.28% Impervious, Inflow De	epth > 1.31" for 10 Year Storm event
Inflow	=	40.20 cfs @	12.11 hrs, Volume=	9.613 af
Primary	=	40.20 cfs @	12.11 hrs, Volume=	9.613 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Link SN8: SN008

On-Site 7 PR no Detention	Type II 24-hr	100 Year Storm Rainfall=5.20"
Prepared by VHB		Printed 4/27/2016
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software S	Solutions LLC	Page 2

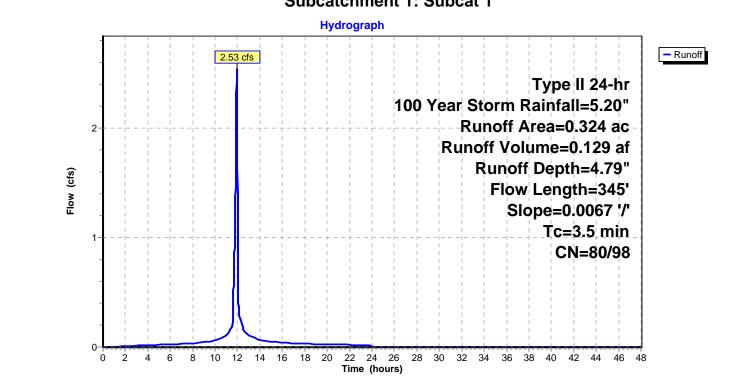
Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1: Subcat 1 Flow Length=345	Runoff Area=0.324 ac 90.74% Impervious Runoff Depth=4.79" Slope=0.0067 '/' Tc=3.5 min CN=80/98 Runoff=2.53 cfs 0.129 af
Subcatchment 2: Subcat 2 Flow Length=123'	Runoff Area=0.139 ac 92.81% Impervious Runoff Depth=4.83" Slope=0.0065 '/' Tc=1.3 min CN=80/98 Runoff=1.16 cfs 0.056 af
Subcatchment3: Subcat 3 Flow Length=240'	Runoff Area=0.233 ac 91.85% Impervious Runoff Depth=4.81" Slope=0.0077 '/' Tc=2.2 min CN=80/98 Runoff=1.90 cfs 0.093 af
Subcatchment 4: Pipe 4 Flow Length=189'	Runoff Area=0.269 ac 57.25% Impervious Runoff Depth=4.15" Slope=0.0089 '/' Tc=1.6 min CN=80/98 Runoff=2.03 cfs 0.093 af
Subcatchment 5: Subcat 5	Runoff Area=0.212 ac 48.11% Impervious Runoff Depth=3.98" low Length=206' Tc=2.1 min CN=80/98 Runoff=1.53 cfs 0.070 af
Subcatchment 6: Subcat 6 Flow Length=115	Runoff Area=0.091 ac 83.52% Impervious Runoff Depth=4.65" Slope=0.0088 '/' Tc=1.0 min CN=80/98 Runoff=0.75 cfs 0.035 af
Subcatchment7: Subcat7 Flow Length=119	Runoff Area=0.116 ac 70.69% Impervious Runoff Depth=4.41" Slope=0.0096 '/' Tc=1.0 min CN=80/98 Runoff=0.92 cfs 0.043 af
Subcatchment 8: Subcat 8 Flow Length=192'	Runoff Area=0.142 ac 98.59% Impervious Runoff Depth=4.94" Slope=0.0036 '/' Tc=2.6 min CN=80/98 Runoff=1.16 cfs 0.058 af
Subcatchment9: Subcat9	Runoff Area=0.173 ac 92.49% Impervious Runoff Depth=4.82" low Length=182' Tc=2.5 min CN=80/98 Runoff=1.40 cfs 0.069 af
	low Length=182' Tc=2.5 min CN=80/98 Runoff=1.40 cfs 0.069 af Runoff Area=0.015 ac 100.00% Impervious Runoff Depth=4.96"
Fi Subcatchment 11: Subcat 11	low Length=182' Tc=2.5 min CN=80/98 Runoff=1.40 cfs 0.069 af Runoff Area=0.015 ac 100.00% Impervious Runoff Depth=4.96" Slope=0.0211 '/' Tc=0.3 min CN=0/98 Runoff=0.13 cfs 0.006 af Runoff Area=0.016 ac 100.00% Impervious Runoff Depth=4.96"
Fi Subcatchment 11: Subcat 11 Flow Length=46' Subcatchment 12: Subcat 12 Flow Length=47' Subcatchment 13: Subcat 13	low Length=182' Tc=2.5 min CN=80/98 Runoff=1.40 cfs 0.069 af Runoff Area=0.015 ac 100.00% Impervious Runoff Depth=4.96" Slope=0.0211 '/' Tc=0.3 min CN=0/98 Runoff=0.13 cfs 0.006 af Runoff Area=0.016 ac 100.00% Impervious Runoff Depth=4.96"
Fi Subcatchment 11: Subcat 11 Flow Length=46' Subcatchment 12: Subcat 12 Flow Length=47' Subcatchment 13: Subcat 13 Fi Subcatchment 14: Subcat 14	 low Length=182' Tc=2.5 min CN=80/98 Runoff=1.40 cfs 0.069 af Runoff Area=0.015 ac 100.00% Impervious Runoff Depth=4.96" Slope=0.0211 '/' Tc=0.3 min CN=0/98 Runoff=0.13 cfs 0.006 af Runoff Area=0.016 ac 100.00% Impervious Runoff Depth=4.96" Slope=0.0189 '/' Tc=0.3 min CN=0/98 Runoff=0.14 cfs 0.007 af Runoff Area=0.074 ac 91.89% Impervious Runoff Depth=4.81"
Fi Subcatchment 11: Subcat 11 Flow Length=46' Subcatchment 12: Subcat 12 Flow Length=47' Subcatchment 13: Subcat 13 Fi Subcatchment 14: Subcat 14 Flow Length=116' Subcatchment 15: Subcat 15	 low Length=182' Tc=2.5 min CN=80/98 Runoff=1.40 cfs 0.069 af Runoff Area=0.015 ac 100.00% Impervious Runoff Depth=4.96" Slope=0.0211 '/' Tc=0.3 min CN=0/98 Runoff=0.13 cfs 0.006 af Runoff Area=0.016 ac 100.00% Impervious Runoff Depth=4.96" Slope=0.0189 '/' Tc=0.3 min CN=0/98 Runoff=0.14 cfs 0.007 af Runoff Area=0.074 ac 91.89% Impervious Runoff Depth=4.81" Iow Length=124' Tc=1.5 min CN=80/98 Runoff=0.62 cfs 0.030 af Runoff Area=0.063 ac 100.00% Impervious Runoff Depth=4.96"
Fi Subcatchment11: Subcat11 Flow Length=46' Subcatchment12: Subcat12 Flow Length=47' Subcatchment13: Subcat13 Fi Subcatchment14: Subcat14 Flow Length=116' Subcatchment15: Subcat15 Flow Length=114' Subcatchment16: Subcat16	 low Length=182' Tc=2.5 min CN=80/98 Runoff=1.40 cfs 0.069 af Runoff Area=0.015 ac 100.00% Impervious Runoff Depth=4.96" Slope=0.0211 '/' Tc=0.3 min CN=0/98 Runoff=0.13 cfs 0.006 af Runoff Area=0.016 ac 100.00% Impervious Runoff Depth=4.96" Slope=0.0189 '/' Tc=0.3 min CN=0/98 Runoff=0.14 cfs 0.007 af Runoff Area=0.074 ac 91.89% Impervious Runoff Depth=4.81" Iow Length=124' Tc=1.5 min CN=80/98 Runoff=0.62 cfs 0.030 af Runoff Area=0.063 ac 100.00% Impervious Runoff Depth=4.96" Slope=0.0203 '/' Tc=0.7 min CN=0/98 Runoff=0.55 cfs 0.026 af Runoff Area=0.062 ac 100.00% Impervious Runoff Depth=4.96"

On-Site 7 PR no Detention Prepared by VHB	Type II 24-hr 100 Year Storm Rainfall=5.20" Printed 4/27/2016
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Softw	are Solutions LLC Page 3
	ff Area=0.325 ac 29.54% Impervious Runoff Depth=3.63" th=213' Tc=2.7 min CN=80/98 Runoff=2.18 cfs 0.098 af
	ff Area=0.109 ac 88.99% Impervious Runoff Depth=4.75" 0206 '/' Tc=0.6 min CN=80/98 Runoff=0.92 cfs 0.043 af
	ff Area=0.028 ac 89.29% Impervious Runoff Depth=4.76" 0047 '/' Tc=0.7 min CN=80/98 Runoff=0.24 cfs 0.011 af
	ff Area=0.043 ac 93.02% Impervious Runoff Depth=4.83" 0080 '/' Tc=0.8 min CN=80/98 Runoff=0.37 cfs 0.017 af
	ff Area=0.342 ac 44.44% Impervious Runoff Depth=3.91" th=272' Tc=2.8 min CN=80/98 Runoff=2.39 cfs 0.111 af
	ff Area=0.602 ac 15.12% Impervious Runoff Depth=3.35" th=155' Tc=3.6 min CN=80/98 Runoff=3.73 cfs 0.168 af
	off Area=1.853 ac 0.00% Impervious Runoff Depth=3.65" th=598' Tc=26.3 min CN=86/0 Runoff=6.35 cfs 0.564 af
	off Area=1.485 ac 0.00% Impervious Runoff Depth=3.16" 0.1483 '/' Tc=6.1 min CN=81/0 Runoff=8.21 cfs 0.391 af
	off Area=1.216 ac 0.00% Impervious Runoff Depth=3.76" gth=340' Tc=1.8 min CN=87/0 Runoff=8.92 cfs 0.381 af
	off Area=1.309 ac 0.00% Impervious Runoff Depth=4.51" gth=470' Tc=7.6 min CN=94/0 Runoff=8.90 cfs 0.491 af
	v Depth=0.10' Max Vel=2.68 fps Inflow=0.13 cfs 0.006 af =0.0220 '/' Capacity=15.58 cfs Outflow=0.13 cfs 0.006 af
	v Depth=0.10' Max Vel=2.74 fps Inflow=0.14 cfs 0.007 af =0.0222 '/' Capacity=15.63 cfs Outflow=0.14 cfs 0.007 af
	v Depth=0.25' Max Vel=3.92 fps Inflow=0.74 cfs 0.036 af =0.0147 '/' Capacity=12.73 cfs Outflow=0.74 cfs 0.036 af
-	v Depth=0.24' Max Vel=3.83 fps Inflow=0.69 cfs 0.033 af =0.0147 '/' Capacity=12.73 cfs Outflow=0.68 cfs 0.033 af
	v Depth=0.60' Max Vel=3.76 fps Inflow=2.50 cfs 0.121 af S=0.0049 '/' Capacity=7.34 cfs Outflow=2.49 cfs 0.121 af
	v Depth=0.39' Max Vel=3.37 fps Inflow=1.24 cfs 0.059 af S=0.0063 '/' Capacity=8.30 cfs Outflow=1.24 cfs 0.059 af
	v Depth=0.68' Max Vel=3.99 fps Inflow=3.10 cfs 0.150 af S=0.0049 '/' Capacity=7.37 cfs Outflow=3.09 cfs 0.150 af
	v Depth=1.08' Max Vel=4.82 fps Inflow=6.60 cfs 0.663 af S=0.0052 '/' Capacity=7.56 cfs Outflow=6.60 cfs 0.663 af

On-Site 7 PR no D Prepared by VHB		R <i>ainfall=5.20"</i> ted 4/27/2016
HydroCAD® 10.00 s/n 0	01038 © 2013 HydroCAD Software Solutions LLC	Page 4
Reach P20: Pipe 20 18.0" Re	Avg. Flow Depth=1.11' Max Vel=4.76 fps Inflow=6. ound Pipe n=0.013 L=47.9' S=0.0050 '/' Capacity=7.44 cfs Outflow=6.	
Reach P21: Pipe 21	Avg. Flow Depth=1.50' Max Vel=4.74 fps Inflow=8.	36 cfs 0.866 af
	ound Pipe n=0.013 L=36.8' S=0.0049 '/' Capacity=7.35 cfs Outflow=7.	
Reach P22: Pipe 22	Avg. Flow Depth=0.79' Max Vel=8.60 fps Inflow=8. und Pipe n=0.013 L=89.6' S=0.0201 '/' Capacity=14.89 cfs Outflow=8.	
		10 013 0.004 01
Pond 007: POI 007		12 cfs 3.075 af
	Primary=50.	12 cfs 3.075 af
Pond P1: Pipe 1	Peak Elev=336.69' Storage=50 cf Inflow=2.	53 cfs 0.129 af
· · · · · · · · · · · · · · · · · · ·	18.0" Round Culvert n=0.013 L=67.2' S=0.0051 '/' Outflow=2.	
D D40 D'	Deck Flow 202 201 Storage 40 of Jufford 20	10
Pond P10: Pipe 10	Peak Elev=322.30' Storage=49 cf Inflow=36. 30.0" Round Culvert n=0.013 L=34.6' S=0.0055 '/' Outflow=36.	
Pond P2: Pipe 2	Peak Elev=336.63' Storage=50 cf Inflow=11.	
	18.0" Round Culvert n=0.013 L=74.0' S=0.0050 '/' Outflow=11.	93 cfs 0.677 af
Pond P23: Pipe 23	Peak Elev=320.39' Inflow=10.	25 cfs 0.995 af
•	24.0" Round Culvert n=0.013 L=85.2' S=0.0050 '/' Outflow=10.	25 cfs 0.995 af
Pond P3: Pipe 3	Peak Elev=334.61' Storage=50 cf Inflow=21.	69 cfs 1 151 af
Folia F5. Fipe 5	24.0" Round Culvert n=0.013 L=186.7' S=0.0050 '/' Outflow=21.	
Pond P4: Pipe 4	Peak Elev=332.08' Storage=50 cf Inflow=23. 24.0" Round Culvert n=0.013 L=121.4' S=0.0050 '/' Outflow=23.	
	24.0 Round Culvert $n=0.013$ $L=121.4$ $S=0.00307$ Guillow=23.	02 013 1.244 81
Pond P5: Pipe 5	Peak Elev=329.70' Storage=50 cf Inflow=1.	
	18.0" Round Culvert n=0.013 L=56.3' S=0.0050 '/' Outflow=1.	65 cfs 0.070 af
Pond P6: Pipe 6	Peak Elev=329.67' Storage=50 cf Inflow=2.	38 cfs 0.106 af
· •···· •· · · · · · · · ·	18.0" Round Culvert n=0.013 L=61.9' S=0.0050 '/' Outflow=2.	
Dond DZ: Ding Z	Deck Floy 220 621 Storage 50 of Inflow 22	00 of a 1 702 of
Pond P7: Pipe 7	Peak Elev=329.63' Storage=50 cf Inflow=33. 24.0" Round Culvert n=0.013 L=96.4' S=0.0050 '/' Outflow=33.	
Pond P8: Pipe 8	Peak Elev=324.70' Storage=50 cf Inflow=1.	
	18.0" Round Culvert n=0.013 L=123.6' S=0.0050 '/' Outflow=1.	∠4 cts 0.058 af
Pond P9: Pipe 9	Peak Elev=324.68' Storage=50 cf Inflow=36.	33 cfs 1.911 af
-	30.0" Round Culvert n=0.013 L=33.6' S=0.0051 '/' Outflow=36.	48 cfs 1.911 af
Total P	Runoff Area = 9.375 ac Runoff Volume = 3.075 af Average Runo	ff Denth - 3 9/"
	76 A2% Pervious = 7.165 ac - 23.57% Import	

76.43% Pervious = 7.165 ac 23.57% Impervious = 2.210 ac


Summary for Subcatchment 1: Subcat 1

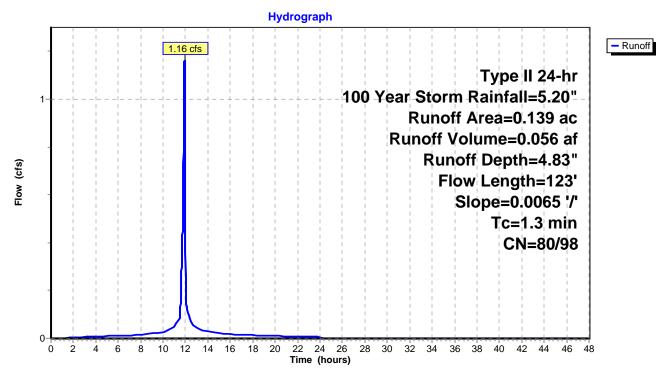
Runoff 2.53 cfs @ 11.94 hrs, Volume= 0.129 af, Depth= 4.79" =

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

	Area	(ac)	CN	Desc	Description					
0.294 98 Paved roads w/curbs & sewers, HSG D							ewers, HSG D			
0.030 80 >75% Grass cover, Good, HSG D							, HSG D			
0.324 96 Weighted Average										
	0.	030			% Perviou					
	0.	294		90.74	90.74% Impervious Area					
	Tc (min)	Lengt (feet		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	3.5	34	5 0	.0067	1.66		Shallow Concentrated Flow, Paved Kv= 20.3 fps			

Subcatchment 1: Subcat 1

Summary for Subcatchment 2: Subcat 2


Runoff = 1.16 cfs @ 11.91 hrs, Volume= 0.056 af, Depth= 4.83"

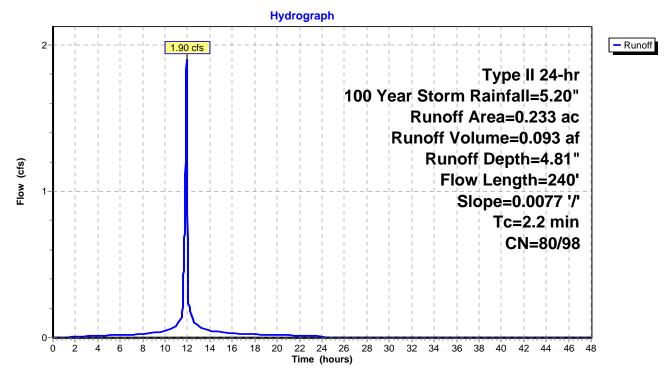
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

_	Area	(ac)	CN	Desc	Description					
	0.	089 98 Paved roads w/curbs & sewers, HSG D								
	0.	040	98	Pave	d roads w	/curbs & se	ewers, HSG D			
	0.006 80 >75% Grass cover, Good, HSG D									
0.002 80 >75% Grass cover, Good, HSG D							, HSG D			
_	0.	002	80	>75%	6 Grass co	ver, Good,	, HSG D			
	0.	139	97	Weig	hted Aver	age				
	0.	010		7.19	% Pervious	s Area				
	0.	129		92.8´	1% Imperv	ious Area				
	Тс	Length	า	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	1.3	123	3 (0.0065	1.64		Shallow Concentrated Flow,			

Paved Kv= 20.3 fps

Subcatchment 2: Subcat 2

Summary for Subcatchment 3: Subcat 3


Runoff = 1.90 cfs @ 11.92 hrs, Volume= 0.093 af, Depth= 4.81"

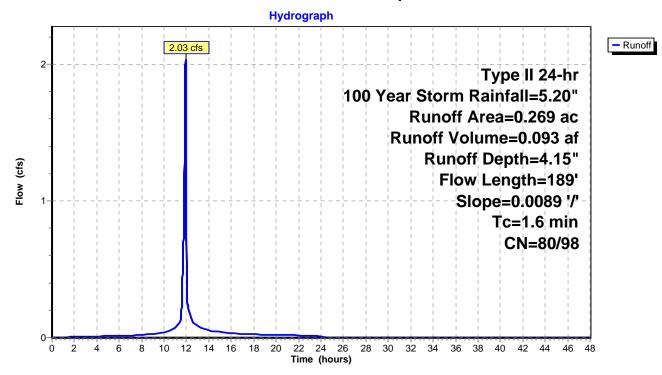
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

	Area	(ac)	CN	Desc	Description						
0.201 98 Paved roads w/curbs & sewers, HSG D											
	0.	013	98	Pave	d roads w	/curbs & se	ewers, HSG D				
	0.	011	80	>75%	6 Grass co	over, Good,	, HSG D				
	0.	800	80	>75%	6 Grass co	over, Good,	, HSG D				
	0.	233	97	Weig	hted Aver	age					
	0.	019		8.15	% Perviou	s Area					
	0.	214		91.85	91.85% Impervious Area						
	Тс	Lengt	h	Slope	Velocity	Capacity	Description				
	(min)	(feet	:)	(ft/ft)	(ft/sec)	(cfs)					
	2.2	24	0 0	0.0077	1.78		Shallow Concentrated Flow,				

Paved Kv= 20.3 fps

Subcatchment 3: Subcat 3

Summary for Subcatchment 4: Pipe 4


Runoff = 2.03 cfs @ 11.92 hrs, Volume= 0.093 af, Depth= 4.15"

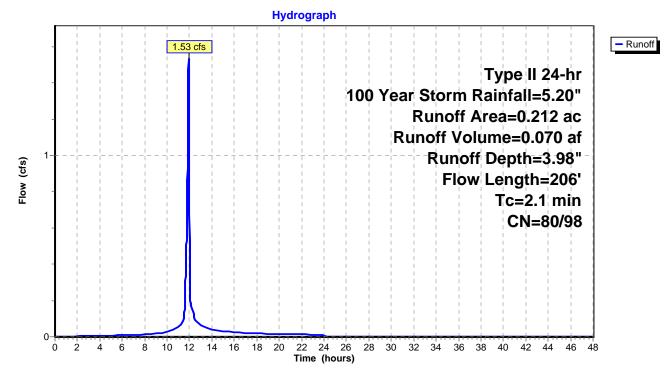
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

	Area	(ac)	CN	Desc	Description					
	0.	128	98	Pave	d roads w	/curbs & se	ewers, HSG D			
0.026 98 Paved roads w/curbs & sewers, HSG D										
	0.010 80 >75% Grass cover, Good, HSG D									
	0.	105	80	>75%	6 Grass co	over, Good,	, HSG D			
	0.	269	90	Weig	hted Aver	age				
	0.	115		42.75	5% Pervio	us Area				
	0.	154		57.25	57.25% Impervious Area					
	Тс	Length	າ ຮ	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	1.6	189	0.	0089	1.92		Shallow Concentrated Flow,			
_	0. 0. 0. Tc (min)	269 115 154 Length (feet)	90 n S	Weig 42.75 57.25 Slope (ft/ft)	hted Aver 5% Pervio 5% Imperv Velocity (ft/sec)	age us Area ious Area Capacity	Description			

Paved Kv= 20.3 fps

Subcatchment 4: Pipe 4

Summary for Subcatchment 5: Subcat 5


Runoff = 1.53 cfs @ 11.92 hrs, Volume= 0.070 af, Depth= 3.98"

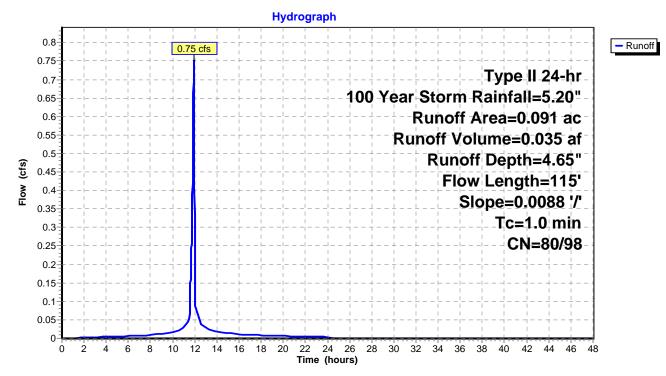
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

_	Area	(ac) (CN Des	cription					
	0.102 98 Paved roads w/curbs & sewers, HSG D								
0.083 80 >75% Grass cover, Good, HSG D									
0.027 80 >75% Grass cover, Good, HSG D									
	0.212 89 Weighted Average								
	0.	110	51.8	9% Pervio	us Area				
	0.	102	48.1	1% Imperv	vious Area				
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	0.1	12	0.0200	2.87		Shallow Concentrated Flow,			
	2.0	194	0.0554	1.65		Paved Kv= 20.3 fps Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps			
	~ 4	000	T . (.)						

2.1 206 Total

Subcatchment 5: Subcat 5

Summary for Subcatchment 6: Subcat 6


Runoff = 0.75 cfs @ 11.91 hrs, Volume= 0.035 af, Depth= 4.65"

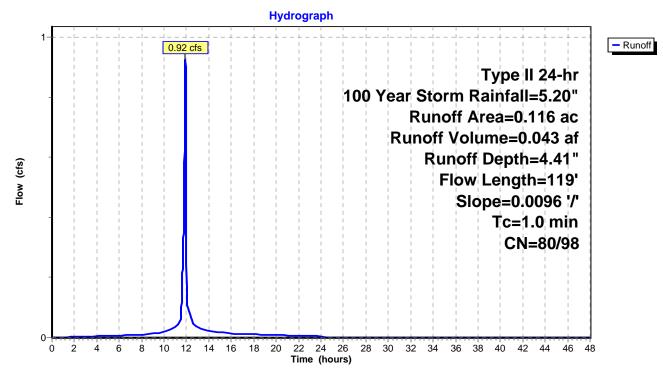
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

_	Area	(ac)	CN	Desc	ription		
0.072 98 Paved roads w/curbs & sewers, HSG D							
	0.	004	98	Pave	ed roads w	/curbs & se	ewers, HSG D
	0.	009	80	>75%	6 Grass co	over, Good,	, HSG D
0.002 80 >75% Grass cover, Good, HSG D						, HSG D	
_	0.	004	80	>75%	6 Grass co	over, Good,	, HSG D
	0.	091	95	Weig	hted Aver	age	
	0.	015		16.48	3% Pervio	us Area	
	0.	076		83.52	2% Imperv	rious Area	
	Тс	Length	1 3	Slope	Velocity	Capacity	Description
_	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	
	1.0	115	0.	.0088	1.90		Shallow Concentrated Flow,
							Deved Ky 00.2 free

Paved Kv= 20.3 fps

Subcatchment 6: Subcat 6

Summary for Subcatchment 7: Subcat 7


Runoff = 0.92 cfs @ 11.91 hrs, Volume= 0.043 af, Depth= 4.41"

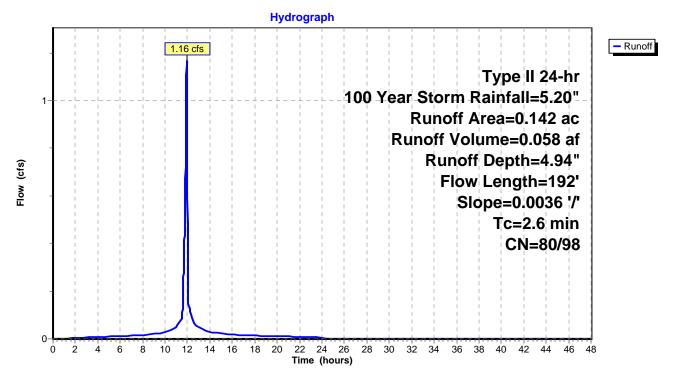
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

_	Area	(ac)	CN	Desc	Description								
	0.	070	98	Pave	Paved roads w/curbs & sewers, HSG D								
	0.	012	98	Pave	ed roads w	/curbs & se	ewers, HSG D						
	0.	005	80	>75%	6 Grass co	over, Good	, HSG D						
	0.	029	80	>75%	6 Grass co	over, Good	, HSG D						
	0.	116	93	Weig	hted Aver	age							
	0.	034		29.3	1% Pervio	us Area							
	0.	082		70.69	9% Imperv	vious Area							
	Тс	Length		Slope	Velocity	Capacity	Description						
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	1.0	119	9 0.0	0096	1.99		Shallow Concentrated Flow,						

Paved Kv= 20.3 fps

Subcatchment 7: Subcat 7

Summary for Subcatchment 8: Subcat 8

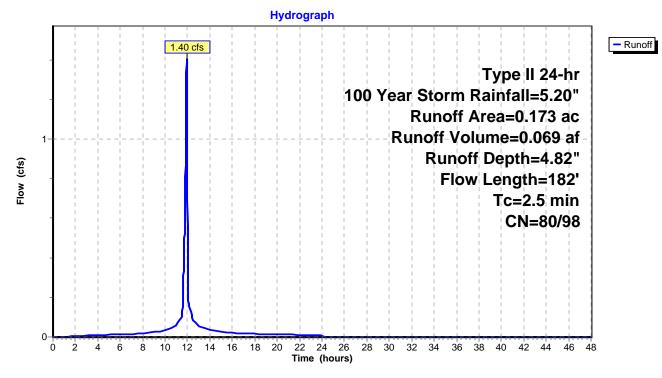

Runoff = 1.16 cfs @ 11.93 hrs, Volume= 0.058 af, Depth= 4.94"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

_	Area	(ac) (CN Des	Description							
	0.129 98 Paved roads w/curbs & sewers, HSG D										
	0.011 98 Paved roads w/curbs & sewers, HSG D										
_	0.	002	80 >75	% Grass c	over, Good	, HSG D					
	0.	142	98 Wei	ghted Aver	age						
	0.	002	1.41	% Perviou	s Area						
	0.	140	98.5	59% Imperv	vious Area						
	т.	1	0		0	Description					
	Tc	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	2.6	192	0.0036	1.22		Shallow Concentrated Flow,					
						Doved Ky 20.2 for					

Paved Kv= 20.3 fps

Subcatchment 8: Subcat 8


Summary for Subcatchment 9: Subcat 9

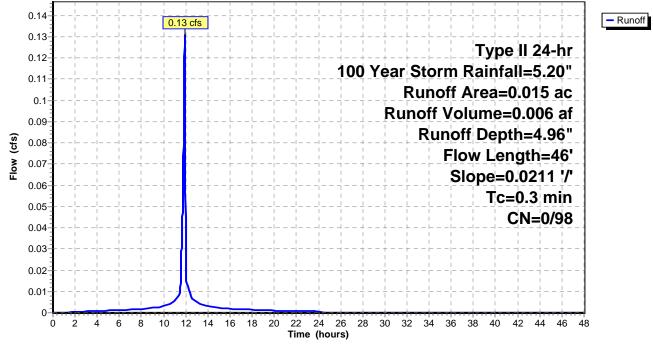
Runoff = 1.40 cfs @ 11.93 hrs, Volume= 0.069 af, Depth= 4.82"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

_	Area	(ac) C	N Dese	Description							
	0.160 98 Paved roads w/curbs & sewers, HSG D										
_	0.	013 8	30 >759	% Grass co	over, Good	, HSG D					
	0.	173 9	97 Weig	ghted Aver	age						
	0.	013	-	% Perviou							
	0.	160	92.4	9% Imperv	vious Area						
	_										
	Tc	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	1.1	73	0.0229	1.06		Shallow Concentrated Flow,					
						Short Grass Pasture Kv= 7.0 fps					
	1.4	109	0.0039	1.27		Shallow Concentrated Flow,					
_						Paved Kv= 20.3 fps					
	2.5	182	Total								

Subcatchment 9: Subcat 9

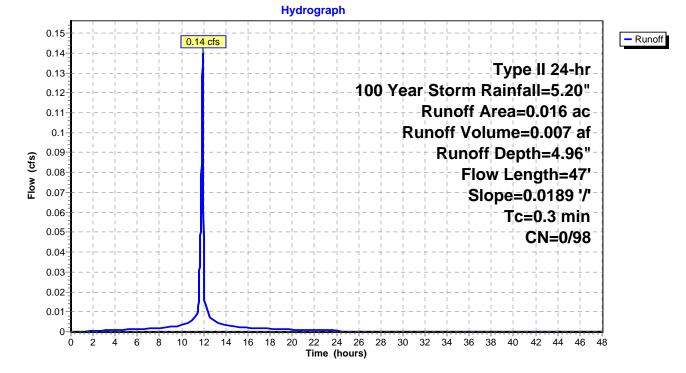
Summary for Subcatchment 11: Subcat 11


Runoff = 0.13 cfs @ 11.90 hrs, Volume= 0.006 af, Depth= 4.96"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

Area	(ac) C	N Desc	cription						
0.	0.015 98 Paved roads w/curbs & sewers, HSG D								
0.	0.015 100.00% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
0.3	46	0.0211	2.95		Shallow Concentrated Flow, Paved Kv= 20.3 fps				

Subcatchment 11: Subcat 11


Summary for Subcatchment 12: Subcat 12

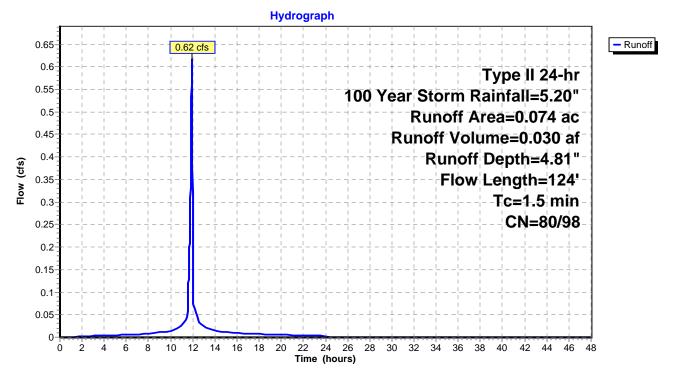
Runoff = 0.14 cfs @ 11.90 hrs, Volume= 0.007 af, Depth= 4.96"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

Area	(ac) C	N Desc	Description							
0.	0.016 98 Paved roads w/curbs & sewers, HSG D									
0.	0.016 100.00% Impervious Area									
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
0.3	47	0.0189	2.79		Shallow Concentrated Flow, Paved Kv= 20.3 fps					

Subcatchment 12: Subcat 12

Summary for Subcatchment 13: Subcat 13

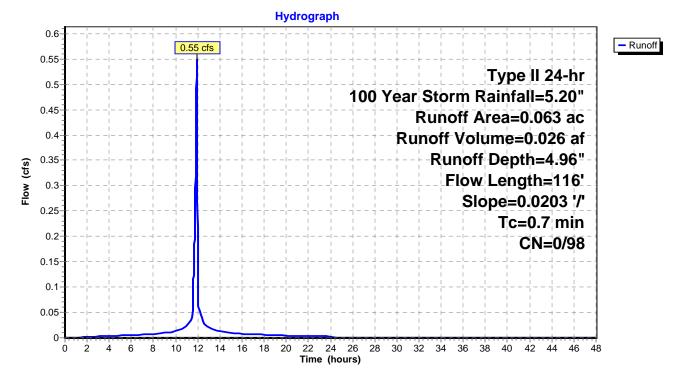

Runoff = 0.62 cfs @ 11.92 hrs, Volume= 0.030 af, Depth= 4.81"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

_	Area	(ac) C	N Dese	Description							
	0.060 98 Paved roads w/curbs & sewers, HSG D										
	0.008 98 Paved roads w/curbs & sewers, HSG D										
_	0.006 80 >75% Grass cover, Good, HSG D										
	0.	074 9	97 Weig	ghted Aver	age						
	0.	006	8.11	% Perviou	s Area						
	0.	068	91.8	9% Imperv	vious Area						
	_				- ·						
	Тс	Length	Slope	Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	0.1	8	0.0065	1.64		Shallow Concentrated Flow,					
						Paved Kv= 20.3 fps					
	1.1	54	0.0131	0.80		Shallow Concentrated Flow,					
						Short Grass Pasture Kv= 7.0 fps					
	0.3	62	0.0329	3.68		Shallow Concentrated Flow,					
						Paved Kv= 20.3 fps					
	1 5	101	Total								

1.5 124 Total

Subcatchment 13: Subcat 13

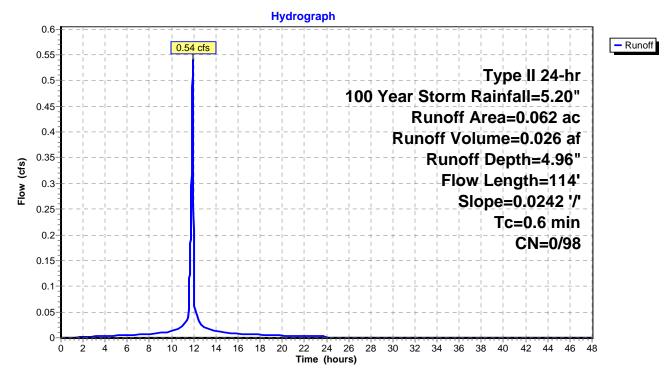

Summary for Subcatchment 14: Subcat 14

Runoff = 0.55 cfs @ 11.91 hrs, Volume= 0.026 af, Depth= 4.96"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

Area	(ac) C	N Dese	Description						
0.	0.063 98 Paved roads w/curbs & sewers, HSG D								
0.	0.063 100.00% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
0.7	116	0.0203	2.89		Shallow Concentrated Flow, Paved Kv= 20.3 fps				

Subcatchment 14: Subcat 14

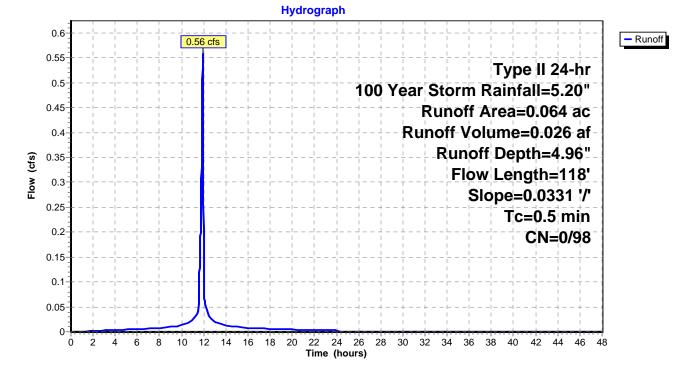

Summary for Subcatchment 15: Subcat 15

Runoff = 0.54 cfs @ 11.91 hrs, Volume= 0.026 af, Depth= 4.96"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

Area	(ac) C	N Desc	cription						
0.	0.062 98 Paved roads w/curbs & sewers, HSG D								
0.	0.062 100.00% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
0.6	114	0.0242	3.16		Shallow Concentrated Flow, Paved Kv= 20.3 fps				

Subcatchment 15: Subcat 15


Summary for Subcatchment 16: Subcat 16

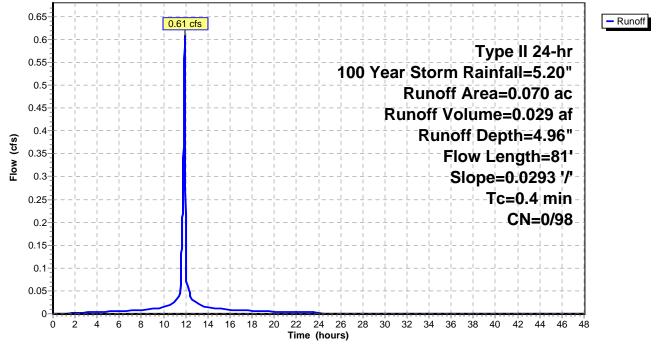
Runoff = 0.56 cfs @ 11.91 hrs, Volume= 0.026 af, Depth= 4.96"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

Area	(ac) C	N Desc	cription						
0.	0.064 98 Paved roads w/curbs & sewers, HSG D								
0.	0.064 100.00% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
0.5	118	0.0331	3.69		Shallow Concentrated Flow, Paved Kv= 20.3 fps				

Subcatchment 16: Subcat 16

Summary for Subcatchment 18: Subcat 18

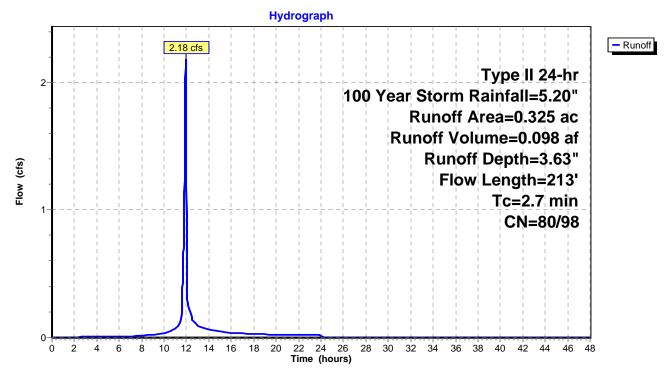

Runoff = 0.61 cfs @ 11.90 hrs, Volume= 0.029 af, Depth= 4.96"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

Area	(ac) C	N Desc	cription					
0.	0.070 98 Paved roads w/curbs & sewers, HSG D							
0.	0.070 100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
0.4	81	0.0293	3.47		Shallow Concentrated Flow, Paved Kv= 20.3 fps			

Subcatchment 18: Subcat 18

Hydrograph


Summary for Subcatchment 19: Subcat 19

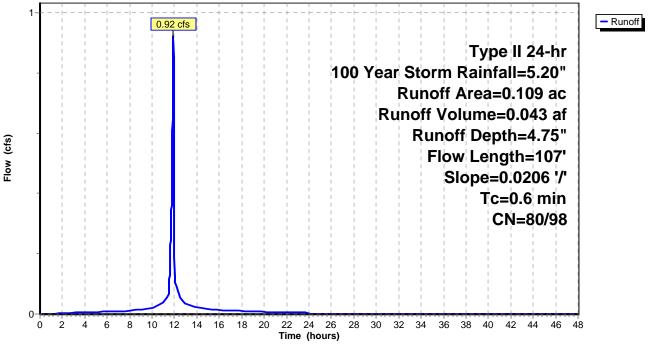
Runoff = 2.18 cfs @ 11.93 hrs, Volume= 0.098 af, Depth= 3.63"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

_	Area	(ac)	CN	Desc	cription		
	0.044 98 Paved roads w/curbs & se						ewers, HSG D
	0.052 98 Paved roads w/curbs & se					/curbs & se	ewers, HSG D
0.214 80 >75% Grass cover, Good,					6 Grass co	over, Good	, HSG D
0.015 80 >75% Grass cover, Good, HSG D						, HSG D	
	0.	325	85	Weig	hted Aver	age	
	0.	229		70.4	6% Pervio	us Area	
	0.096 29.54% Impervious Area					vious Area	
	Tc	Lengt		Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.1	15	5 0.0	0200	2.87		Shallow Concentrated Flow,
							Paved Kv= 20.3 fps
	2.6	198	3 0.0	0321	1.25		Shallow Concentrated Flow,
_							Short Grass Pasture Kv= 7.0 fps
	2.7	213	3 To	otal			

Subcatchment 19: Subcat 19

Summary for Subcatchment 20: Subcat 20


Runoff = 0.92 cfs @ 11.91 hrs, Volume= 0.043 af, Depth= 4.75"

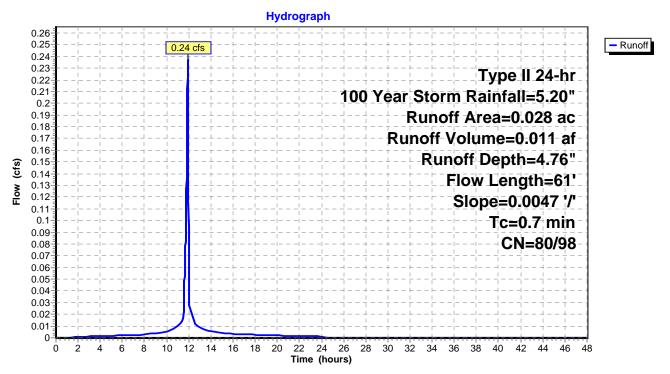
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

	Area ((ac) (CN	Description					
	0.097 98 Paved roads w/curbs & se					/curbs & se	ewers, HSG D		
	0.012 80 >75% Grass cover, Good					over, Good,	, HSG D		
	0.109 96 Weighted Average								
	0.012 11.01% Pervious Area					us Area			
	0.097 88.99% Impervious Area				9% Imperv	vious Area			
	Тс	Length	Slo	оре	Velocity	Capacity	Description		
(n	min)	(feet)	(f	t/ft)	(ft/sec)	(cfs)			
	0.6	107	0.02	206	2.91		Shallow Concentrated Flow, Paved Kv= 20.3 fps		

Subcatchment 20: Subcat 20

Hydrograph

Summary for Subcatchment 21: Subcat 21


Runoff = 0.24 cfs @ 11.91 hrs, Volume= 0.011 af, Depth= 4.76"

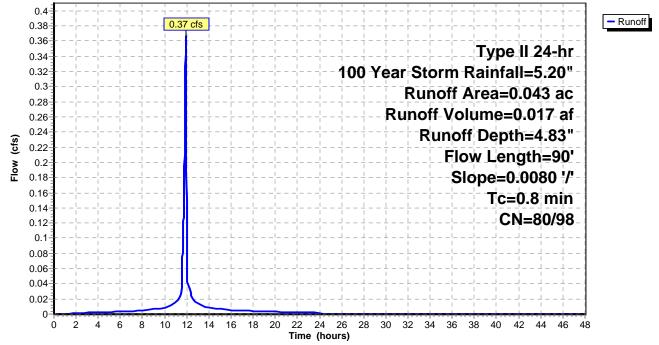
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

	Area	(ac)	CN	Desc	ription		
	0.023 98 Paved roads w/curbs & sev					/curbs & se	ewers, HSG D
	0.002 98 Paved roads w/curbs & sev					/curbs & se	ewers, HSG D
	0.	003	80	>75%	6 Grass co	over, Good	, HSG D
	0.028 96 Weighted Average					age	
	0.003 10.71% Pervious Area					us Area	
	0.025 8			89.29	9% Imperv	vious Area	
	Тс	Lengt	- (Slope	Velocity	Capacity	Description
	(min)	(feet		(ft/ft)	(ft/sec)	(cfs)	Description
-	0.7	6		.0047	1.39	(010)	Shallow Concentrated Flow, Paved Ky= 20.3 fps

Paved Kv= 20.3 fps

Subcatchment 21: Subcat 21

Summary for Subcatchment 22: Subcat 22

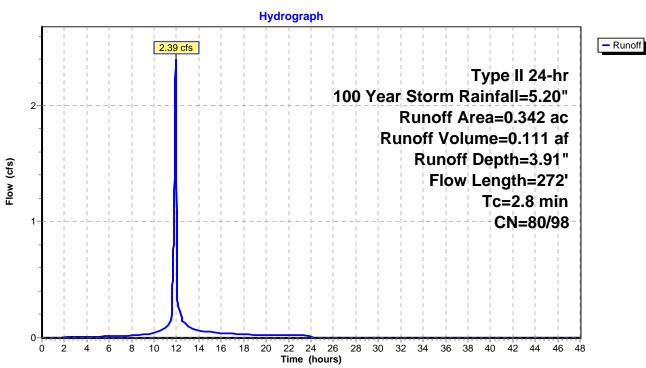

Runoff = 0.37 cfs @ 11.91 hrs, Volume= 0.017 af, Depth= 4.83"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

Are	a (ac)	CN	N Desc	cription		
	0.040 98 Paved roads w/curbs & se					ewers, HSG D
	0.003 80 >75% Grass cover, Good,					, HSG D
	0.043 97 Weighted Average					
	0.003 6.98% Pervious Area					
	0.040 93.02% Impervious Area			2% Imperv	vious Area	
To (min)			Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
0.8	3	90	0.0080	1.82		Shallow Concentrated Flow, Paved Kv= 20.3 fps

Subcatchment 22: Subcat 22

Hydrograph


Summary for Subcatchment 23: Subcat 23

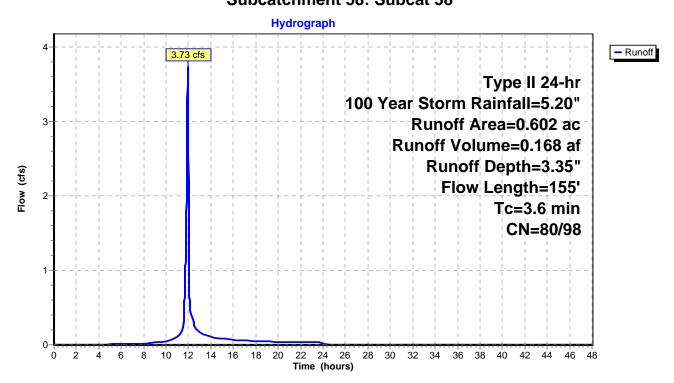
Runoff = 2.39 cfs @ 11.93 hrs, Volume= 0.111 af, Depth= 3.91"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

Are	a (ac)	С	N Dese	cription		
0.064 98 Paved roads w/curbs & sewers, HSG D						ewers, HSG D
	0.062	g	8 Pave	ed roads w	/curbs & se	ewers, HSG D
	0.008	8			over, Good	
0.020 80 >75% Grass cover, Good, HSG D						
	0.095				over, Good	
	0.067				over, Good	
	0.026	9				ewers, HSG D
	0.342	8	88 Weig	ghted Aver	age	
	0.190			6% Pervio		
	0.152		44.4	4% Imperv	vious Area	
-			<u></u>		o	
		ngth	Slope	Velocity	Capacity	Description
(mir	/ .	eet)	(ft/ft)	(ft/sec)	(cfs)	
2.	8	253	0.0462	1.50		Shallow Concentrated Flow,
	_			40.00		Short Grass Pasture Kv= 7.0 fps
0.	0	19	0.0298	10.26	18.13	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
						n= 0.013 Corrugated PE, smooth interior
2.	8	272	Total			

Prepared by VHB HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Subcatchment 23: Subcat 23

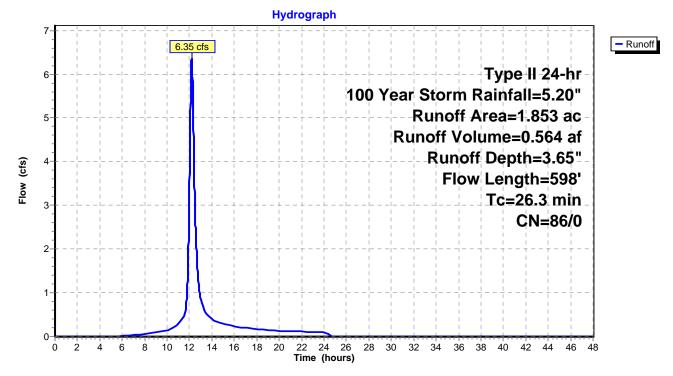

Summary for Subcatchment 58: Subcat 58

Runoff = 3.73 cfs @ 11.94 hrs, Volume= 0.168 af, Depth= 3.35"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

A	Area (a	ac) C	N Desc	cription		
	0.091 98 Paved roads w/curbs & se					ewers, HSG D
	0.004 80 >75% Grass cover, Good,					HSG D
	0.1	04 8	0 >75%	% Grass co	over, Good,	HSG D
	0.0)29 8			over, Good,	
	0.3	<u>874 8</u>	0 >75%	% Grass co	over, Good,	HSG D
	0.6	602 8	3 Weig	phted Aver	age	
	0.5	511	84.8	8% Pervio	us Area	
	0.091 15.12% Impervious Area					
	Тс	Length	Slope	Velocity	Capacity	Description
(n	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•
	3.3	97	0.0050	0.49		Shallow Concentrated Flow,
						•••••••••••••••••••••••••••••••••••••••
						Short Grass Pasture Kv= 7.0 fps
	0.1	18	0.0389	4.00		•
	0.1	18		4.00		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, Paved Kv= 20.3 fps
	0.1 0.2	18 40	0.0389 0.1630	4.00 2.83		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, Paved Kv= 20.3 fps Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, Paved Kv= 20.3 fps

Subcatchment 58: Subcat 58

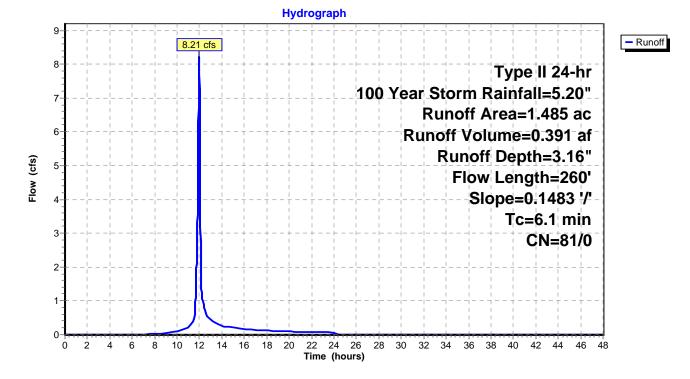

Summary for Subcatchment OS7a: OS7a

Runoff = 6.35 cfs @ 12.19 hrs, Volume= 0.564 af, Depth= 3.65"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

_	Area	(ac) C	N Dese	cription		
*	1.	853 8	36 weig	hted CN		
	1.	853	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	17.5	50	0.0132	0.05		Sheet Flow, Grass: Bermuda n= 0.410 P2= 2.30"
	8.5	410	0.0132	0.80		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
	0.1	78	0.0256	9.51	16.81	Pipe Channel, CMP_Round 18 " 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' n= 0.013
	0.2	60	0.1455	5.72		Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
	26.3	598	Total			

Subcatchment OS7a: OS7a


Summary for Subcatchment OS7b: OS7b

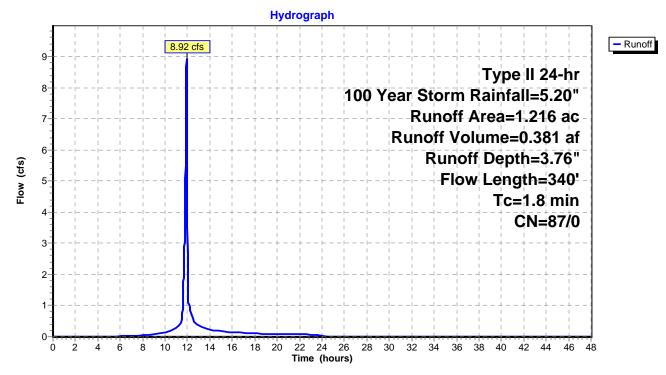
Runoff = 8.21 cfs @ 11.97 hrs, Volume= 0.391 af, Depth= 3.16"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

_	Area	(ac) C	N Dese	cription		
*	1.	.485 8	31 weig	hted CN		
	1.	485	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	4.3	50	0.1483	0.19	(013)	Sheet Flow,
						Grass: Dense n= 0.240 P2= 2.30"
	1.8	210	0.1483	1.93		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
_	6.1	260	Total			

Subcatchment OS7b: OS7b

Summary for Subcatchment OS9a: OS9a

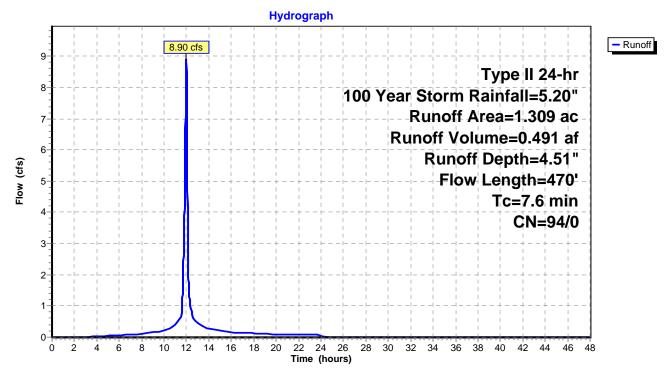

Runoff = 8.92 cfs @ 11.92 hrs, Volume= 0.381 af, Depth= 3.76"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

_	Area	(ac) C	N Dese	cription		
×	[′] 1.	216 8	37 weig	hted CN		
_	1.	216	100.00% Pervi		ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	0.5	50	0.0649	1.63		Sheet Flow, Smooth surfaces n= 0.011 P2= 2.30"
	0.1	30	0.0649	5.17		Shallow Concentrated Flow, Paved Kv= 20.3 fps
	0.4	160	0.1290	7.29		Shallow Concentrated Flow, Paved Kv= 20.3 fps
	0.8	100	0.0211	2.18		Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
-	4.0	0.40	Tatal			· · · · · · · · · · · · · · · · · · ·

1.8 340 Total

Subcatchment OS9a: OS9a

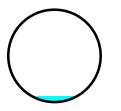

Summary for Subcatchment OS9b: OS9b

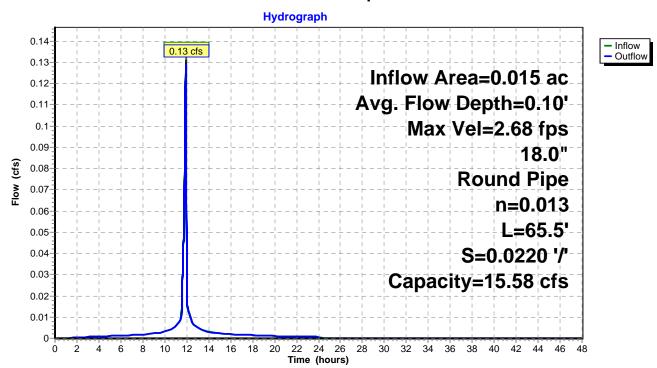
Runoff = 8.90 cfs @ 11.98 hrs, Volume= 0.491 af, Depth= 4.51"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 100 Year Storm Rainfall=5.20"

	Area	(ac) C	N Dese	cription		
*	1.	.309 9	94 weig	hted CN		
	1.	.309	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.2	50	0.0606	0.13		Sheet Flow, Grass: Dense n= 0.240 P2= 2.30"
	0.2	20	0.0606	1.72		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
	1.2	400	0.0732	5.49		Shallow Concentrated Flow, Paved Kv= 20.3 fps
_	7.6	470	Total			

Subcatchment OS9b: OS9b

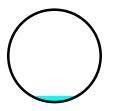


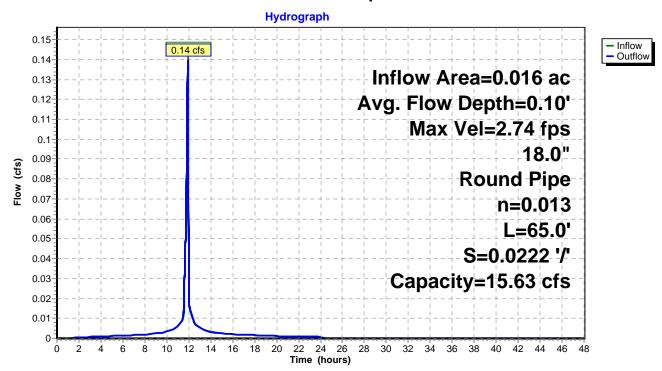

Summary for Reach P11: Pipe 11

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.68 fps, Min. Travel Time= 0.4 min Avg. Velocity = 0.86 fps, Avg. Travel Time= 1.3 min

Peak Storage= 3 cf @ 11.91 hrs Average Depth at Peak Storage= 0.10' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 15.58 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 65.5' Slope= 0.0220 '/' Inlet Invert= 326.66', Outlet Invert= 325.22'

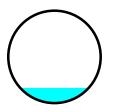

Reach P11: Pipe 11


Summary for Reach P12: Pipe 12

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.74 fps, Min. Travel Time= 0.4 min Avg. Velocity = 0.86 fps, Avg. Travel Time= 1.3 min

Peak Storage= 3 cf @ 11.91 hrs Average Depth at Peak Storage= 0.10' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 15.63 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 65.0' Slope= 0.0222 '/' Inlet Invert= 326.66', Outlet Invert= 325.22'


Reach P12: Pipe 12

Summary for Reach P13: Pipe 13

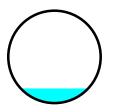
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.92 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.10 fps, Avg. Travel Time= 1.0 min

Peak Storage= 12 cf @ 11.92 hrs Average Depth at Peak Storage= 0.25' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 12.73 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 66.0' Slope= 0.0147 '/' Inlet Invert= 325.12', Outlet Invert= 324.15'

Hydrograph 0.8 0.74 cfs Inflow 0.75 - Outflow 0.7 Inflow Area=0.089 ac 0.65 Avg. Flow Depth=0.25' 0.6 Max Vel=3.92 fps 0.55 0.5 18.0" (cfs) 0.45 **Round Pipe** Flow 0.4 n=0.013 0.35 0.3 L=66.0' 0.25 S=0.0147 '/' 0.2 Capacity=12.73 cfs 0.15 0.1 0.05 0 Ò 2 6 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 8 Time (hours)

Reach P13: Pipe 13


Summary for Reach P14: Pipe 14

Inflow Area =0.079 ac,100.00% Impervious, Inflow Depth =4.96" for 100 Year Storm eventInflow =0.69 cfs @11.91 hrs, Volume=0.033 afOutflow =0.68 cfs @11.91 hrs, Volume=0.033 af, Atten= 1%, Lag= 0.1 min

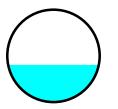
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.83 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.07 fps, Avg. Travel Time= 1.0 min

Peak Storage= 12 cf @ 11.91 hrs Average Depth at Peak Storage= 0.24' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 12.73 cfs

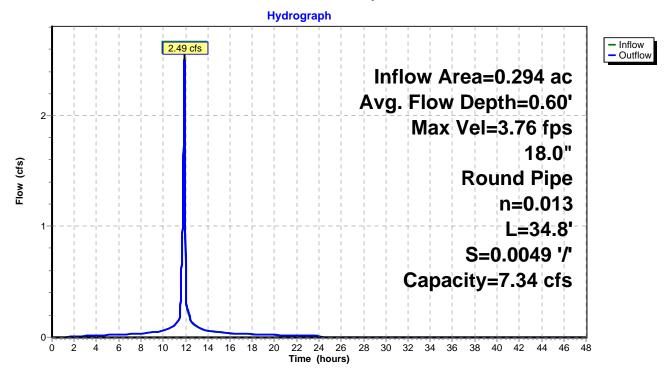
18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 66.0' Slope= 0.0147 '/' Inlet Invert= 325.12', Outlet Invert= 324.15'

Hydrograph 0.75 Inflow 0.68 cfs 0.7 - Outflow 0.65 Inflow Area=0.079 ac 0.6 Avg. Flow Depth=0.24' 0.55 Max Vel=3.83 fps 0.5 18.0" 0.45 (cfs) **Round Pipe** 0.4 Nol: 0.35 n=0.013 0.3 L=66.0' 0.25 S=0.0147 '/' 0.2 Capacity=12.73 cfs 0.15 0.1 0.05 0 Ò 2 6 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 8 Time (hours)

Reach P14: Pipe 14


Summary for Reach P15: Pipe 15

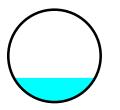
Inflow Area =0.294 ac, 97.96% Impervious, Inflow Depth =4.92" for 100 Year Storm eventInflow =2.50 cfs @11.91 hrs, Volume=0.121 afOutflow =2.49 cfs @11.91 hrs, Volume=0.121 af, Atten=0%, Lag=0.1 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.76 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.06 fps, Avg. Travel Time= 0.5 min

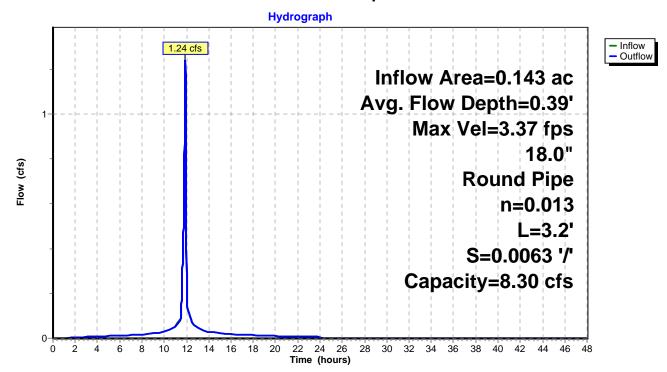
Peak Storage= 23 cf @ 11.91 hrs Average Depth at Peak Storage= 0.60' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 7.34 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 34.8' Slope= 0.0049 '/' Inlet Invert= 323.93', Outlet Invert= 323.76'

Reach P15: Pipe 15


Summary for Reach P16: Pipe 16

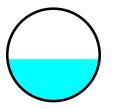
Inflow Area =0.143 ac,100.00% Impervious, Inflow Depth =4.96" for 100 Year Storm eventInflow =1.24 cfs @11.91 hrs, Volume=0.059 afOutflow =1.24 cfs @11.91 hrs, Volume=0.059 af, Atten= 0%, Lag= 0.0 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.37 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.94 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 11.91 hrs Average Depth at Peak Storage= 0.39' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 8.30 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 3.2' Slope= 0.0063 '/' Inlet Invert= 324.05', Outlet Invert= 324.03'

Reach P16: Pipe 16


Summary for Reach P18: Pipe 18

Inflow Area =0.364 ac, 98.35% Impervious, Inflow Depth =4.93" for 100 Year Storm eventInflow =3.10 cfs @11.91 hrs, Volume=0.150 afOutflow =3.09 cfs @11.91 hrs, Volume=0.150 af, Atten= 0%, Lag= 0.1 min

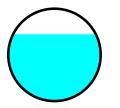
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.99 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.13 fps, Avg. Travel Time= 0.7 min

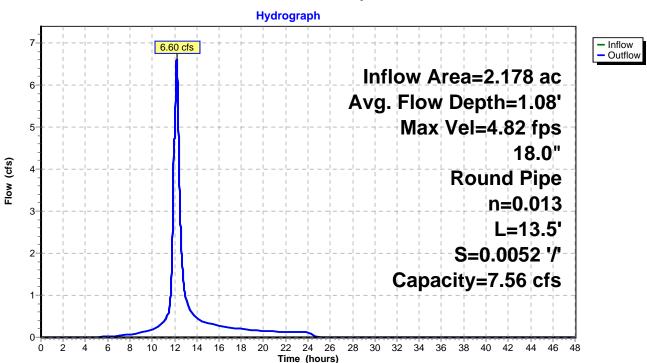
Peak Storage= 35 cf @ 11.91 hrs Average Depth at Peak Storage= 0.68' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 7.37 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 44.7' Slope= 0.0049 '/' Inlet Invert= 323.04', Outlet Invert= 322.82'

Hydrograph Inflow 3.09 cfs Outflow 3-Inflow Area=0.364 ac Avg. Flow Depth=0.68' Max Vel=3.99 fps 18.0" 2 Flow (cfs) **Round Pipe** n=0.013 L=44.7' 1 S=0.0049 '/' Capacity=7.37 cfs 0ò Ż 4 6 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 8 Time (hours)

Reach P18: Pipe 18


Summary for Reach P19: Pipe 19

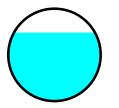

Inflow Area =2.178 ac, 4.41% Impervious, Inflow Depth = 3.65" for 100 Year Storm eventInflow =6.60 cfs @12.19 hrs, Volume=0.663 afOutflow =6.60 cfs @12.19 hrs, Volume=0.663 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.82 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.59 fps, Avg. Travel Time= 0.1 min

Peak Storage= 18 cf @ 12.19 hrs Average Depth at Peak Storage= 1.08' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 7.56 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 13.5' Slope= 0.0052 '/' Inlet Invert= 322.97', Outlet Invert= 322.90'

Reach P19: Pipe 19


Summary for Reach P20: Pipe 20

Inflow Area = 2.287 ac. 8.44% Impervious, Inflow Depth = 3.70" for 100 Year Storm event Inflow 6.69 cfs @ 12.19 hrs. Volume= 0.706 af = 6.68 cfs @ 12.19 hrs, Volume= Outflow 0.706 af, Atten= 0%, Lag= 0.1 min =

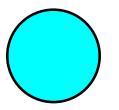
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.76 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.63 fps, Avg. Travel Time= 0.5 min

Peak Storage= 67 cf @ 12.19 hrs Average Depth at Peak Storage= 1.11' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 7.44 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 47.9' Slope= 0.0050 '/' Inlet Invert= 322.40', Outlet Invert= 322.16'

Hydrograph Inflow 7 6.68 cfs Outflow Inflow Area=2.287 ac 6-Avg. Flow Depth=1.11' Max Vel=4.76 fps 5 18.0" Flow (cfs) 4 **Round Pipe** n=0.013 3-L=47.9' S=0.0050 '/' 2 Capacity=7.44 cfs 1 0-2 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 0 Time (hours)

Reach P20: Pipe 20


Summary for Reach P21: Pipe 21

Inflow Area =2.679 ac, 21.50% Impervious, Inflow Depth =3.88" for 100 Year Storm eventInflow =8.36 cfs @11.92 hrs, Volume=0.866 afOutflow =7.82 cfs @11.90 hrs, Volume=0.866 af, Atten= 6%, Lag= 0.0 min

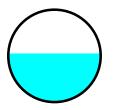
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.74 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.76 fps, Avg. Travel Time= 0.3 min

Peak Storage= 65 cf @ 11.91 hrs Average Depth at Peak Storage= 1.50' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 7.35 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 36.8' Slope= 0.0049 '/' Inlet Invert= 321.66', Outlet Invert= 321.48'

Hydrograph 9 Inflow 8.36 cfs Outflow 7.82 cfs 8 Inflow Area=2.679 ac Avg. Flow Depth=1.50' 7 Max Vel=4.74 fps 6-18.0" Flow (cfs) 5 **Round Pipe** n=0.013 4 L=36.8' 3-S=0.0049 '/' 2 Capacity=7.35 cfs 1 0-12 14 16 18 20 2 6 8 10 22 24 26 28 30 32 34 36 38 40 42 44 46 48 0 Time (hours)

Reach P21: Pipe 21

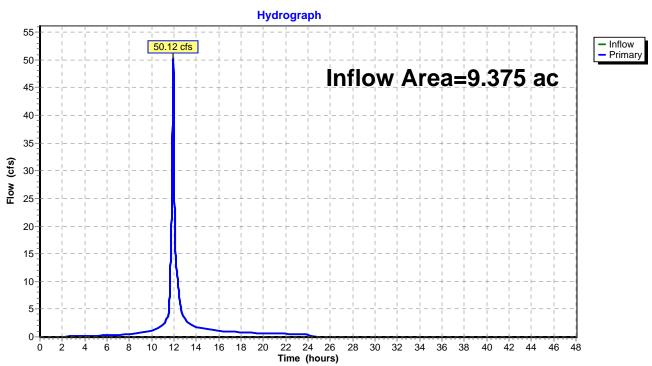

Summary for Reach P22: Pipe 22

Inflow Area =2.722 ac, 22.63% Impervious, Inflow Depth =3.90" for 100 Year Storm eventInflow =8.18 cfs @11.90 hrs, Volume=0.884 afOutflow =8.10 cfs @11.90 hrs, Volume=0.884 af, Atten= 1%, Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 8.60 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.94 fps, Avg. Travel Time= 0.5 min

Peak Storage= 84 cf @ 11.90 hrs Average Depth at Peak Storage= 0.79' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 14.89 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 89.6' Slope= 0.0201 '/' Inlet Invert= 320.98', Outlet Invert= 319.18'


Hydrograph - Inflow 8.10 cfs Outflow 8-Inflow Area=2.722 ac 7-Avg. Flow Depth=0.79' Max Vel=8.60 fps 6 18.0" Flow (cfs) 5-**Round Pipe** 4n=0.013 L=89.6' 3-S=0.0201 '/' 2-Capacity=14.89 cfs 1 0-12 14 16 18 20 2 6 8 10 22 24 26 28 30 32 34 36 38 40 42 44 46 48 0 Time (hours)

Reach P22: Pipe 22

Summary for Pond 007: POI 007

Inflow Are	a =	9.375 ac, 23.57% Impervious, Inflow Depth = 3.94" for 100 Year Storm event
Inflow	=	50.12 cfs @ 11.93 hrs, Volume= 3.075 af
Primary	=	50.12 cfs @ 11.93 hrs, Volume= 3.075 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Pond 007: POI 007

Summary for Pond P1: Pipe 1

Inflow Area =0.324 ac, 90.74% Impervious, Inflow Depth =4.79" for 100 Year Storm eventInflow =2.53 cfs @11.94 hrs, Volume=0.129 afOutflow =2.62 cfs @11.94 hrs, Volume=0.129 afPrimary =2.62 cfs @11.94 hrs, Volume=0.129 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 336.69' @ 11.97 hrs Surf.Area= 13 sf Storage= 50 cf

Plug-Flow detention time= 0.5 min calculated for 0.129 af (100% of inflow) Center-of-Mass det. time= 0.5 min (745.8 - 745.3)

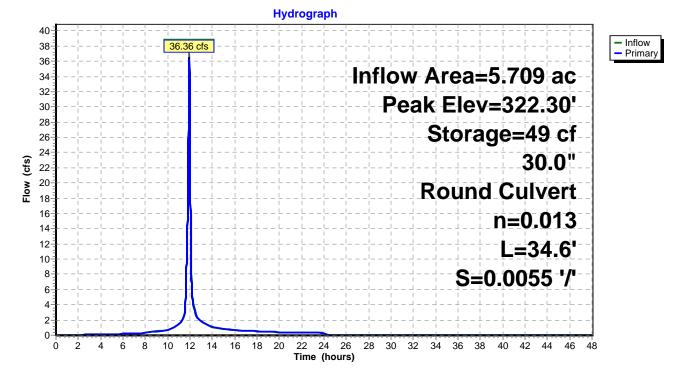
Volume	Invert	Avail.Storage	Storage Description
#1	321.64'	50 cf	4.00'D x 4.00'H Vertical Cone/Cylinder
Device	Routing	Invert Out	let Devices
#1	Primary	Inle	D" Round Culvert L= 67.2' Ke= 0.500 t / Outlet Invert= 321.64' / 321.30' S= 0.0051 '/' Cc= 0.900 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=0.00 cfs @ 11.94 hrs HW=334.49' TW=335.60' (Dynamic Tailwater)

Hydrograph Inflow 2.62 cfs 2.53 cfs Primary Inflow Area=0.324 ac Peak Elev=336.69' 2 Storage=50 cf 18.0" Flow (cfs) **Round Culvert** n=0.013 1 L=67.2' S=0.0051 '/' 0-Ż 6 10 12 14 16 18 20 28 30 32 36 38 0 4 8 22 24 26 34 40 42 44 46 48 Time (hours)

Pond P1: Pipe 1

Summary for Pond P10: Pipe 10

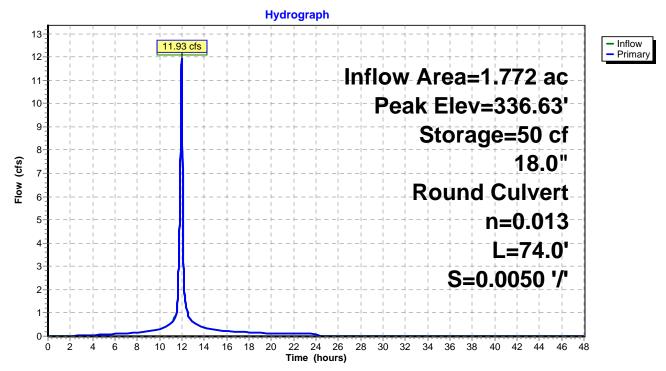

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 322.30' @ 11.93 hrs Surf.Area= 13 sf Storage= 49 cf

Plug-Flow detention time= 0.1 min calculated for 1.911 af (100% of inflow) Center-of-Mass det. time= 0.1 min (777.4 - 777.4)

Volume	Invert	Avail.Storage	Storage Description
#1	318.44'	50 cf	4.00'D x 4.00'H Vertical Cone/Cylinder
Device	Routing	Invert Out	let Devices
#1	Primary	Inle	D" Round Culvert L= 34.6' Ke= 0.500 t / Outlet Invert= 318.44' / 318.25' S= 0.0055 '/' Cc= 0.900 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf

Primary OutFlow Max=36.32 cfs @ 11.93 hrs HW=322.30' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 36.32 cfs @ 7.40 fps)

Pond P10: Pipe 10


Summary for Pond P2: Pipe 2

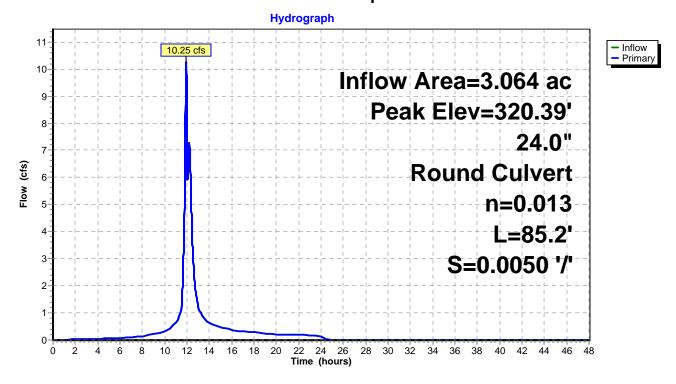
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 336.63' @ 11.96 hrs Surf.Area= 13 sf Storage= 50 cf

Plug-Flow detention time= 0.3 min calculated for 0.677 af (100% of inflow) Center-of-Mass det. time= 0.2 min (763.5 - 763.3)

Volume	Invert	Avail.Storage	Storage Description
#1	321.30'	50 cf	4.00'D x 4.00'H Vertical Cone/Cylinder
Device	Routing	Invert Out	let Devices
#1	Primary	Inle	D" Round Culvert L= 74.0' Ke= 0.500 t / Outlet Invert= 321.30' / 320.93' S= 0.0050 '/' Cc= 0.900 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=12.32 cfs @ 11.96 hrs HW=336.62' TW=334.47' (Dynamic Tailwater)

Pond P2: Pipe 2


Summary for Pond P23: Pipe 23

Inflow Area =3.064 ac, 25.07% Impervious, Inflow Depth =3.90" for 100 Year Storm eventInflow =10.25 cfs @11.90 hrs, Volume=0.995 afOutflow =10.25 cfs @11.90 hrs, Volume=0.995 af, Atten= 0%, Lag= 0.0 minPrimary =10.25 cfs @11.90 hrs, Volume=0.995 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 320.39' @ 11.90 hrs

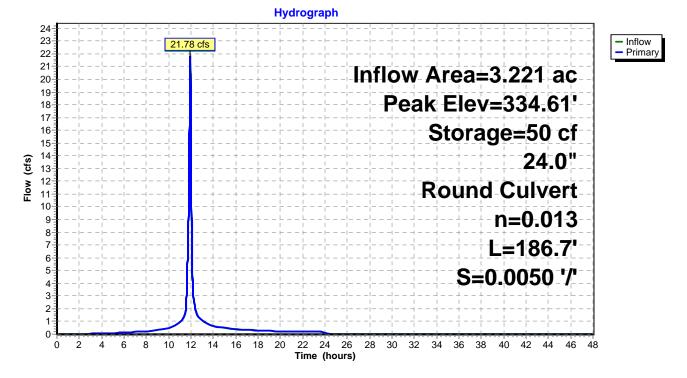
Device	Routing	Invert	Outlet Devices
#1	Primary	318.68'	24.0" Round Culvert L= 85.2' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= $318.68' / 318.25'$ S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=10.18 cfs @ 11.90 hrs HW=320.38' TW=0.00' (Dynamic Tailwater) ☐ 1=Culvert (Barrel Controls 10.18 cfs @ 4.80 fps)

Pond P23: Pipe 23

Summary for Pond P3: Pipe 3

Inflow Area = 3.221 ac, 19.78% Impervious, Inflow Depth = 4.29" for 100 Year Storm event Inflow 21.69 cfs @ 11.92 hrs. Volume= 1.151 af = 11.92 hrs, Volume= Outflow 21.78 cfs @ 1.151 af, Atten= 0%, Lag= 0.0 min = 21.78 cfs @ 11.92 hrs, Volume= Primary 1.151 af =


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 334.61' @ 11.95 hrs Surf.Area= 13 sf Storage= 50 cf

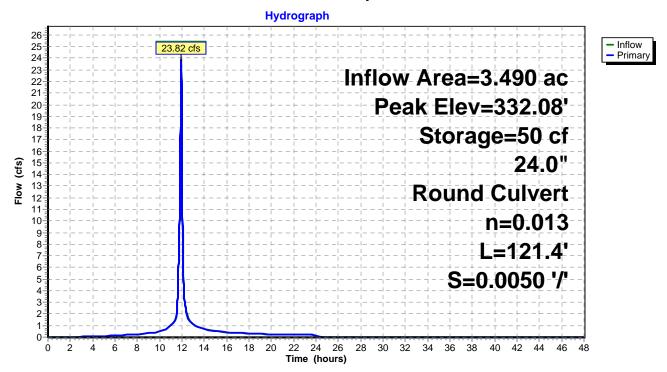
Plug-Flow detention time= 0.2 min calculated for 1.151 af (100% of inflow) Center-of-Mass det. time= 0.1 min (771.7 - 771.6)

Volume	Invert	Avail.Storage	Storage Description
#1	320.93'	50 cf	4.00'D x 4.00'H Vertical Cone/Cylinder
Device	Routing	Invert Out	let Devices
#1	Primary	Inle	D" Round Culvert L= 186.7' Ke= 0.500 t / Outlet Invert= 320.93' / 320.00' S= 0.0050 '/' Cc= 0.900 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=17.30 cfs @ 11.92 hrs HW=332.73' TW=330.93' (Dynamic Tailwater) -1=Culvert (Outlet Controls 17.30 cfs @ 5.51 fps)

Pond P3: Pipe 3

Summary for Pond P4: Pipe 4


Inflow Area = 3.490 ac, 22.66% Impervious, Inflow Depth = 4.28" for 100 Year Storm event Inflow 23.88 cfs @ 11.92 hrs. Volume= 1.244 af = 11.92 hrs, Volume= Outflow 23.82 cfs @ 1.244 af, Atten= 0%, Lag= 0.0 min = 23.82 cfs @ 11.92 hrs, Volume= Primary 1.244 af =

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 332.08' @ 11.94 hrs Surf.Area= 13 sf Storage= 50 cf

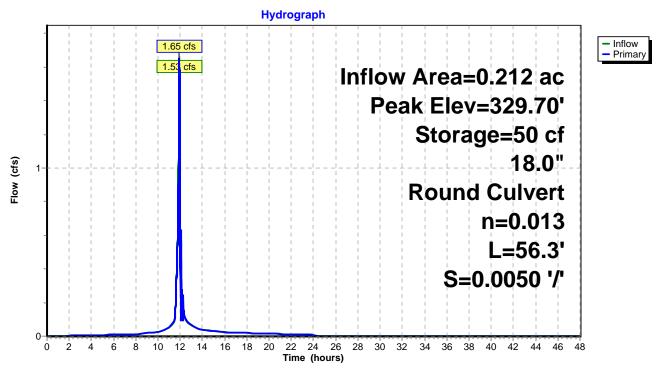
Plug-Flow detention time= 0.1 min calculated for 1.243 af (100% of inflow) Center-of-Mass det. time= 0.1 min (771.1 - 771.0)

Volume	Invert	Avail.Storage	Storage Description
#1	320.00'	50 cf	4.00'D x 4.00'H Vertical Cone/Cylinder
Device	Routing	Invert Out	et Devices
#1	Primary	Inlet	Round Culvert L= 121.4' Ke= 0.500 : / Outlet Invert= 320.00' / 319.39' S= 0.0050 '/' Cc= 0.900 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=20.51 cfs @ 11.92 hrs HW=331.18' TW=329.19' (Dynamic Tailwater) -1=Culvert (Outlet Controls 20.51 cfs @ 6.53 fps)

Pond P4: Pipe 4

Summary for Pond P5: Pipe 5


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 329.70' @ 11.96 hrs Surf.Area= 13 sf Storage= 50 cf

Plug-Flow detention time= 0.7 min calculated for 0.070 af (100% of inflow) Center-of-Mass det. time= 0.7 min (769.9 - 769.2)

Volume	Invert	Avail.Storage	Storage Description
#1	320.00'	50 cf	4.00'D x 4.00'H Vertical Cone/Cylinder
Device	Routing	Invert Out	let Devices
#1	Primary	Inle	0" Round Culvert L= 56.3' Square-edged headwall, Ke= 0.500 it / Outlet Invert= 320.00' / 319.72' S= 0.0050 '/' Cc= 0.900 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=0.00 cfs @ 11.92 hrs HW=327.62' TW=328.37' (Dynamic Tailwater)

Pond P5: Pipe 5

Summary for Pond P6: Pipe 6

Inflow Area =0.303 ac, 58.75% Impervious, Inflow Depth =4.18" for 100 Year Storm eventInflow =2.38 cfs @11.92 hrs, Volume=0.106 afOutflow =2.32 cfs @11.92 hrs, Volume=0.106 af, Atten= 3%, Lag= 0.0 minPrimary =2.32 cfs @11.92 hrs, Volume=0.106 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 329.67' @ 11.95 hrs Surf.Area= 13 sf Storage= 50 cf

Plug-Flow detention time= 0.6 min calculated for 0.106 af (100% of inflow) Center-of-Mass det. time= 0.6 min (762.7 - 762.1)

Volume	Invert	Avail.Storage	Storage Description
#1	319.65'	50 cf	4.00'D x 4.00'H Vertical Cone/Cylinder
Device	Routing	Invert Out	let Devices
#1	Primary	Inle	0" Round Culvert L= 61.9' Square-edged headwall, Ke= 0.500 t / Outlet Invert= 319.65' / 319.34' S= 0.0050 '/' Cc= 0.900 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=0.00 cfs @ 11.92 hrs HW=328.30' TW=329.03' (Dynamic Tailwater)

Hydrograph 2 38 cfs 2.32 cfs Inflow Primary Inflow Area=0.303 ac Peak Elev=329.67' 2 Storage=50 cf 18.0" Flow (cfs) **Round Culvert** n=0.013 1 L=61.9' S=0.0050 '/' 0-2 6 10 12 14 16 18 20 28 30 32 34 36 38 0 4 8 22 24 26 40 42 44 46 48 Time (hours)

Pond P6: Pipe 6

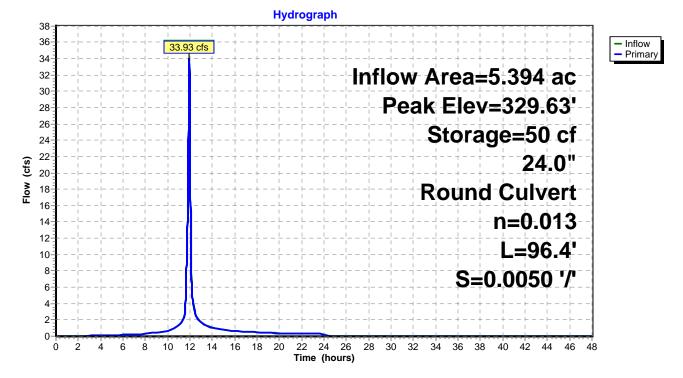
Summary for Pond P7: Pipe 7

 Inflow Area =
 5.394 ac, 19.48% Impervious, Inflow Depth = 3.97" for 100 Year Storm event

 Inflow =
 33.99 cfs @ 11.94 hrs, Volume=
 1.783 af

 Outflow =
 33.93 cfs @ 11.94 hrs, Volume=
 1.783 af, Atten= 0%, Lag= 0.0 min

 Primary =
 33.93 cfs @ 11.94 hrs, Volume=
 1.783 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 329.63' @ 11.94 hrs Surf.Area= 13 sf Storage= 50 cf

Plug-Flow detention time= 0.1 min calculated for 1.783 af (100% of inflow) Center-of-Mass det. time= 0.1 min (779.8 - 779.7)

Volume	Invert	Avail.Storage	Storage Description
#1	319.19'	50 cf	4.00'D x 4.00'H Vertical Cone/Cylinder
Device	Routing	Invert Out	let Devices
#1	Primary	Inle	D" Round Culvert L= 96.4' Ke= 0.500 t / Outlet Invert= 319.19' / 318.71' S= 0.0050 '/' Cc= 0.900 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=33.51 cfs @ 11.94 hrs HW=329.56' TW=324.65' (Dynamic Tailwater)

Pond P7: Pipe 7

Summary for Pond P8: Pipe 8

Inflow Area =	0.142 ac, 98.59% Impervious, Inflow Depth = 4.94" for 100 Year Storm event
Inflow =	1.16 cfs @ 11.93 hrs, Volume= 0.058 af
Outflow =	1.24 cfs @ 11.93 hrs, Volume= 0.058 af, Atten= 0%, Lag= 0.1 min
Primary =	1.24 cfs @ 11.93 hrs, Volume= 0.058 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 324.70' @ 11.95 hrs Surf.Area= 13 sf Storage= 50 cf

Plug-Flow detention time= 0.9 min calculated for 0.058 af (100% of inflow) Center-of-Mass det. time= 0.9 min (741.6 - 740.8)

Volume	Invert	Avail.Storage	Storage Description
#1	319.33'	50 cf	4.00'D x 4.00'H Vertical Cone/Cylinder
Device	Routing	Invert Out	let Devices
#1	Primary	L= ´ Inle	D" Round Culvert 123.6' Square-edged headwall, Ke= 0.500 t / Outlet Invert= 319.33' / 318.71' S= 0.0050 '/' Cc= 0.900 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

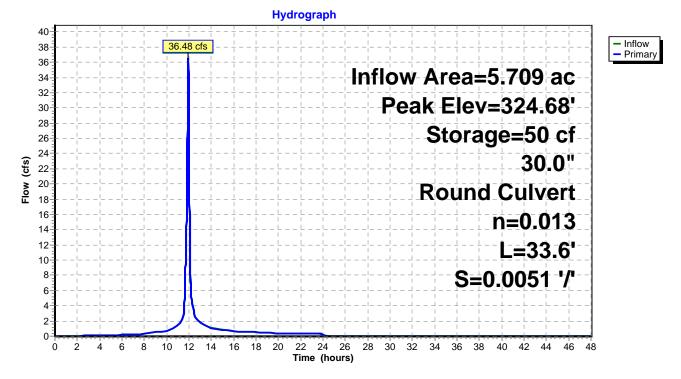
Primary OutFlow Max=0.00 cfs @ 11.93 hrs HW=324.50' TW=324.62' (Dynamic Tailwater)

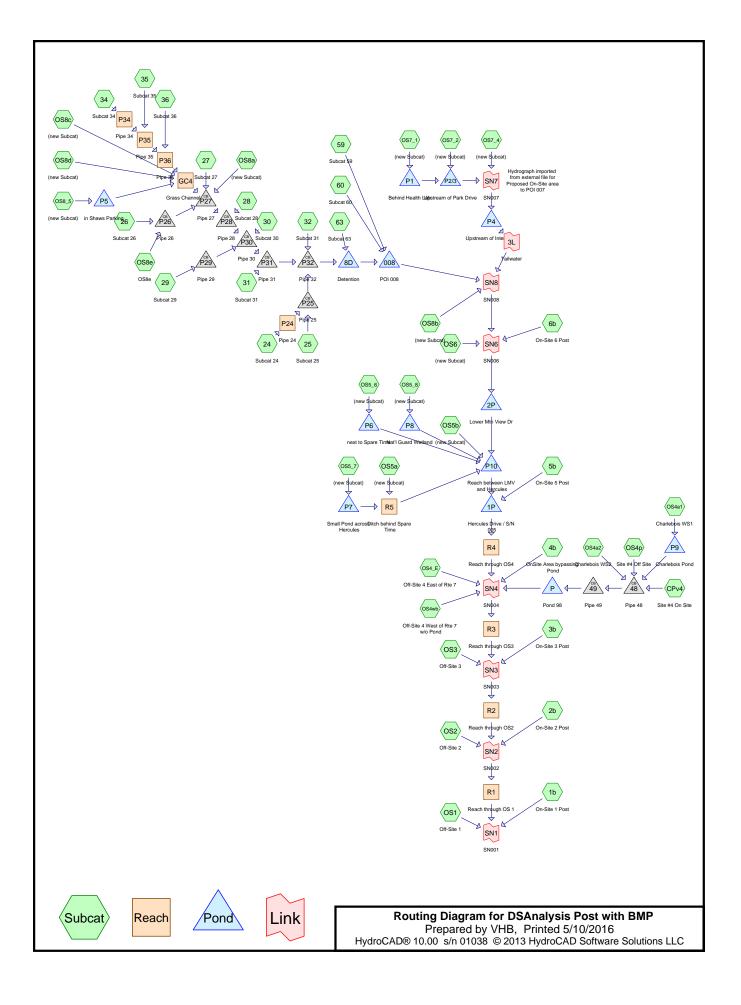
Hydrograph - Inflow 1.24 cfs Primary 1.16 cfs Inflow Area=0.142 ac Peak Elev=324.70' 1. Storage=50 cf 18.0" Flow (cfs) **Round Culvert** n=0.013 L=123.6' S=0.0050 '/' 0-12 14 28 30 32 34 36 38 40 42 44 46 48 0 2 4 6 8 10 16 18 20 22 24 26 Time (hours)

Pond P8: Pipe 8

Summary for Pond P9: Pipe 9

	vent
Inflow = 36.33 cfs @ 11.93 hrs, Volume= 1.911 af	
Outflow = 36.48 cfs @ 11.94 hrs, Volume= 1.911 af, Atten= 0%, Lag= 0.1 min	
Primary = 36.48 cfs @ 11.94 hrs, Volume= 1.911 af	


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 324.68' @ 11.94 hrs Surf.Area= 13 sf Storage= 50 cf


Plug-Flow detention time= 0.1 min calculated for 1.911 af (100% of inflow) Center-of-Mass det. time= 0.1 min (777.4 - 777.3)

Volume	Invert	Avail.Storage	Storage Description
#1	318.61'	50 cf	4.00'D x 4.00'H Vertical Cone/Cylinder
Device	Routing	Invert Out	let Devices
#1	Primary	Inle	D" Round Culvert L= 33.6' Ke= 0.500 t / Outlet Invert= 318.61' / 318.44' S= 0.0051 '/' Cc= 0.900 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf

Primary OutFlow Max=36.26 cfs @ 11.94 hrs HW=324.65' TW=322.29' (Dynamic Tailwater) -1=Culvert (Inlet Controls 36.26 cfs @ 7.39 fps)

Pond P9: Pipe 9

DSAnalysis Post with BMP Prepared by VHB HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.681	39	>75% Grass cover, Good, HSG A (1b, 2b, 3b, CPv4)
1.290	61	>75% Grass cover, Good, HSG B (3b, 4b, 6b, 24, 59, CPv4)
0.201	74	>75% Grass cover, Good, HSG C (3b)
2.925	80	>75% Grass cover, Good, HSG D (4b, 6b, 24, 25, 26, 28, 29, 30, 32, 34, 35, 36, 60,
		63, CPv4)
15.016	46	Composite CN (OS1)
13.610	56	Composite CN (OS2)
20.942	74	Composite CN (OS3)
1.860	93	From 2005 Permit Application (OS4a1)
0.114	80	Pasture/grassland/range, Good, HSG D (5b)
0.186	98	Paved roads w/curbs & sewers, HSG A (3b, CPv4)
0.751	98	Paved roads w/curbs & sewers, HSG B (6b, 24, 59, CPv4)
0.513	98	Paved roads w/curbs & sewers, HSG C (3b, CPv4)
5.358	98	Paved roads w/curbs & sewers, HSG D (4b, 5b, 6b, 24, 25, 26, 27, 28, 29, 30, 31,
		32, 34, 35, 36, 60, 63, CPv4)
1.830	83	Paved roads w/open ditches, 50% imp, HSG A (1b, 2b)
0.243	98	Water Surface, 0% imp, HSG B (CPv4)
0.309	32	Woods/grass comb., Good, HSG A (1b, 2b)
16.735	73	composite (OS4_E)
4.986	84	composite CN (OS4p)
15.557	86	composite CN (OS4wb)
1.120	80	from 2005 Permit Application (OS4a2)
27.882	70	weighted CN (OS5a, OS7_1)
141.727	74	weighted CN (OS5b, OS5_8, OS7_4)
7.318	83	weighted CN (OS5_6)
2.744	65	weighted CN (OS5_7)
21.459	75	weighted CN (OS6)
21.469	77	weighted CN (OS7_2)
2.557	88	weighted CN (OS8a)
5.517	82	weighted CN (OS8b)
7.231	84	weighted CN (OS8c, OS8d, OS8e)
17.067	91	weighted CN (OS8_5)
359.198	75	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment	
(acres)	Group	Numbers	
3.006	HSG A	1b, 2b, 3b, CPv4	
2.284	HSG B	3b, 4b, 6b, 24, 59, CPv4	
0.714	HSG C	3b, CPv4	
8.397	HSG D	4b, 5b, 6b, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 60, 63, CPv4	
344.797	Other	OS1, OS2, OS3, OS4a1, OS4a2, OS4p, OS4wb, OS4_E, OS5a, OS5b, OS5_6,	
		OS5_7, OS5_8, OS6, OS7_1, OS7_2, OS7_4, OS8a, OS8b, OS8c, OS8d, OS8e,	
		OS8_5	
359.198		TOTAL AREA	

DSAnalysis Post with BMP Prepared by VHB HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Printed 5/10/2016 Page 4

В	HSG-C	HSG-D	Other	Total	Ground	Subcatchr
5)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0	0.201	2.925	0.000	5.097	>75% Grass cover, Good	_
0	0.000	0.000	49.568	49.568	Composite CN	
0	0.000	0.000	1.860	1.860	From 2005 Permit Application	
0	0.000	0.114	0.000	0.114	Pasture/grassland/range, Good	
1	0.513	5.358	0.000	6.808	Paved roads w/curbs & sewers	
0	0.000	0.000	0.000	1.830	Paved roads w/open ditches, 50%	
					imp	
3	0.000	0.000	0.000	0.243	Water Surface, 0% imp	
0	0.000	0.000	0.000	0.309	Woods/grass comb., Good	
0	0.000	0.000	16.735	16.735	composite	
0	0.000	0.000	20.543	20.543	composite CN	
0	0.000	0.000	1.120	1.120	from 2005 Permit Application	
0	0.000	0.000	254.971	254.971	weighted CN	
4	0.714	8.397	344.797	359.198	TOTAL AREA	

Ground Covers (all nodes)

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1b: On-Site 1 PostRunoff Area=0.997 ac 38.47% Impervious Runoff Depth=1.31"Flow Length=744' Tc=4.1 min CN=56/98 Runoff=1.98 cfs 0.109 af
Subcatchment 2b: On-Site 2 PostRunoff Area=1.672 ac 31.79% Impervious Runoff Depth=1.05"Flow Length=727' Tc=5.8 min CN=51/98 Runoff=2.42 cfs 0.146 af
Subcatchment 3b: On-Site 3 PostRunoff Area=1.013 ac 66.14% Impervious Runoff Depth=2.10"Flow Length=457'Slope=0.0240 '/' Tc=16.2 min CN=60/98 Runoff=2.31 cfs 0.177 af
Subcatchment4b: OnSite Area bypassing Runoff Area=2.506 ac 48.52% Impervious Runoff Depth=1.95" Flow Length=1,397' Tc=5.3 min CN=73/98 Runoff=7.90 cfs 0.406 af
Subcatchment 5b: On-Site 5 PostRunoff Area=0.302 ac 62.25% Impervious Runoff Depth=2.38"Flow Length=231' Tc=1.7 min CN=80/98 Runoff=1.31 cfs 0.060 af
Subcatchment 6b: On-Site 6 PostRunoff Area=0.906 ac 68.54% Impervious Runoff Depth=2.25"Flow Length=349' Tc=2.7 min CN=67/98 Runoff=3.48 cfs 0.170 af
Subcatchment 24: Subcat 24Runoff Area=0.380 ac87.37% ImperviousRunoff Depth=2.69"Flow Length=376'Slope=0.0308 '/'Tc=1.8 minCN=68/98Runoff=1.78 cfs0.085 af
Subcatchment 25: Subcat 25Runoff Area=0.171 ac96.49% ImperviousRunoff Depth=2.91"Flow Length=218'Slope=0.0314 '/'Tc=1.0 minCN=80/98Runoff=0.89 cfs0.042 af
Subcatchment 26: Subcat 26Runoff Area=0.601 ac 40.43% Impervious Runoff Depth=2.03"Flow Length=643' Tc=7.5 min CN=80/98Runoff=1.90 cfs 0.102 af
Subcatchment 27: Subcat 27Runoff Area=0.367 ac 100.00% Impervious Runoff Depth=2.97"Flow Length=429'Slope=0.0326 '/' Tc=2.0 min CN=0/98 Runoff=1.88 cfs 0.091 af
Subcatchment 28: Subcat 28Runoff Area=0.090 ac94.44% ImperviousRunoff Depth=2.88"Flow Length=128'Slope=0.0272 '/'Tc=0.6 minCN=80/98Runoff=0.47 cfs0.022 af
Subcatchment 29: Subcat 29Runoff Area=0.136 ac 33.09% Impervious Runoff Depth=1.92"Flow Length=178' Tc=2.1 min CN=80/98 Runoff=0.49 cfs 0.022 af
Subcatchment 30: Subcat 30Runoff Area=0.126 ac 70.63% Impervious Runoff Depth=2.51" Flow Length=115' Tc=1.4 min CN=80/98 Runoff=0.57 cfs 0.026 af
Subcatchment 31: Subcat 31Runoff Area=0.053 ac100.00% ImperviousRunoff Depth=2.97"Flow Length=97'Slope=0.0249 '/'Tc=0.5 minCN=0/98Runoff=0.28 cfs0.013 af
Subcatchment 32: Subcat 31Runoff Area=0.034 ac88.24% ImperviousRunoff Depth=2.78"Flow Length=69'Tc=0.5 minCN=80/98Runoff=0.17 cfs0.008 af
Subcatchment 34: Subcat 34Runoff Area=0.203 ac 57.14% Impervious Runoff Depth=2.30"Flow Length=161' Tc=2.3 min CN=80/98 Runoff=0.84 cfs 0.039 af

DSAnalysis Post with BMPType II 24-hr10 Year Storm Rainfall=3.20"Prepared by VHBPrinted 5/10/2016HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLCPage 6Subcatchment 35: Subcat 35Runoff Area=0.205 ac86.34% Impervious

Subcatchment 35: Subcat 35 Flow Length=149' Slope=0.0186 '/' Tc=0.9 min CN=80/98 Runoff=1.02 cfs 0.047 af
Subcatchment 36: Subcat 36Runoff Area=0.196 ac99.49% ImperviousRunoff Depth=2.96"Flow Length=186'Slope=0.0429 '/'Tc=0.7 minCN=80/98Runoff=1.04 cfs0.048 af
Subcatchment 59: Subcat 59Runoff Area=0.079 ac 56.96% Impervious Runoff Depth=1.88"Flow Length=233' Tc=2.5 min CN=61/98 Runoff=0.25 cfs 0.012 af
Subcatchment 60: Subcat 60Runoff Area=0.657 ac54.64% ImperviousRunoff Depth=2.26"Flow Length=193'Tc=1.0 minCN=80/98Runoff=2.79 cfs0.124 af
Subcatchment 63: Subcat 63Runoff Area=0.515 ac26.99% ImperviousRunoff Depth=1.82"Flow Length=331'Tc=3.7 minCN=80/98Runoff=1.70 cfs0.078 af
Subcatchment CPv4: Site #4 On Site Runoff Area=3.192 ac 52.41% Impervious Runoff Depth=2.08" Flow Length=1,397' Tc=5.3 min CN=75/98 Runoff=10.75 cfs 0.552 af
Subcatchment OS1: Off-Site 1Runoff Area=15.016 ac 0.00% Impervious Runoff Depth=0.06"Flow Length=1,440'Tc=24.5 minCN=46/0Runoff=0.09 cfs 0.072 af
Subcatchment OS2: Off-Site 2Runoff Area=13.610 ac 0.00% Impervious Runoff Depth=0.28"Flow Length=1,300'Tc=32.9 minCN=56/0Runoff=1.34 cfs 0.317 af
Subcatchment OS3: Off-Site 3Runoff Area=20.942 ac 0.00% Impervious Runoff Depth=1.04"Flow Length=668'Slope=0.0210 '/' Tc=28.9 min CN=74/0 Runoff=18.01 cfs 1.811 af
Subcatchment OS4a1: Charlebois WS1Runoff Area=1.860 ac0.00% ImperviousRunoff Depth=2.45"Tc=5.8 minCN=93/0Runoff=7.66 cfs0.379 af
Subcatchment OS4a2: Charlebois WS2Runoff Area=1.120 ac 0.00% Impervious Runoff Depth=1.40" Tc=1.5 min CN=80/0 Runoff=3.33 cfs 0.131 af
Subcatchment OS4p: Site #4 Off SiteRunoff Area=4.986 ac0.00% ImperviousRunoff Depth=1.68"Flow Length=1,310'Tc=7.4 minCN=84/0Runoff=14.19 cfs0.699 af
Subcatchment OS4wb: Off-Site 4 West of Runoff Area=15.557 ac 0.00% Impervious Runoff Depth=1.84" Flow Length=2,060' Tc=21.8 min CN=86/0 Runoff=30.24 cfs 2.379 af
Subcatchment OS4_E: Off-Site 4 East of Runoff Area=16.735 ac 0.00% Impervious Runoff Depth=0.98" Flow Length=1,140' Slope=0.0114 '/' Tc=38.8 min CN=73/0 Runoff=10.95 cfs 1.371 af
Subcatchment OS5a: (new Subcat)Runoff Area=19.687 ac0.00% ImperviousRunoff Depth=0.83"Flow Length=1,356'Slope=0.0012 '/'Tc=98.7 minCN=70/0Runoff=5.16 cfs1.359 af
Subcatchment OS5b: (new Subcat)Runoff Area=61.972 ac0.00% ImperviousRunoff Depth=1.04"Flow Length=3,643'Tc=207.9 minCN=74/0Runoff=12.08 cfs5.358 af
Subcatchment OS5_6: (new Subcat)Runoff Area=7.318 ac 0.00% Impervious Runoff Depth=1.61"Flow Length=660'Tc=6.1 minCN=83/0Runoff=20.95 cfs 0.981 af
Subcatchment OS5 7: (new Subcat) Runoff Area=2.744 ac 0.00% Impervious Runoff Depth=0.60"

Subcatchment OS5_7: (new Subcat) Flow Length=556' Slope=0.0010 '/' Tc=49.1 min CN=65/0 Runoff=0.76 cfs 0.137 af

DSAnalysis Post with BMP	Type II 24-hr	10 Year Storm Rainfall=3.20"
Prepared by VHB		Printed 5/10/2016
HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Sol	lutions LLC	Page 7

Subcatchment OS5_8: (new Subcat) Flow Length=2,163' Tc=40.1 min CN=74/0 Runoff=45.62 cfs 5.788 af
Subcatchment OS6: (new Subcat)Runoff Area=21.459 ac0.00% ImperviousRunoff Depth=1.09"Flow Length=1,476'Tc=18.7 minCN=75/0Runoff=26.04 cfs1.956 af
Subcatchment OS7_1: (new Subcat) Flow Length=136' Slope=0.0108 '/' Tc=33.6 min CN=70/0 Runoff=4.73 cfs 0.566 af
Subcatchment OS7_2: (new Subcat)Runoff Area=21.469 ac0.00% ImperviousRunoff Depth=1.21"Flow Length=779'Tc=6.1 minCN=77/0Runoff=46.37 cfs2.168 af
Subcatchment OS7_4: (new Subcat) Flow Length=503' Slope=0.0219 '/' Tc=33.5 min CN=74/0 Runoff=9.96 cfs 1.107 af
Subcatchment OS8a: (new Subcat)Runoff Area=2.557 ac0.00% ImperviousRunoff Depth=2.00"Flow Length=680'Tc=12.7 minCN=88/0Runoff=7.09 cfs0.426 af
Subcatchment OS8b: (new Subcat)Runoff Area=5.517 ac0.00% ImperviousRunoff Depth=1.54"Flow Length=799'Tc=20.3 minCN=82/0Runoff=9.32 cfs0.707 af
SubcatchmentOS8c: (new Subcat)Runoff Area=0.298 ac0.00% ImperviousRunoff Depth=1.68"Flow Length=240'Slope=0.0504 '/'Tc=9.5 minCN=84/0Runoff=0.79 cfs0.042 af
Subcatchment OS8d: (new Subcat)Runoff Area=2.208 ac 0.00% Impervious Runoff Depth=1.68"Flow Length=740'Tc=22.9 min CN=84/0 Runoff=3.81 cfs 0.310 af
Subcatchment OS8e: OS8eRunoff Area=4.725 ac 0.00% Impervious Runoff Depth=1.68"Flow Length=370'Slope=0.0538 '/' Tc=20.9 min CN=84/0 Runoff=8.63 cfs 0.662 af
Subcatchment OS8_5: (new Subcat)Runoff Area=17.067 ac0.00% ImperviousRunoff Depth=2.26"Flow Length=1,741'Tc=7.2 minCN=91/0Runoff=63.26 cfs3.212 af
Reach GC4: Grass Channel 4 Avg. Flow Depth=0.50' Max Vel=4.08 fps Inflow=14.38 cfs 2.810 af n=0.030 L=370.2' S=0.0243 '/' Capacity=123.15 cfs Outflow=14.35 cfs 2.809 af
Reach P24: Pipe 24 Avg. Flow Depth=0.33' Max Vel=6.00 fps Inflow=1.78 cfs 0.085 af 18.0" Round Pipe n=0.013 L=140.7' S=0.0237 '/' Capacity=16.18 cfs Outflow=1.77 cfs 0.085 af
Reach P34: Pipe 34 Avg. Flow Depth=0.34' Max Vel=2.76 fps Inflow=0.84 cfs 0.039 af 18.0" Round Pipe n=0.013 L=34.9' S=0.0049 '/' Capacity=7.33 cfs Outflow=0.84 cfs 0.039 af
Reach P35: Pipe 35 Avg. Flow Depth=0.44' Max Vel=4.19 fps Inflow=1.82 cfs 0.086 af 18.0" Round Pipe n=0.013 L=84.2' S=0.0084 '/' Capacity=9.65 cfs Outflow=1.81 cfs 0.086 af
Reach P36: Pipe 36 Avg. Flow Depth=0.57' Max Vel=3.78 fps Inflow=2.82 cfs 0.134 af 24.0" Round Pipe n=0.013 L=16.6' S=0.0048 '/' Capacity=15.70 cfs Outflow=2.82 cfs 0.134 af
Reach R1: Reach through OS 1 Avg. Flow Depth=0.48' Max Vel=3.76 fps Inflow=59.45 cfs 32.917 af n=0.035 L=590.0' S=0.0220 '/' Capacity=2,282.34 cfs Outflow=59.05 cfs 32.902 af

DSAnalysis Post with BMP Prepared by VHB	<i>Type II 24-hr 10 Year Storm Rainfall</i> =3.20" Printed 5/10/2016
HydroCAD® 10.00 s/n 01038 © 2013 Hydro	CAD Software Solutions LLC Page 8
	Avg. Flow Depth=0.76' Max Vel=6.51 fps Inflow=58.22 cfs 32.461 af .0' S=0.0500 '/' Capacity=1,850.26 cfs Outflow=58.06 cfs 32.454 af
	Avg. Flow Depth=0.42' Max Vel=1.38 fps Inflow=41.35 cfs 30.507 af .0' S=0.0052 '/' Capacity=2,787.67 cfs Outflow=39.15 cfs 30.473 af
	Avg. Flow Depth=0.39' Max Vel=1.00 fps Inflow=31.91 cfs 24.907 af .0' S=0.0020 '/' Capacity=1,717.01 cfs Outflow=31.86 cfs 24.863 af
Reach R5: Ditch behind Spare Time n=0.025 L	Avg. Flow Depth=0.79' Max Vel=1.26 fps Inflow=5.16 cfs 1.411 af
Pond 1P: Hercules Drive / S/N 005	Peak Elev=302.19' Storage=31,283 cf Inflow=32.49 cfs 24.914 af Outflow=31.91 cfs 24.907 af
Pond 2P: Lower Mtn View Dr	Peak Elev=309.96' Storage=92,367 cf Inflow=64.20 cfs 11.739 af Outflow=13.93 cfs 11.735 af
Pond 008: POI 008	Inflow=28.53 cfs 4.521 af Primary=28.53 cfs 4.521 af
Pond 8D: Detention	Peak Elev=325.08' Storage=8,880 cf Inflow=30.07 cfs 4.385 af Outflow=28.20 cfs 4.385 af
Pond 48: Pipe 48 30.0" Rou	Peak Elev=325.29' Inflow=26.81 cfs 1.739 af nd Culvert n=0.013 L=75.0' S=0.0360 '/' Outflow=26.81 cfs 1.739 af
Pond 49: Pipe 49 30.0" Rou	Peak Elev=321.54' Inflow=26.81 cfs 1.739 af nd Culvert n=0.013 L=28.0' S=0.1071 '/' Outflow=26.81 cfs 1.739 af
Pond P: Pond 98	Peak Elev=319.00' Storage=34,517 cf Inflow=26.81 cfs 1.739 af Outflow=2.67 cfs 1.488 af
Pond P1: Behind Health Lab	Peak Elev=310.17' Storage=24,634 cf Inflow=4.73 cfs 0.566 af Outflow=0.00 cfs 0.000 af
Pond P10: Reach between LMV and	Peak Elev=308.04' Storage=54,690 cf Inflow=32.65 cfs 25.021 af Outflow=32.46 cfs 24.855 af
	Peak Elev=310.77' Storage=57,533 cf Inflow=46.37 cfs 2.168 af nd Culvert n=0.013 L=100.0' S=0.0025 '/' Outflow=1.21 cfs 1.790 af
Pond P25: Pipe 25 18.0" Ro	Peak Elev=329.90' Inflow=2.63 cfs 0.127 af und Culvert n=0.013 L=57.2' S=0.0552 '/' Outflow=2.63 cfs 0.127 af
Pond P26: Pipe 26 24.0" Ro	Peak Elev=333.53' Inflow=9.19 cfs 0.764 af und Culvert n=0.013 L=35.6' S=0.0048 '/' Outflow=9.19 cfs 0.764 af
Pond P27: Pipe 27 30.0" Rou	Peak Elev=333.16' Inflow=29.26 cfs 4.090 af nd Culvert n=0.013 L=71.7' S=0.0050 '/' Outflow=29.26 cfs 4.090 af
Pond P28: Pipe 28 30.0" Rou	Peak Elev=331.64' Inflow=29.31 cfs 4.111 af nd Culvert n=0.013 L=73.4' S=0.0050 '/' Outflow=29.31 cfs 4.111 af

DSAnalysis Post with BMP

Type II 24-hr 10 Year Storm Rainfall=3.20" Printed 5/10/2016

Page 9

Prepared by VHB HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Pond P29: Pipe 29	Peak Elev=330.12' Inflow=0.49 cfs 0.022 af 24.0" Round Culvert n=0.013 L=23.2' S=0.0052 '/' Outflow=0.49 cfs 0.022 af
Pond P30: Pipe 30	Peak Elev=330.12' Inflow=29.44 cfs 4.159 af 36.0" Round Culvert n=0.013 L=37.8' S=0.0050 '/' Outflow=29.44 cfs 4.159 af
Pond P31: Pipe 31	Peak Elev=329.38' Inflow=29.47 cfs 4.173 af 36.0" Round Culvert n=0.013 L=33.7' S=0.0050 '/' Outflow=29.47 cfs 4.173 af
Pond P32: Pipe 32	Peak Elev=328.63' Inflow=29.80 cfs 4.307 af 36.0" Round Culvert n=0.013 L=134.4' S=0.0037 '/' Outflow=29.80 cfs 4.307 af
Pond P4: Upstream of Inters 35.0" x 24.0", R=17.9"/5	State Peak Elev=309.74' Storage=94,485 cf Inflow=17.39 cfs 4.533 af 55.1" Pipe Arch Culvert n=0.013 L=216.0' S=0.0053 '/' Outflow=4.29 cfs 4.385 af
Pond P5: in Shaws Parking	Peak Elev=358.34' Storage=73,624 cf Inflow=63.26 cfs 3.212 af Outflow=10.02 cfs 2.325 af
Pond P6: next to Spare Time	e Peak Elev=310.49' Storage=28,585 cf Inflow=20.95 cfs 0.981 af Outflow=0.41 cfs 0.887 af
Pond P7: Small Pond acros	s Hercules Peak Elev=313.51' Storage=3,714 cf Inflow=0.76 cfs 0.137 af Outflow=0.11 cfs 0.053 af
Pond P8: Nat'l Guard Wetla	nd Peak Elev=309.65' Storage=123,625 cf Inflow=45.62 cfs 5.788 af Outflow=4.79 cfs 5.629 af
Pond P9: Charlebois Pond	Peak Elev=333.57' Storage=0.296 af Inflow=7.66 cfs 0.379 af Outflow=0.80 cfs 0.357 af
Link 3L: Tailwater	Inflow=4.29 cfs 4.385 af Primary=4.29 cfs 4.385 af
Link SN1: SN001	Inflow=59.27 cfs 33.083 af Primary=59.27 cfs 33.083 af
Link SN2: SN002	Inflow=59.45 cfs 32.917 af Primary=59.45 cfs 32.917 af
Link SN3: SN003	Inflow=58.22 cfs 32.461 af Primary=58.22 cfs 32.461 af
Link SN4: SN004	Inflow=41.35 cfs 30.507 af Primary=41.35 cfs 30.507 af
Link SN6: SN006	Inflow=64.20 cfs 11.739 af Primary=64.20 cfs 11.739 af

99.00 Colche Lierk Act 250\tech\Stormwater\VTrans HydroCAD\On-Site 7 PR_asPonds~Pond 007.hce Inflow=17.39 cfs 4.533 af Area= 9.375 ac 23.57% Imperv. Primary=17.39 cfs 4.533 af

Link SN8: SN008

Inflow=37.93 cfs 9.613 af Primary=37.93 cfs 9.613 af

Total Runoff Area = 359.198 acRunoff Volume = 34.317 afAverage Runoff Depth = 1.15"97.85% Pervious = 351.475 ac2.15% Impervious = 7.723 ac

Summary for Subcatchment 1b: On-Site 1 Post

Runoff = 1.98 cfs @ 11.95 hrs, Volume= 0.109 af, Depth= 1.31"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

A	Area	(ac) C	N Dese	cription		
	0.767 83 Paved roads w/open ditches, 50% imp, HSG A					
	0.140 39 >75% Grass cover, Good, HSG A					
	0.090 32 Woods/grass comb., Good, HSG A					
	0.997 72 Weighted Average					
	0.	613 5		3% Pervio		
	0.	383 9	98 38.4	7% Imperv	vious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
(n	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•
	1.1	100	0.0370	1.49		Sheet Flow, Sheet 1
						Smooth surfaces n= 0.011 P2= 2.30"
	0.4	89	0.0370	3.90		Shallow Concentrated Flow, Shallow 2a
						Paved Kv= 20.3 fps
	1.8	436	0.0573	4.14	5.38	,
						Area= 1.3 sf Perim= 6.3' r= 0.21'
	~ ~	440	0 4 4 0 4	0.04		n= 0.030 Earth, grassed & winding
	0.8	119	0.1424	2.64		Shallow Concentrated Flow, Shallow 1b
						Short Grass Pasture Kv= 7.0 fps
	4.1	744	Total			

Hydrograph - Runoff 1.98 cfs 2 Type II 24-hr 10 Year Storm Rainfall=3.20" Runoff Area=0.997 ac Runoff Volume=0.109 af Flow (cfs) Runoff Depth=1.31" Flow Length=744' 1-Tc=4.1 min CN=56/98 0-2 12 14 16 22 24 26 30 32 34 4 6 8 10 18 20 28 36 38 40 42 44 46 48 Ó Time (hours)

Subcatchment 1b: On-Site 1 Post

Summary for Subcatchment 2b: On-Site 2 Post

Runoff = 2.42 cfs @ 11.97 hrs, Volume= 0.146 af, Depth= 1.05"

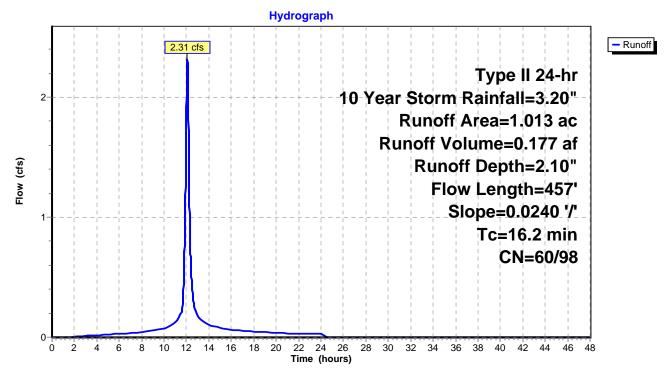
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Desc	cription				
1.	1.063 83 Paved roads w/open ditches, 50% imp, HSG A						
0.	0.390 39 >75% Grass cover, Good, HSG A						
0.	0.219 32 Woods/grass comb., Good, HSG A						
1.	1.672 66 Weighted Average						
1.	140 5	68.2	1% Pervio	us Area			
0.	531 9	98 31.7	9% Imperv	vious Area			
Тс	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
1.6	100	0.0144	1.02		Sheet Flow, Sheet 2		
					Smooth surfaces n= 0.011 P2= 2.30"		
4.1	595	0.0144	2.44		Shallow Concentrated Flow, Shallow 2a		
					Paved Kv= 20.3 fps		
0.1	25	0.0792	4.87	6.33	Channel Flow, Channel 2		
					Area= 1.3 sf Perim= 6.3' r= 0.21'		
	_				n= 0.030 Earth, grassed & winding		
0.0	7	0.5368	5.13		Shallow Concentrated Flow, Shallow 2b		
					Short Grass Pasture Kv= 7.0 fps		
5.8	727	Total					

Hydrograph - Runoff 2.42 cfs Type II 24-hr 10 Year Storm Rainfall=3.20" 2-Runoff Area=1.672 ac Runoff Volume=0.146 af Runoff Depth=1.05" Flow (cfs) Flow Length=727' Tc=5.8 min 1 CN=51/98 0-2 6 10 12 14 16 18 22 24 26 30 32 34 36 Ó 4 8 20 28 38 40 42 44 46 48 Time (hours)

Subcatchment 2b: On-Site 2 Post

Summary for Subcatchment 3b: On-Site 3 Post

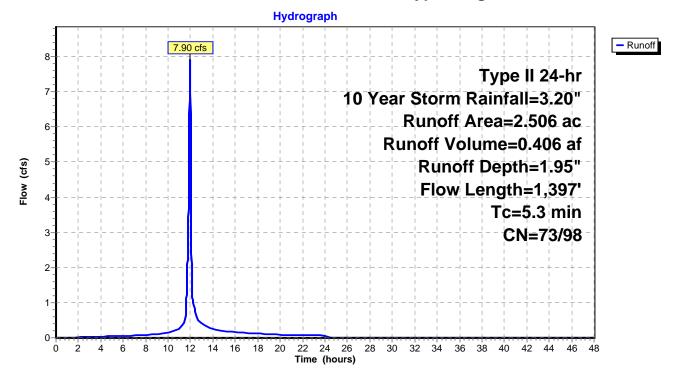

Runoff = 2.31 cfs @ 12.08 hrs, Volume= 0.177 af, Depth= 2.10"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) C	N Des	cription						
	0.	129 3	39 >75°	75% Grass cover, Good, HSG A						
	0.	013 6	61 >75°	75% Grass cover, Good, HSG B						
	0.	201 7	74 >75 [°]	% Grass co	over, Good	, HSG C				
	0.	160 9	98 Pave	ed roads w	/curbs & se	ewers, HSG A				
_	0.	<u>510</u>	98 Pave	ed roads w	/curbs & se	ewers, HSG C				
	1.	013 8	35 Weig	ghted Aver	age					
	0.	343 6	50 33.8	6% Pervio	us Area					
	0.	670 9	98 66.1	4% Imperv	vious Area					
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.5	357	0.0240	1.08		Shallow Concentrated Flow, Shallow 3				
						Short Grass Pasture Kv= 7.0 fps				
	10.7	100	0.0240	0.16		Sheet Flow, Sheet 3				
_						Grass: Short n= 0.150 P2= 2.30"				
	40.0	457	Tatal							

16.2 457 Total

Subcatchment 3b: On-Site 3 Post



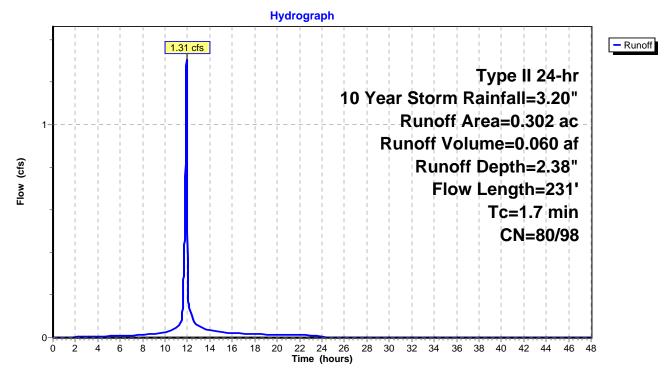
Summary for Subcatchment 4b: OnSite Area bypassing Pond

Runoff = 7.90 cfs @ 11.96 hrs, Volume= 0.406 af, Depth= 1.95"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Dese	cription						
0.	000 3	39 >759	•75% Grass cover, Good, HSG A						
0.	000 9	98 Pave	Paved roads w/curbs & sewers, HSG A						
0.	453 6	51 >759	% Grass co	over, Good	, HSG B				
		98 Water Surface, 0% imp, HSG B							
	0.000 98 Paved roads w/curbs & sewers, HSG B								
	0.000 74 >75% Grass cover, Good, HSG C								
					ewers, HSG C				
-				over, Good					
-					ewers, HSG D				
			ghted Aver	0					
			8% Pervio						
1.	216 9	98 48.5	2% Imperv	vious Area					
-		<u>.</u>		A					
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
1.2	67	0.0147	0.95		Sheet Flow, Sheet Flow				
		0 0 4 4 0			Smooth surfaces n= 0.011 P2= 2.30"				
0.3	68	0.0413	4.13		Shallow Concentrated Flow, Shallow Pave 1				
4 5	444	0 0001	4.00	20.04	Paved Kv= 20.3 fps				
1.5	444	0.0091	4.86	38.91	Channel Flow, Grass Channel 1 Area= 8.0 sf Perim= 12.2' r= 0.66'				
					n = 0.022 Earth, clean & straight				
0.2	61	0.0311	5.45	9.63					
0.2	01	0.0311	5.45	9.03	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'				
					n= 0.025 Corrugated metal				
1.8	632	0.0131	5.84	46.68	Channel Flow, Channel 2				
1.0	002	0.0101	0.04	40.00	Area= 8.0 sf Perim= $12.2'$ r= 0.66'				
					n=0.022 Earth, clean & straight				
0.3	125	0.0649	7.87	13.92	Pipe Channel, Culvert 2				
0.0	0	510010		10.02	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'				
					n= 0.025 Corrugated metal				
5.3	1,397	Total							
0.0	1,007	iotai							

Subcatchment 4b: OnSite Area bypassing Pond


Summary for Subcatchment 5b: On-Site 5 Post

Runoff = 1.31 cfs @ 11.92 hrs, Volume= 0.060 af, Depth= 2.38"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	Area (ac) CN Description								
0.	188 9	98 Pave	ed roads w	/curbs & se	ewers, HSG D				
0.	114 8	30 Past	Pasture/grassland/range, Good, HSG D						
0.	302 9	91 Weig	Weighted Average						
0.	114 8	30 37.7	37.75% Pervious Area						
0.	188 9	98 62.2	5% Imperv	ious Area					
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	1				
1.1	100	0.0351	1.46		Sheet Flow, Sheet 5				
					Smooth surfaces n= 0.011 P2= 2.30"				
0.4	99	0.0351	3.80		Shallow Concentrated Flow, Shallow 5a				
					Paved Kv= 20.3 fps				
0.2	32	0.1243	2.47		Shallow Concentrated Flow, Shallow 5b				
					Short Grass Pasture Kv= 7.0 fps				
1.7	231	Total							

Subcatchment 5b: On-Site 5 Post

Summary for Subcatchment 6b: On-Site 6 Post

Runoff = 3.48 cfs @ 11.93 hrs, Volume= 0.170 af, Depth= 2.25"

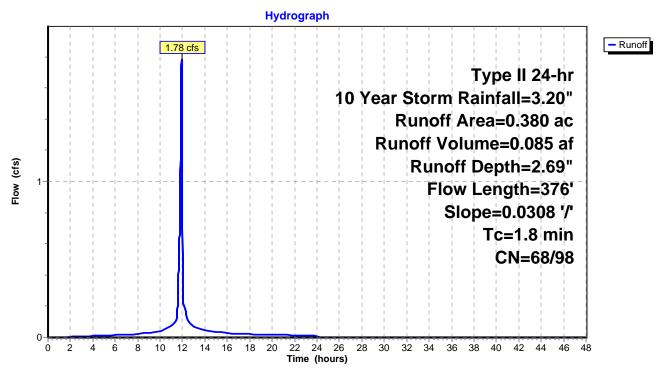
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Desc	cription						
0.	.207 9	98 Pave	ed roads w	/curbs & se	ewers, HSG B				
0.	.198 6	61 >759	>75% Grass cover, Good, HSG B						
0.	.414 🧐	98 Pave	Paved roads w/curbs & sewers, HSG D						
0.	.087 8	30 >75%	>75% Grass cover, Good, HSG D						
0.	.906 8	38 Weig	ghted Aver	age					
0.	.285 6	67 31.4	6% Pervio	us Area					
0.	.621 9	98 68.5	4% Imperv	/ious Area					
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
0.9	130	0.0115	2.53	3.29	Channel Flow, Channel 6a				
					Area= 1.3 sf Perim= 6.3' r= 0.21'				
					n= 0.022 Earth, clean & straight				
1.1	100	0.0418	1.57		Sheet Flow, Sheet 6				
	~~~	0 0 4 4 0			Smooth surfaces $n = 0.011$ P2= 2.30"				
0.1	20	0.0418	4.15		Shallow Concentrated Flow, Shallow 6a				
0.4	00	0.0000	F 00	7 70	Paved Kv= 20.3 fps				
0.1	32	0.0630	5.92	7.70	,				
					Area= 1.3 sf Perim= $6.3'$ r= $0.21'$				
0.5	67	0.1194	2.42		n= 0.022 Earth, clean & straight				
0.5	07	0.1194	2.42		Shallow Concentrated Flow, Shallow 6b Short Grass Pasture Kv= 7.0 fps				
	240	Total							
2.7	349	Total							

Hydrograph - Runoff 3.48 cfs Type II 24-hr 10 Year Storm Rainfall=3.20" -3-Runoff Area=0.906 ac Runoff Volume=0.170 af Flow (cfs) Runoff Depth=2.25" 2 Flow Length=349' Tc=2.7 min CN=67/98 1 0-2 12 14 16 20 22 24 26 30 32 34 36 4 6 8 10 18 28 38 40 42 44 46 48 Ó Time (hours)

## Subcatchment 6b: On-Site 6 Post

### Summary for Subcatchment 24: Subcat 24


Runoff = 1.78 cfs @ 11.92 hrs, Volume= 0.085 af, Depth= 2.69"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

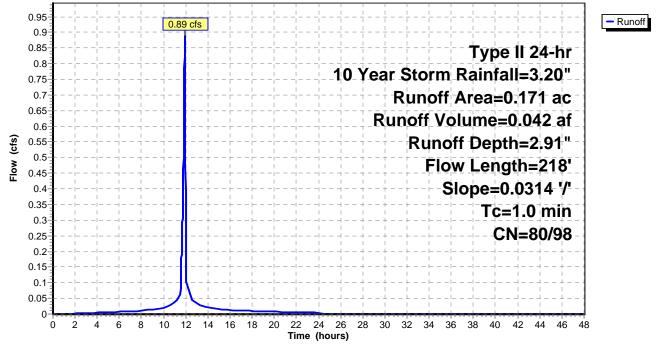
_	Area	(ac)	CN	Desc	ription					
	0.3	308	98	Pave	ed roads w	/curbs & se	ewers, HSG D			
	0.0	024	98	Pave	d roads w	/curbs & se	ewers, HSG B			
0.030 61 >75% Grass cover, Good, HSG B										
0.016 80 >75% Grass cover, Good, HSG D										
	0.0	002	80	>75%	6 Grass co	over, Good,	I, HSG D			
	0.3	380	94	Weig	hted Aver	age				
	0.048 68 0.332 98			12.6	12.63% Pervious Area					
				87.37	87.37% Impervious Area					
	Тс	Lengt	h	Slope	Velocity	Capacity	Description			
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)				
	1.8	37	6 (	0.0308	3.56		Shallow Concentrated Flow,			

Paved Kv= 20.3 fps

#### Subcatchment 24: Subcat 24



#### Summary for Subcatchment 25: Subcat 25


Runoff = 0.89 cfs @ 11.91 hrs, Volume= 0.042 af, Depth= 2.91"

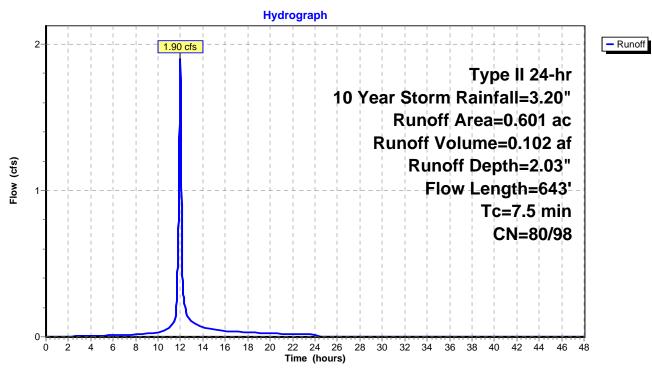
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	a (ac)	CN	Desc	escription							
(	ewers, HSG D										
(	0.006 80 >75% Grass cover, Good, HSG D										
(	).171	97	Weig	hted Aver	age						
(	0.006	80	3.51	3.51% Pervious Area							
(	0.165 98			96.49% Impervious Area							
Tc (min)			Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
1.0	21	8 0.	.0314	3.60		Shallow Concentrated Flow, Paved Kv= 20.3 fps					

## Subcatchment 25: Subcat 25

Hydrograph




## Summary for Subcatchment 26: Subcat 26

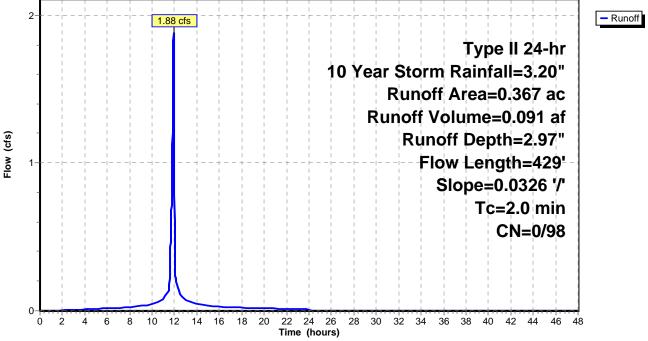
Runoff = 1.90 cfs @ 11.99 hrs, Volume= 0.102 af, Depth= 2.03"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac)	CN	Desc	ription							
0.079 98 Paved roads w/curbs & sewers, HSG D											
0.043 98 Paved roads w/curbs & sewers, HSG D											
0.191 80 >75% Grass cover, Good, HSG D											
0.018 80 >75% Grass cover, Good, HSG D											
0.014 80 >75% Grass cover, Good, HSG D											
0	.106	98	Pave	Paved roads w/curbs & sewers, HSG D							
0	.075	80	>75%	6 Grass co	over, Good,	, HSG D					
0	.015	98	Pave	ed roads w	/curbs & se	ewers, HSG D					
0	.016	80	>75%	6 Grass co	over, Good,	, HSG D					
0	.030	80	>75%	6 Grass co	over, Good,	, HSG D					
0	.014	80	>75%	<u>6 Grass co</u>	over, Good,	, HSG D					
0	.601	87	Weig	hted Aver	age						
0	.358	80	59.57% Pervious Area								
0	.243	98	40.43	3% Imperv	vious Area						
Tc	Length	ו S	lope	Velocity	Capacity	Description					
(min)	(feet	) (	[ft/ft]	(ft/sec)	(cfs)						
0.1	26	6 0.0	623	5.07		Shallow Concentrated Flow,					
						Paved Kv= 20.3 fps					
7.4	617	0.0	393	1.39		Shallow Concentrated Flow,					
						Short Grass Pasture Kv= 7.0 fps					
7.5	643	3 To	tal								

HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC




## Subcatchment 26: Subcat 26

## Summary for Subcatchment 27: Subcat 27

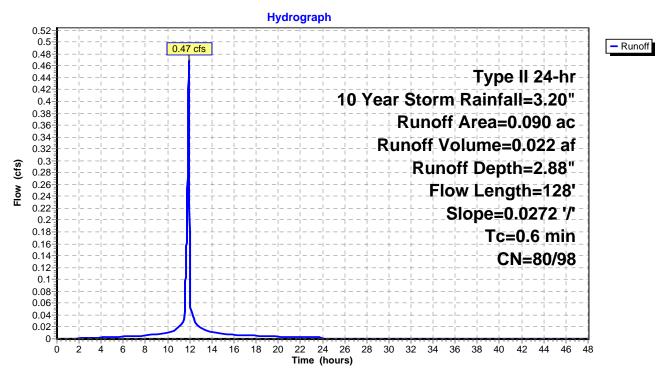
Runoff = 1.88 cfs @ 11.92 hrs, Volume= 0.091 af, Depth= 2.97"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) (	CN Des	cription						
0.367 98 Paved roads w/curbs & sewers, HSG D									
0.	0.367 98 100.00% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
2.0	429	0.0326	3.67		<b>Shallow Concentrated Flow,</b> Paved Kv= 20.3 fps				
	Subcatchment 27: Subcat 27								
				Hydrog	graph				



#### Summary for Subcatchment 28: Subcat 28


Runoff = 0.47 cfs @ 11.91 hrs, Volume= 0.022 af, Depth= 2.88"

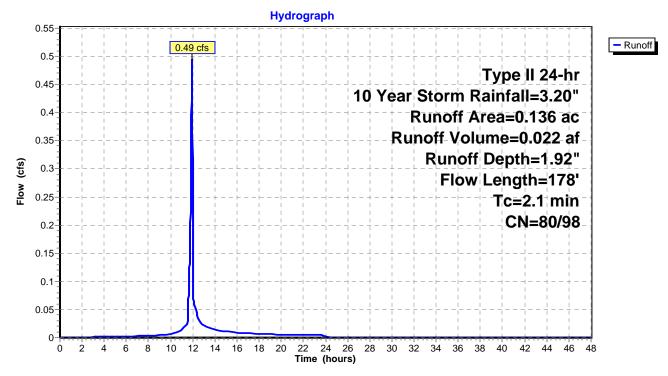
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac)	CN	Desc	Description							
	0.	079	98	Pave	ed roads w	/curbs & se	ewers, HSG D					
	0.	006	98	Pave	ed roads w	/curbs & se	ewers, HSG D					
0.005 80 >75% Grass cover, Good, HSG D							, HSG D					
	0.090 97 Weighted Average											
	0.005 80			5.569	% Perviou	s Area						
	0.085 98			94.44% Impervious Area								
	Т	1	~		Mala alter	O an a site :	Description					
	TC	Length		lope	Velocity	Capacity	Description					
_	(min)	(feet)	(	ft/ft)	(ft/sec)	(cfs)						
	0.6	128	0.0	272	3.35		Shallow Concentrated Flow,					
							David Ky 20.2 fre					

Paved Kv= 20.3 fps

#### Subcatchment 28: Subcat 28




## Summary for Subcatchment 29: Subcat 29

Runoff = 0.49 cfs @ 11.93 hrs, Volume= 0.022 af, Depth= 1.92"

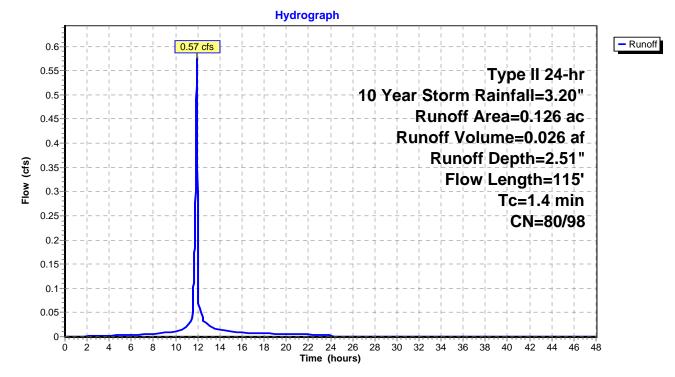
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac)	CN	Desc	Description							
0.039 98 Paved roads w/curbs & sewers, HSG D												
0.006 98 Paved roads w/curbs & sewers, HSG D												
0.088 80 >75% Grass cover, Good, HSG D												
_	0.	003	80	>75%	6 Grass co	over, Good	, HSG D					
	0.136 86 Weighted Average											
	0.	091	80	66.9 [°]	66.91% Pervious Area							
0.045 98			98	33.09% Impervious Area								
_	Tc (min)	Length (feet)		lope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
	0.1	15	5 0.0	)353	3.81		Shallow Concentrated Flow,					
	2.0	163	8 0.0	)388	1.38		Paved Kv= 20.3 fps <b>Shallow Concentrated Flow,</b> Short Grass Pasture Kv= 7.0 fps					
	2.1	178	B To	tal								

#### Subcatchment 29: Subcat 29



#### Summary for Subcatchment 30: Subcat 30


Runoff = 0.57 cfs @ 11.92 hrs, Volume= 0.026 af, Depth= 2.51"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

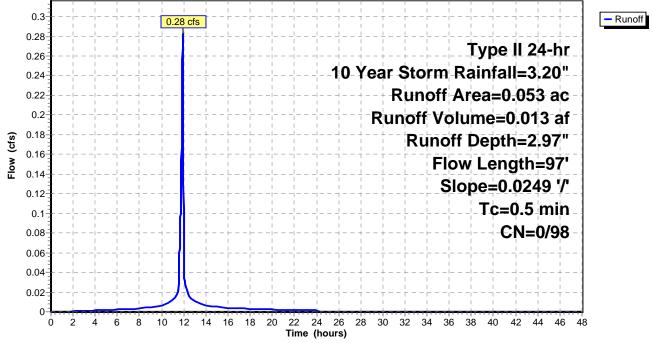
_	Area	(ac) (	CN Des	scription					
	0.089 98 Paved roads w/curbs & sewers, HSG D								
0.027 80 >75% Grass cover, Good, HSG D									
	0.	010	80 >75	% Grass c	over, Good	, HSG D			
	0.	126	93 We	ighted Avei	age				
	0.	037	80 29.3	37% Pervio	us Area				
	0.	089	98 70.	63% Imperv	vious Area				
				-					
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	1.2	75	0.0213	1.02		Shallow Concentrated Flow,			
						Short Grass Pasture Kv= 7.0 fps			
	0.2	40	0.0324	3.65		Shallow Concentrated Flow,			
						Paved Kv= 20.3 fps			
_									

1.4 115 Total

#### Subcatchment 30: Subcat 30



## Summary for Subcatchment 31: Subcat 31


Runoff = 0.28 cfs @ 11.91 hrs, Volume= 0.013 af, Depth= 2.97"

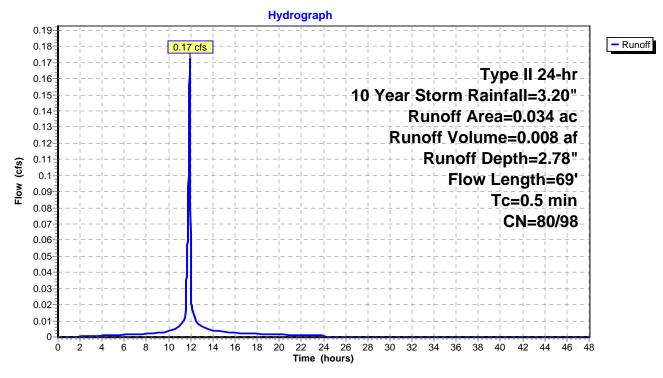
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Des	Description						
0.053 98 Paved roads w/curbs & sewers,					ewers, HSG D				
0.	0.053 98 100.00% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
0.5	97	0.0249	3.20		Shallow Concentrated Flow, Paved Kv= 20.3 fps				

#### Subcatchment 31: Subcat 31






#### Summary for Subcatchment 32: Subcat 31

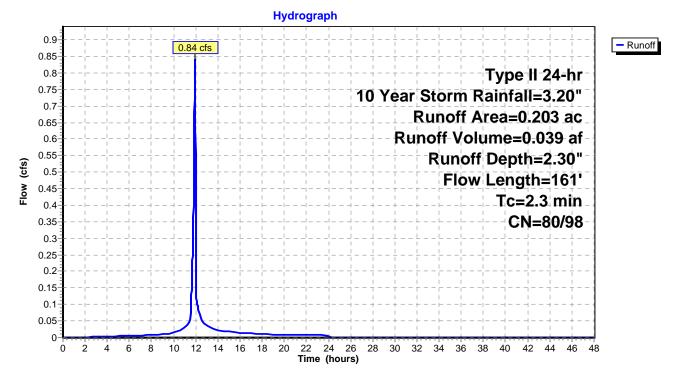
Runoff = 0.17 cfs @ 11.91 hrs, Volume= 0.008 af, Depth= 2.78"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) C	N Dese	Description							
0.030 98 Paved roads w/curbs & sewers, HSG D											
0.004 80 >75% Grass cover, Good, HSG D											
	0.	034 9	96 Weig								
	0.004 80 11.76% Pervious Area										
	0.	030 9	98 88.2	4% Imperv	vious Area						
	_										
	Tc	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	0.2	13	0.0423	1.44		Shallow Concentrated Flow,					
						Short Grass Pasture Kv= 7.0 fps					
	0.3	56	0.0310	3.57		Shallow Concentrated Flow,					
						Paved Kv= 20.3 fps					
	0.5	69	Total								

#### Subcatchment 32: Subcat 31




### Summary for Subcatchment 34: Subcat 34

Runoff = 0.84 cfs @ 11.93 hrs, Volume= 0.039 af, Depth= 2.30"

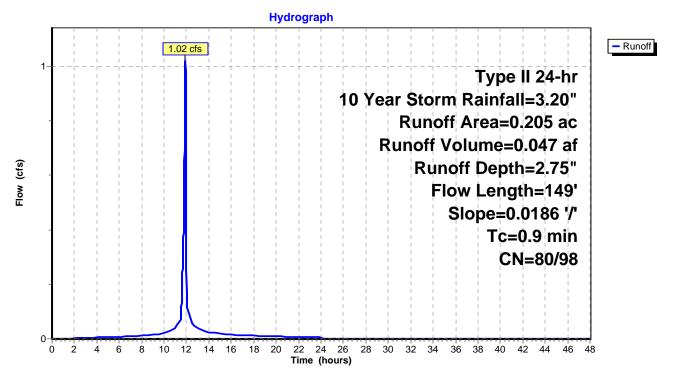
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac)	CN	Desc	Description							
	0.	039	98	Pave	ed roads w	/curbs & se	ewers, HSG D					
0.045 98 Paved roads w/curbs & sewers, HSG D												
0.032 98 Paved roads w/curbs & sewers, HSG D												
	0.	087	80	>75%	>75% Grass cover, Good, HSG D							
0.203 90 Weighted Average												
	0.	087	80	42.8	42.86% Pervious Area							
0.116 98			98	57.1	57.14% Impervious Area							
	Tc (min)	Length (feet		lope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
_	0.2	38	3 0.0	0197	2.85		Shallow Concentrated Flow,					
	2.1	123	3 0.0	0186	0.95		Paved Kv= 20.3 fps <b>Shallow Concentrated Flow,</b> Short Grass Pasture Kv= 7.0 fps					
	2.3	161	То	otal								

#### Subcatchment 34: Subcat 34



#### Summary for Subcatchment 35: Subcat 35


Runoff = 1.02 cfs @ 11.91 hrs, Volume= 0.047 af, Depth= 2.75"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

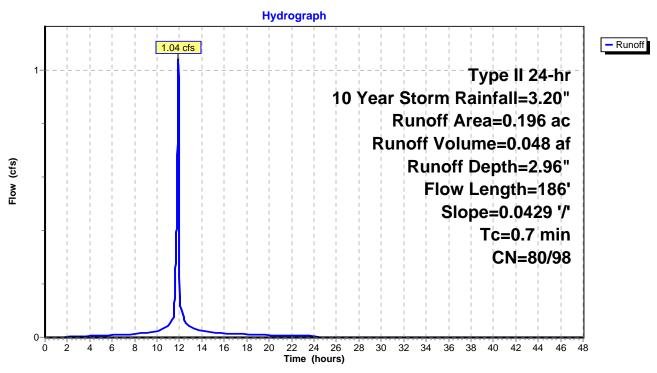
_	Area	(ac) (	CN De	scription		
	0.	177	98 Pa	ved roads w	/curbs & se	ewers, HSG D
	0.	007	80 >7	5% Grass c	over, Good	, HSG D
_	0.	021	80 >7	<u>5% Grass c</u>	over, Good	, HSG D
	0.	205	96 W	eighted Ave	rage	
	0.	028	80 13	.66% Pervic	ous Area	
	0.	177	98 86	.34% Imper	vious Area	
	т.	1 0	0	·	0	
	Tc	Length			Capacity	Description
_	(min)	(feet)	(ft/ft	) (ft/sec)	(cfs)	
	0.9	149	0.018	6 2.77		Shallow Concentrated Flow,
						Payod Ky-20.3 fps

Paved Kv= 20.3 fps

Subcatchment 35: Subcat 35



### Summary for Subcatchment 36: Subcat 36


Runoff = 1.04 cfs @ 11.91 hrs, Volume= 0.048 af, Depth= 2.96"

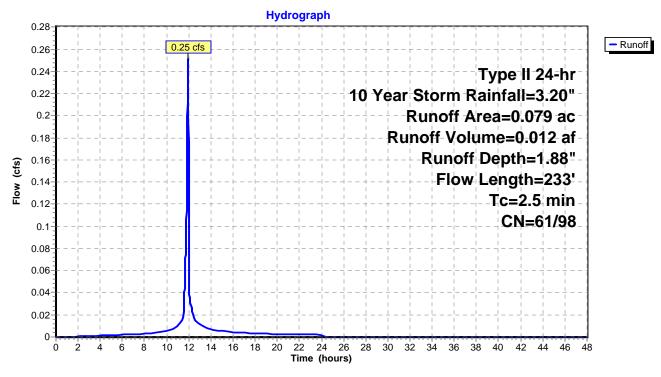
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area (ac)	C	N Desc	cription			
0.187	9	8 Pave	ed roads w	/curbs & se	ewers, HSG D	
0.006	9	8 Pave	ed roads w	/curbs & se	ewers, HSG D	
0.001	9	8 Pave	ed roads w	/curbs & se	ewers, HSG D	
0.001	9	8 Pave	ed roads w	/curbs & se	ewers, HSG D	
0.001	8	0 >75%	% Grass co	over, Good	, HSG D	
0.196	9	8 Weig	phted Aver	age		
0.001	8	0 0.51	% Perviou	s Area		
0.195	9	8 99.4	9% Imperv	vious Area		
			-			
Tc Ler	ngth	Slope	Velocity	Capacity	Description	
(min) (f	eet)	(ft/ft)	(ft/sec)	(cfs)		
0.7	186	0.0429	4.20		Shallow Concentrated Flow,	

Paved Kv= 20.3 fps

#### Subcatchment 36: Subcat 36




#### Summary for Subcatchment 59: Subcat 59

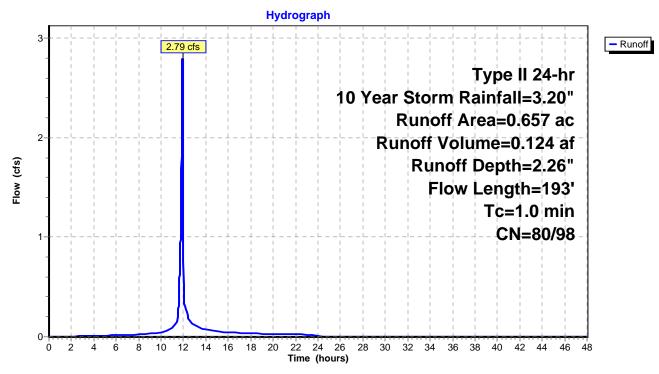
Runoff = 0.25 cfs @ 11.93 hrs, Volume= 0.012 af, Depth= 1.88"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

 Area	(ac) C	N Dese	cription		
0.	045 9	98 Pave	ed roads w	/curbs & se	ewers, HSG B
 0.	034 6	61 >75 [°]	% Grass co	over, Good	, HSG B
0.	079 8	32 Weig	ghted Aver	age	
0.	034 6	61 43.0	4% Pervio	us Area	
0.	045 9	98 56.9	6% Imperv	vious Area	
 Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
0.1	6	0.0050	1.44		Shallow Concentrated Flow,
 2.4	227	0.0515	1.59		Paved Kv= 20.3 fps <b>Shallow Concentrated Flow,</b> Short Grass Pasture Kv= 7.0 fps
2.5	233	Total			

### Subcatchment 59: Subcat 59




## Summary for Subcatchment 60: Subcat 60

Runoff = 2.79 cfs @ 11.91 hrs, Volume= 0.124 af, Depth= 2.26"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

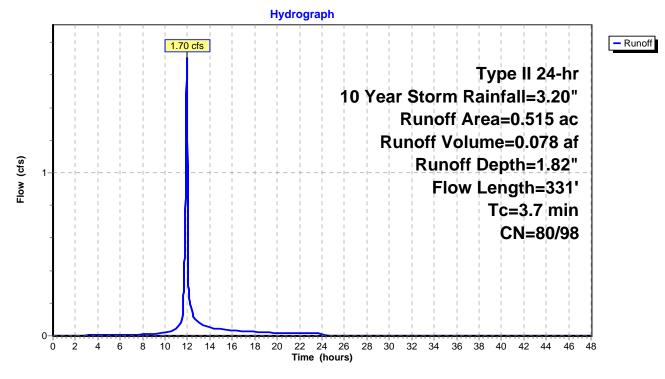
Area	(ac) (	CN	Desc	ription		
0.	.228	98	Pave	d roads w	/curbs & se	ewers, HSG D
0.	.007	98	Pave	ed roads w	/curbs & se	ewers, HSG D
0.	.016	98	Pave	ed roads w	/curbs & se	ewers, HSG D
0.	.008	98	Pave	ed roads w	/curbs & se	ewers, HSG D
0.	.100	98	Pave	ed roads w	/curbs & se	ewers, HSG D
0.	.001	80	>75%	6 Grass co	over, Good,	, HSG D
0.	.014	80	>75%	6 Grass co	over, Good,	, HSG D
0.	.259	80	>75%	6 Grass co	over, Good,	, HSG D
	.004	80			over, Good,	
	.014	80			over, Good,	
0.	.006	80	>75%	<u>6 Grass co</u>	over, Good,	, HSG D
0.	.657	90	Weig	hted Aver	age	
0.	.298	80	45.36	5% Pervio	us Area	
0.	.359	98	54.64	4% Imperv	vious Area	
Тс	Length	S	Slope	Velocity	Capacity	Description
(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	
0.4	100	0.0	0461	4.36		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
0.6	93	0.	1199	2.42		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
1.0	193	Тс	otal			

HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC



## Subcatchment 60: Subcat 60

## Summary for Subcatchment 63: Subcat 63

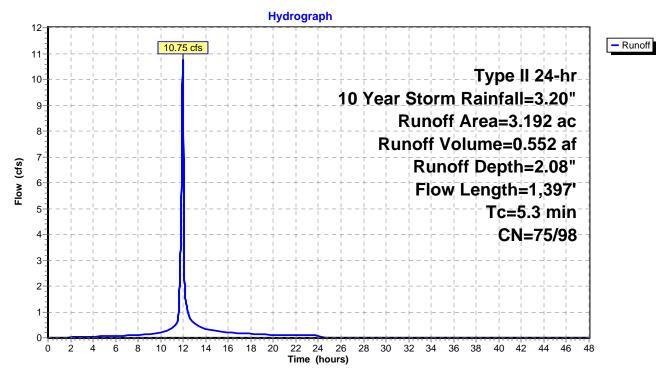

Runoff = 1.70 cfs @ 11.95 hrs, Volume= 0.078 af, Depth= 1.82"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

0.18780>75% Grass cover, Good, HSG D0.13598Paved roads w/curbs & sewers, HSG D0.00498Paved roads w/curbs & sewers, HSG D0.01180>75% Grass cover, Good, HSG D0.00180>75% Grass cover, Good, HSG D0.47780>75% Grass cover, Good, HSG D
0.00498Paved roads w/curbs & sewers, HSG D0.01180>75% Grass cover, Good, HSG D0.00180>75% Grass cover, Good, HSG D
0.011 80 >75% Grass cover, Good, HSG D 0.001 80 >75% Grass cover, Good, HSG D
0.001 80 >75% Grass cover, Good, HSG D
0.177 80 >75% Grass cover, Good, HSG D
0.515 85 Weighted Average
0.376 80 73.01% Pervious Area
0.139 98 26.99% Impervious Area
To Longth Clance Valuation Consists Description
Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs)
0.7 31 0.0100 0.70 Shallow Concentrated Flow,
Short Grass Pasture Kv= 7.0 fps
0.6 83 0.0139 2.39 Shallow Concentrated Flow,
Paved Kv= 20.3 fps
2.42170.04531.49Shallow Concentrated Flow,
Short Grass Pasture Kv= 7.0 fps
3.7 331 Total

HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC






# Summary for Subcatchment CPv4: Site #4 On Site

Runoff = 10.75 cfs @ 11.96 hrs, Volume= 0.552 af, Depth= 2.08"

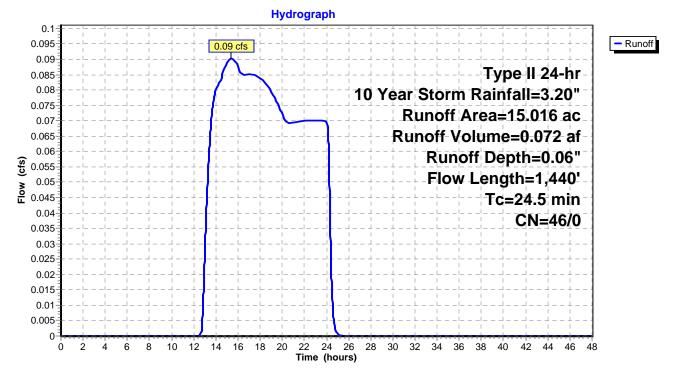
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Des	cription						
0.	022	39 >759	% Grass co	over, Good	, HSG A				
	0.026 98 Paved roads w/curbs & sewers, HSG A								
0.562 61 >75% Grass cover, Good, HSG B									
				, 0% imp, H					
					ewers, HSG B				
				over, Good					
					ewers, HSG C				
				over, Good					
					ewers, HSG D				
			ghted Aver	•					
			9% Pervio						
1.	673	98 52.4	1% Imperv	/ious Area					
_		-							
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
1.2	67	0.0147	0.95		Sheet Flow, Sheet Flow				
					Smooth surfaces $n = 0.011$ P2= 2.30"				
0.3	68	0.0413	4.13		Shallow Concentrated Flow, Shallow Pave 1				
4 5		0.0004	4.00	20.04	Paved Kv= 20.3 fps				
1.5	444	0.0091	4.86	38.91	Channel Flow, Grass Channel 1				
					Area= 8.0 sf Perim= 12.2' r= 0.66'				
0.2	61	0.0311	5.45	9.63	n= 0.022 Earth, clean & straight Pipe Channel, Culvert 1				
0.2	01	0.0311	5.45	9.05	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'				
					n=0.025 Corrugated metal				
1.8	632	0.0131	5.84	46.68	Channel Flow, Channel 2				
1.0	052	0.0131	5.04	40.00	Area= 8.0 sf Perim= $12.2'$ r= 0.66'				
					n=0.022 Earth, clean & straight				
0.3	125	0.0649	7.87	13.92	Pipe Channel, Culvert 2				
0.0	120	0.0040	7.07	10.02	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'				
					n=0.025 Corrugated metal				
5.3	1,397	Total							
0.0	1,537	rotai							



#### Subcatchment CPv4: Site #4 On Site

#### Summary for Subcatchment OS1: Off-Site 1


Runoff = 0.09 cfs @ 15.38 hrs, Volume= 0.072 af, Depth= 0.06"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

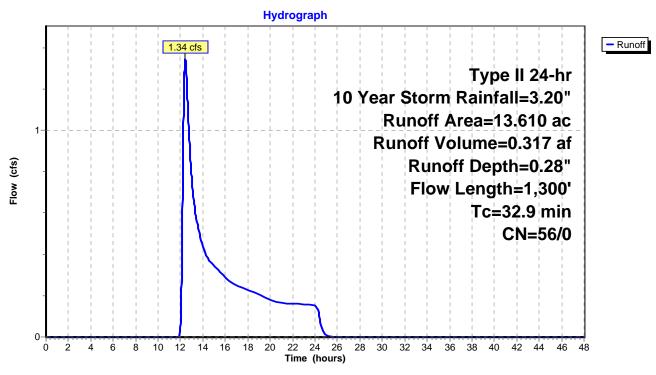
_	Area	(ac) C	N Desc	cription		
*	15.	016 4	6 Com	posite CN		
	15.	016 4	6 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	18.7	100	0.0426	0.09		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.30"
	2.3	464	0.0426	3.32		Shallow Concentrated Flow, woods segment Unpaved Kv= 16.1 fps
	2.9	586	0.0427	3.33		Shallow Concentrated Flow, grass segment Unpaved Kv= 16.1 fps
	0.1	156	0.1731	29.96	94.12	<b>Pipe Channel,</b> 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
_	0.5	134	0.0746	4.10		n= 0.013 <b>Shallow Concentrated Flow,</b> Grassed Waterway Kv= 15.0 fps

24.5 1,440 Total

# Subcatchment OS1: Off-Site 1



#### Summary for Subcatchment OS2: Off-Site 2


Runoff = 1.34 cfs @ 12.43 hrs, Volume= 0.317 af, Depth= 0.28"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

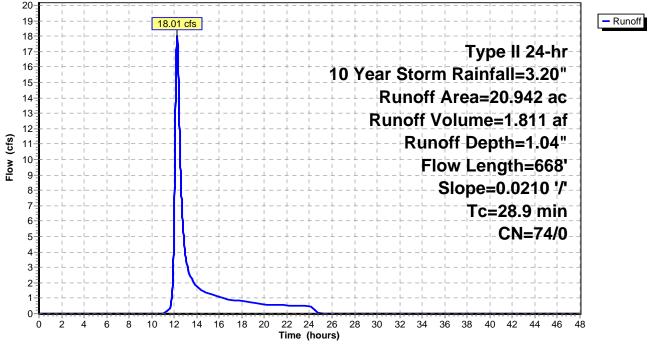
	Area	(ac) C	N Dese	cription		
*	13.	610 5	56 Com	posite CN		
	13.	610 5	56 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	26.7	100	0.0176	0.06		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.30"
	5.4	690	0.0176	2.14		Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	0.8	510	0.0585	10.87	41.30	<b>Trap/Vee/Rect Channel Flow, channel</b> Bot.W=2.50' D=1.00' Z= 1.3 '/' Top.W=5.10' n= 0.025
		4 0 0 0	<b>T</b> ( )			

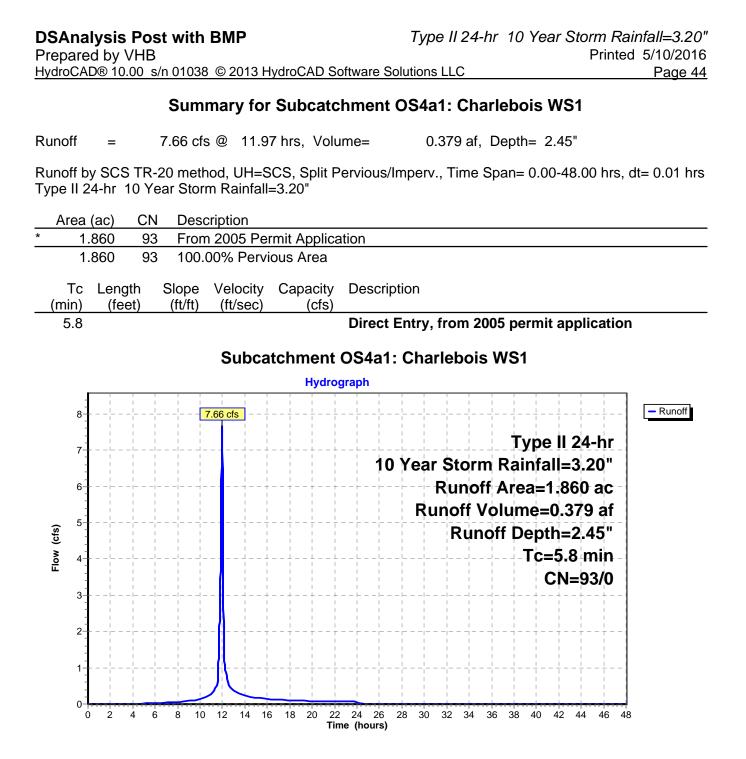
32.9 1,300 Total

# Subcatchment OS2: Off-Site 2



#### Summary for Subcatchment OS3: Off-Site 3


Runoff = 18.01 cfs @ 12.24 hrs, Volume= 1.811 af, Depth= 1.04"


Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

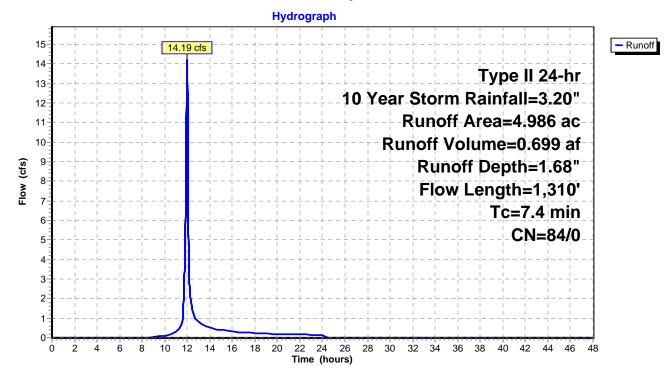
	Area	(ac) C	N Des	cription		
*	20.	942 7	74 Com	posite CN		
	20.942 74 100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	24.8	100	0.0210	0.07		Sheet Flow,
	4.1	568	0.0210	2.33		Woods: Light underbrush n= 0.400 P2= 2.30" <b>Shallow Concentrated Flow,</b> Unpaved Kv= 16.1 fps
	28.9	668	Total			

#### Subcatchment OS3: Off-Site 3









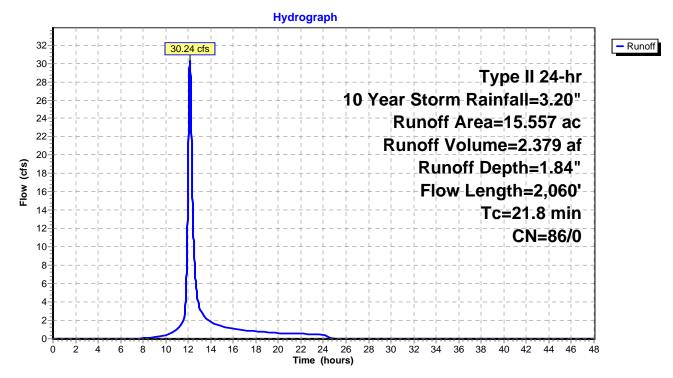

# Summary for Subcatchment OS4p: Site #4 Off Site

Runoff = 14.19 cfs @ 11.99 hrs, Volume= 0.699 af, Depth= 1.68"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Desc	cription		
*	4.	986 8	4 com	posite CN		
	4.	986 8	4 100.	00% Pervi	ous Area	
		Length	Slope	Velocity		Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.5	191	0.0200	6.33	50.63	Trap/Vee/Rect Channel Flow,
						Bot.W=4.00' D=1.00' Z= 4.0 '/' Top.W=12.00'
					= 4 . 0.0	n= 0.025 Earth, clean & straight
	0.3	149	0.0400	8.95	71.60	Trap/Vee/Rect Channel Flow,
						Bot.W=4.00' D=1.00' Z= 4.0 '/' Top.W=12.00'
	0.0	477	0 0700	44.40	00.05	n= 0.025
	0.3	177	0.0700	11.46	80.25	Trap/Vee/Rect Channel Flow,
						Bot.W=3.00' D=1.00' Z= 4.0 '/' Top.W=11.00' n= 0.025
	0.2	161	0.0900	13.29	79.74	Trap/Vee/Rect Channel Flow,
	0.2	101	0.0900	13.29	19.14	Bot.W=3.00' D=1.00' Z= 3.0 '/' Top.W=9.00'
						n = 0.025
	1.7	174	0.1200	1.73		Shallow Concentrated Flow,
	1.7	174	0.1200	1.70		Woodland Kv= 5.0 fps
	2.2	206	0.0970	1.56		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	0.9	106	0.1500	1.94		Shallow Concentrated Flow,
				-		Woodland Kv= 5.0 fps
	1.3	146	0.1370	1.85		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	7.4	1,310	Total			




# Subcatchment OS4p: Site #4 Off Site

# Summary for Subcatchment OS4wb: Off-Site 4 West of Rte 7 w/o Pond

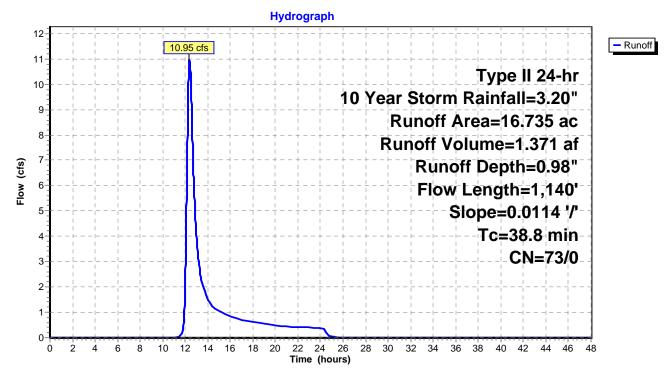
Runoff = 30.24 cfs @ 12.14 hrs, Volume= 2.379 af, Depth= 1.84"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Dese	cription		
* 15.	.557 8	36 com	posite CN		
15	.557 8	36 100.	00% Pervi	ous Area	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
14.1	100	0.0312	0.12		Sheet Flow,
					Grass: Dense n= 0.240 P2= 2.30"
1.9	320	0.0312	2.84		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
4.4	940	0.0137	3.55	7.98	
					Bot.W=3.00' D=0.50' Z= 4.0 & 2.0 '/' Top.W=6.00'
					n= 0.025
0.1	110	0.0357	13.61	42.74	
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
			= 40		n= 0.013
0.5	160	0.0123	5.10	214.24	• •
					Bot.W=5.00' D=2.00' Z= 8.0 '/' Top.W=37.00'
					n= 0.035
0.4	320	0.0402	14.44	45.36	Pipe Channel,
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
					n= 0.013
0.4	110	0.0826	4.31		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
21.8	2,060	Total			



# Subcatchment OS4wb: Off-Site 4 West of Rte 7 w/o Pond


# Summary for Subcatchment OS4_E: Off-Site 4 East of Rte 7

Runoff = 10.95 cfs @ 12.37 hrs, Volume= 1.371 af, Depth= 0.98"

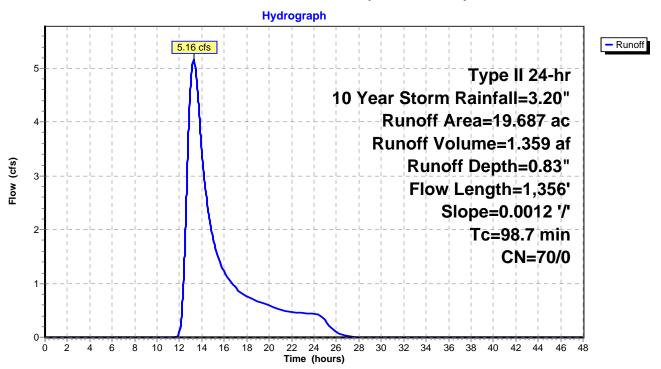
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) C	N Dese	cription		
*	16.	735 7	73 com	posite		
	16.	735 7	73 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	29.2	150	0.0114	0.09	( / /	Sheet Flow,
	9.6	990	0.0114	1.72		Grass: Dense n= 0.240 P2= 2.30" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	38.8	1,140	Total			· · ·

# Subcatchment OS4_E: Off-Site 4 East of Rte 7



#### Summary for Subcatchment OS5a: (new Subcat)

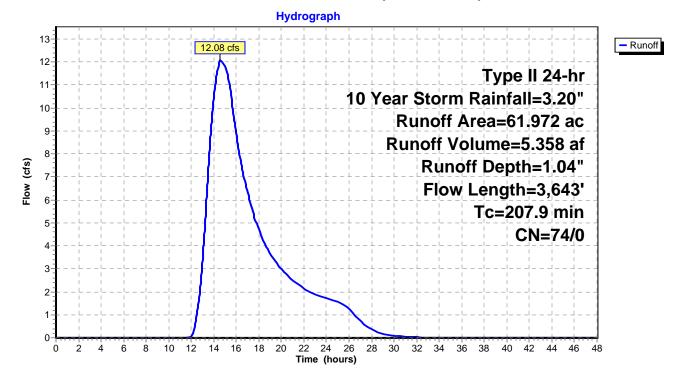

Runoff = 5.16 cfs @ 13.27 hrs, Volume= 1.359 af, Depth= 0.83"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	i (ac) C	N Desc	cription		
* 19	9.687	70 weig	hted CN		
19	9.687	70 100.	00% Pervi	ous Area	
Tc (min)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
78.0	100	0.0012	0.02		Sheet Flow,
9.4	313	0.0012	0.56		Woods: Light underbrush n= 0.400 P2= 2.30" <b>Shallow Concentrated Flow,</b> Unpaved Kv= 16.1 fps
8.3	489	0.0012	0.98	1.95	<b>Trap/Vee/Rect Channel Flow,</b> Bot.W=2.00' D=0.50' Z= 4.0 '/' Top.W=6.00' n= 0.025
3.0	454	0.0012	2.49	7.84	<b>Pipe Channel,</b> 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50' n= 0.013

98.7 1,356 Total

#### Subcatchment OS5a: (new Subcat)




# Summary for Subcatchment OS5b: (new Subcat)

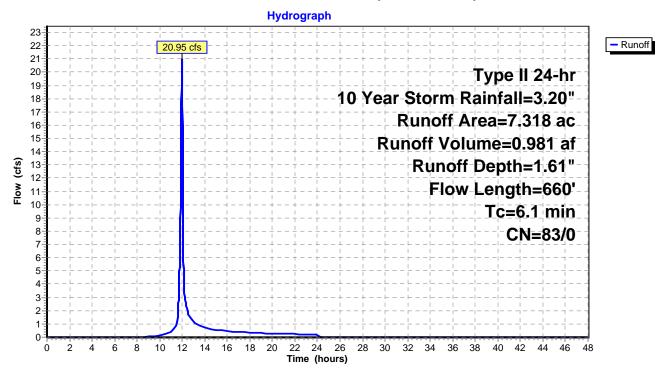
Runoff = 12.08 cfs @ 14.56 hrs, Volume= 5.358 af, Depth= 1.04"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Dese	cription		
* 61.	.972 7	'4 weig	hted CN		
61.	.972 7	<b>'</b> 4 100.	00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
47.4	100	0.0015	0.04	(0.0)	Sheet Flow,
		010010	0101		Grass: Dense n= 0.240 P2= 2.30"
1.4	50	0.0015	0.58		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
113.4	1,318	0.0015	0.19		Shallow Concentrated Flow,
			o 1=		Woodland Kv= 5.0 fps
24.8	670	0.0081	0.45		Shallow Concentrated Flow,
10.2	666	0 0000	1 00	2.25	Woodland Kv= 5.0 fps
10.2	666	0.0009	1.08	3.25	Trap/Vee/Rect Channel Flow, Bot.W=0.00' D=1.00' Z= 3.0 '/' Top.W=6.00'
					n = 0.025
10.7	839	0.0048	1.31	8.19	Trap/Vee/Rect Channel Flow,
10.1	000	0.0010	1.01	0.10	Bot.W=4.00' D=0.50' Z= 17.0 '/' Top.W=21.00'
					n= 0.035
207.9	3,643	Total			



# Subcatchment OS5b: (new Subcat)


# Summary for Subcatchment OS5_6: (new Subcat)

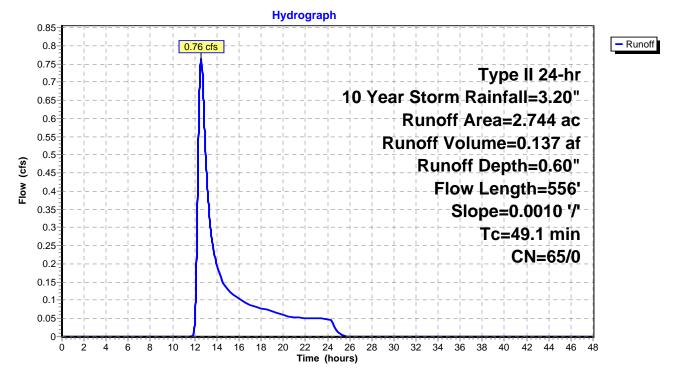
Runoff = 20.95 cfs @ 11.98 hrs, Volume= 0.981 af, Depth= 1.61"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Desc	cription		
*	7.	.318 8	33 weig	hted CN		
	7.	.318 8	33 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	1.0	50	0.0130	0.85		Sheet Flow,
	2.4	340	0.0130	2.31		Smooth surfaces n= 0.011 P2= 2.30" <b>Shallow Concentrated Flow,</b> Paved Kv= 20.3 fps
	2.7	270	0.0110	1.69		Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
_	6.1	660	Total			

#### Subcatchment OS5_6: (new Subcat)




# Summary for Subcatchment OS5_7: (new Subcat)

Runoff = 0.76 cfs @ 12.60 hrs, Volume= 0.137 af, Depth= 0.60"

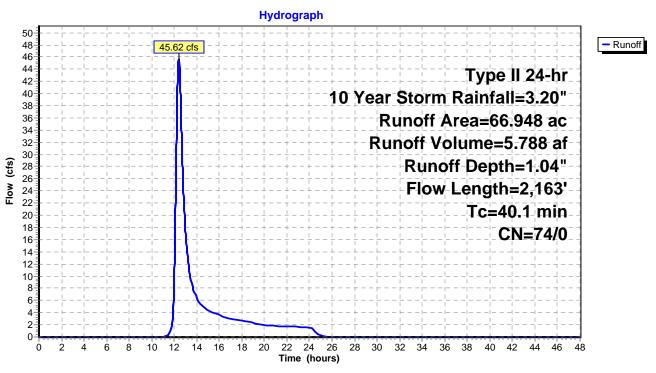
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) C	N Desc	cription		
*	2.	744 6	5 weig	hted CN		
	2.	744 6	65 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	34.2	100	0.0010	0.05	(015)	Sheet Flow,
	54.2	100	0.0010	0.05		Range n= 0.130 P2= 2.30"
	14.9	456	0.0010	0.51		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	49.1	556	Total			

#### Subcatchment OS5_7: (new Subcat)



# Summary for Subcatchment OS5_8: (new Subcat)


Runoff = 45.62 cfs @ 12.39 hrs, Volume= 5.788 af, Depth= 1.04"

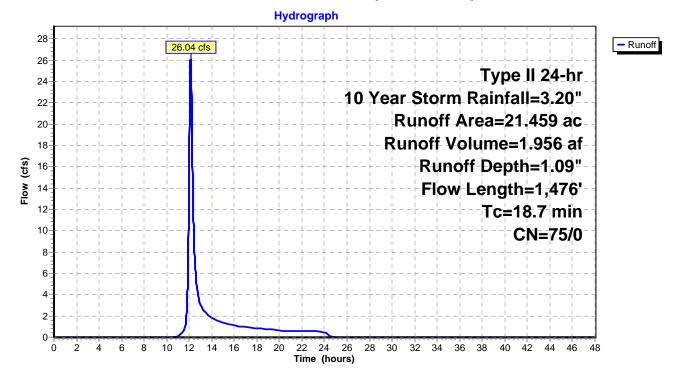
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Des	cription		
*	66.	948 7	74 weig	hted CN		
	66.948 74		74 100.00% Pervio		ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	1.9	50	0.0025	0.44		Sheet Flow,
	5.7	345	0.0025	1.02		Smooth surfaces n= 0.011 P2= 2.30" Shallow Concentrated Flow, Paved Kv= 20.3 fps
	32.5	1,768	0.0023	0.91	5.67	<b>Trap/Vee/Rect Channel Flow,</b> Bot.W=4.00' D=0.50' Z= 17.0 '/' Top.W=21.00' n= 0.035
_						II- 0.000

40.1 2,163 Total

# Subcatchment OS5_8: (new Subcat)




#### Summary for Subcatchment OS6: (new Subcat)

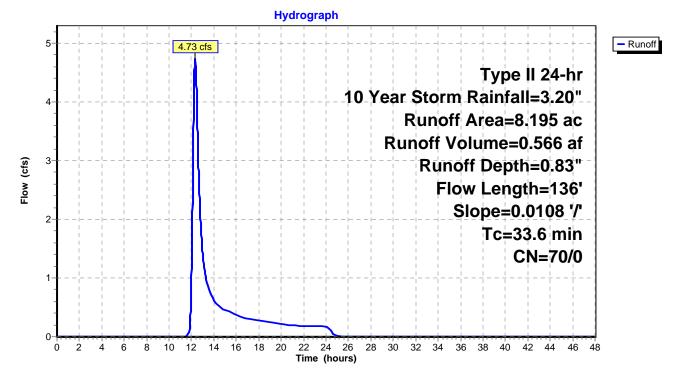
Runoff = 26.04 cfs @ 12.12 hrs, Volume= 1.956 af, Depth= 1.09"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
*	21.	.459 7	75 weig	hted CN		
	21.459 7		75 100.00% Pervio		ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	1.1	50	0.0093	0.75		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.30"
	1.7	488	0.0930	4.91		Shallow Concentrated Flow,
	15.9	938	0.0043	0.98		Unpaved Kv= 16.1 fps Shallow Concentrated Flow,
	10.0	550	0.0040	0.00		Grassed Waterway Kv= 15.0 fps
	18.7	1,476	Total			

#### Subcatchment OS6: (new Subcat)




# Summary for Subcatchment OS7_1: (new Subcat)

Runoff = 4.73 cfs @ 12.32 hrs, Volume= 0.566 af, Depth= 0.83"

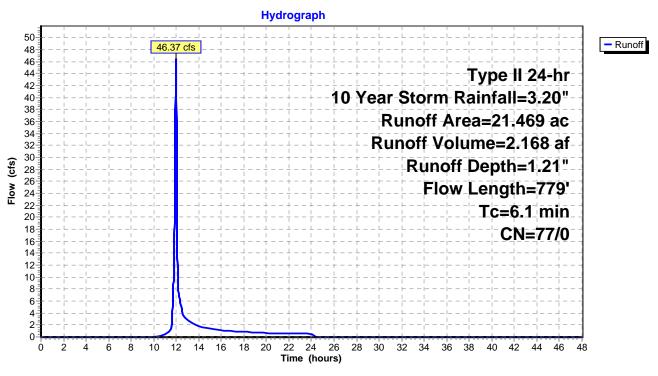
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
*	8.	195 7	70 weig	hted CN		
	8.	195 7	70 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	32.4	100	0.0108	0.05		Sheet Flow,
	1.2	36	0.0108	0.52		Woods: Light underbrush n= 0.400 P2= 2.30" <b>Shallow Concentrated Flow,</b> Woodland Kv= 5.0 fps
	33.6	136	Total			

# Subcatchment OS7_1: (new Subcat)



# Summary for Subcatchment OS7_2: (new Subcat)


Runoff = 46.37 cfs @ 11.98 hrs, Volume= 2.168 af, Depth= 1.21"

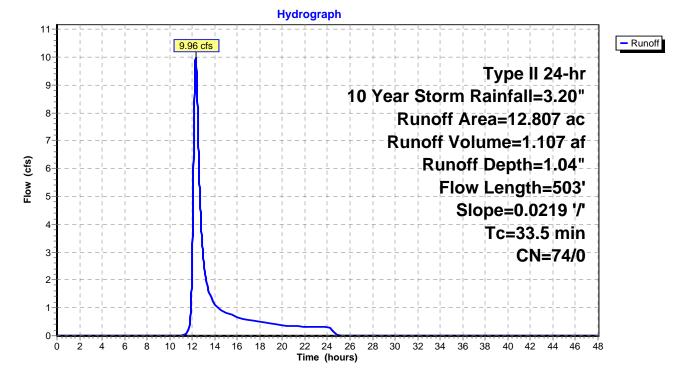
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
*	21.	469 7	77 weig	hted CN		
	21.469 77 100.00% Pervious Area				ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	1.1	50	0.0093	0.75		Sheet Flow, Smooth surfaces n= 0.011 P2= 2.30"
	2.3	273	0.0093	1.96		Shallow Concentrated Flow, Paved Kv= 20.3 fps
_	2.7	456	0.0175	2.81	4.22	Trap/Vee/Rect Channel Flow, Bot.W=2.00' D=0.50' Z= 2.0 '/' Top.W=4.00' n= 0.035
	0.4	770	<b>T</b> . ( . )			

6.1 779 Total

# Subcatchment OS7_2: (new Subcat)




# Summary for Subcatchment OS7_4: (new Subcat)

Runoff = 9.96 cfs @ 12.32 hrs, Volume= 1.107 af, Depth= 1.04"

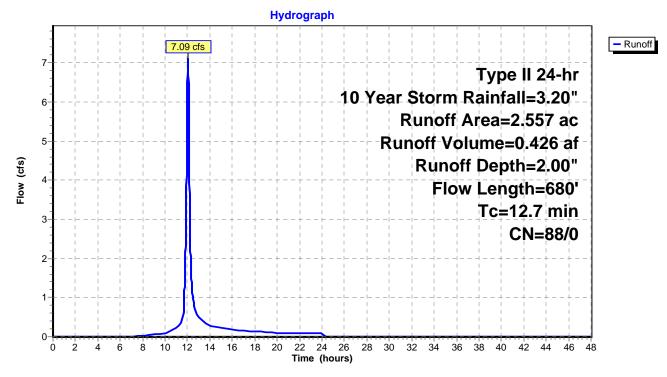
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Des	cription		
*	12.	807 7	74 weig	hted CN		
	12.807 74 100.00% Pervious Area				ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	24.4	100	0.0219	0.07		Sheet Flow,
	9.1	403	0.0219	0.74		Woods: Light underbrush n= 0.400 P2= 2.30" <b>Shallow Concentrated Flow,</b> Woodland Kv= 5.0 fps
	33.5	503	Total			

# Subcatchment OS7_4: (new Subcat)



#### Summary for Subcatchment OS8a: (new Subcat)


Runoff = 7.09 cfs @ 12.04 hrs, Volume= 0.426 af, Depth= 2.00"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

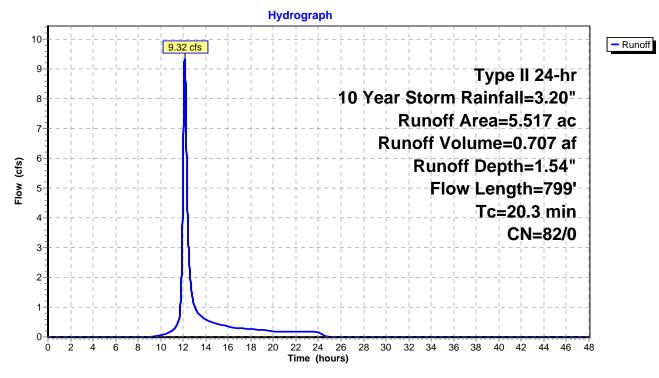
_	Area	(ac) C	N Des	cription		
*	2.	557 8	38 weig	hted CN		
	2.557 88		38 100.00% Pervi		ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	8.1	60	0.1228	0.12		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.30"
	2.3	290	0.0103	2.06		Shallow Concentrated Flow, Paved Kv= 20.3 fps
	0.6	90	0.1319	2.54		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
	1.7	240	0.0243	2.34		Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
-	40.7	000	Tatal			

12.7 680 Total

#### Subcatchment OS8a: (new Subcat)



# Summary for Subcatchment OS8b: (new Subcat)


Runoff = 9.32 cfs @ 12.13 hrs, Volume= 0.707 af, Depth= 1.54"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

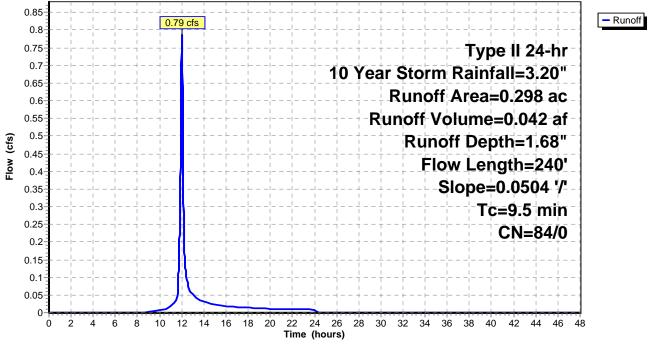
	Area	(ac) C	N Des	cription		
*	5.	517 8	32 weig	hted CN		
	5.	517 8	32 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	10.0	100	0.0032	0.17		Sheet Flow, roadside channel Fallow n= 0.050 P2= 2.30"
	9.5	518	0.0032	0.91		Shallow Concentrated Flow, roadside channel Unpaved Kv= 16.1 fps
	0.8	181	0.0055	3.86	17.89	Pipe Channel, CMP_Arch_1/2 35x24 35.0" x 24.0", R=17.9"/55.1" Pipe Arch Area= 4.6 sf Perim= 7.9' n= 0.020 Corrugated PE, corrugated interior
_	20.3	799	Total			

r=

# Subcatchment OS8b: (new Subcat)



# Summary for Subcatchment OS8c: (new Subcat)


Runoff = 0.79 cfs @ 12.01 hrs, Volume= 0.042 af, Depth= 1.68"

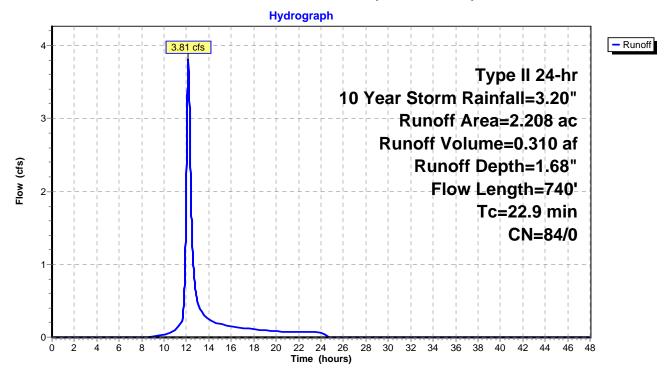
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
*	0.	298 8	34 weig	hted CN		
0.298 84 100.00% Pervious Area				00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	8.0	100	0.0504	0.21		Sheet Flow,
	1.5	140	0.0504	1.57		Grass: Short n= 0.150 P2= 2.30" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
	9.5	240	Total			

#### Subcatchment OS8c: (new Subcat)






# Summary for Subcatchment OS8d: (new Subcat)

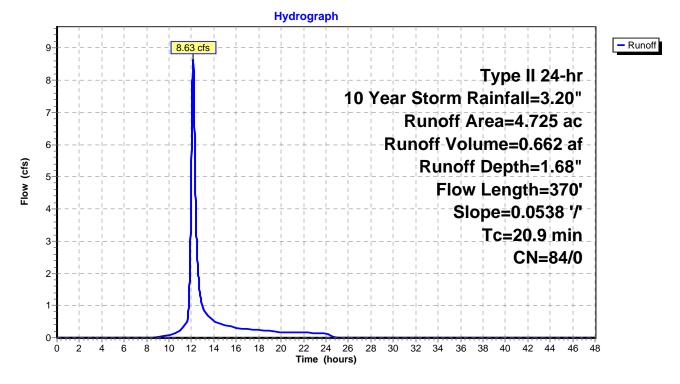
Runoff = 3.81 cfs @ 12.16 hrs, Volume= 0.310 af, Depth= 1.68"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
*	2.	.208 8	34 weig	hted CN		
	2.208 84 100.00% Pervio		ous Area			
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	14.8	100	0.0766	0.11		Sheet Flow,
	2.8	240	0.0796	1.41		Woods: Light underbrush n= 0.400 P2= 2.30" <b>Shallow Concentrated Flow,</b> Woodland Kv= 5.0 fps
	5.3	400	0.0327	1.27		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
	22.9	740	Total			

#### Subcatchment OS8d: (new Subcat)




#### Summary for Subcatchment OS8e: OS8e

Runoff = 8.63 cfs @ 12.14 hrs, Volume= 0.662 af, Depth= 1.68"

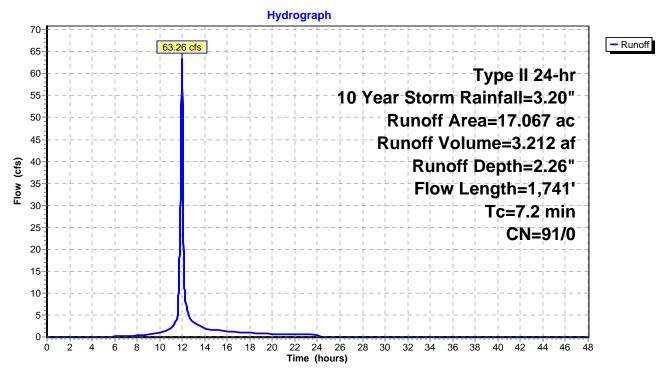
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) C	N Dese	cription		
*	4.	725 8	34 weig	hted CN		
	4.725 84 100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	17.0	100	0.0538	0.10	, , , , , , , , , , , , , , , , , , ,	Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.30"
	3.9	270	0.0538	1.16		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	20.9	370	Total			

#### Subcatchment OS8e: OS8e



#### Summary for Subcatchment OS8_5: (new Subcat)


Runoff = 63.26 cfs @ 11.98 hrs, Volume= 3.212 af, Depth= 2.26"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
*	17.	067 9	91 weig	hted CN		
	17.	067 9	91 100.	100.00% Pervious Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	0.6	50	0.0398	1.34		Sheet Flow, Smooth surfaces n= 0.011 P2= 2.30"
	1.8	427	0.0398	4.05		<b>Shallow Concentrated Flow,</b> Paved Kv= 20.3 fps
	4.8	1,264	0.0498	4.41	3.03	Trap/Vee/Rect Channel Flow, Bot.W=2.00' D=0.25' Z= 3.0 '/' Top.W=3.50' n= 0.025
-			-			

7.2 1,741 Total

#### Subcatchment OS8_5: (new Subcat)

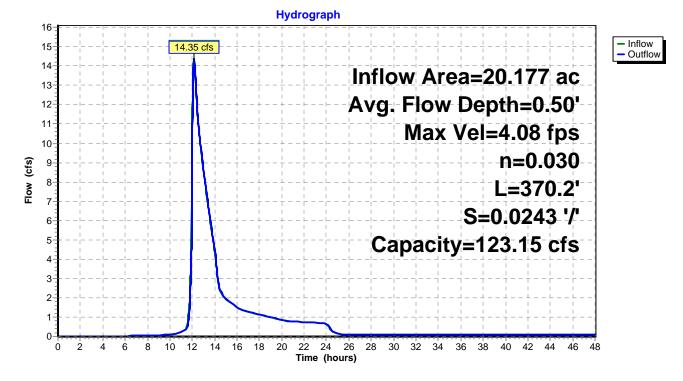


# Summary for Reach GC4: Grass Channel 4

 Inflow Area =
 20.177 ac, 2.42% Impervious, Inflow Depth > 1.67" for 10 Year Storm event

 Inflow =
 14.38 cfs @
 12.16 hrs, Volume=
 2.810 af

 Outflow =
 14.35 cfs @
 12.18 hrs, Volume=
 2.809 af, Atten= 0%, Lag= 1.1 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.08 fps, Min. Travel Time= 1.5 min Avg. Velocity = 1.03 fps, Avg. Travel Time= 6.0 min

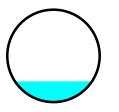
Peak Storage= 1,300 cf @ 12.18 hrs Average Depth at Peak Storage= 0.50' Bank-Full Depth= 1.50' Flow Area= 16.5 sf, Capacity= 123.15 cfs

5.00' x 1.50' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 4.0 '/' Top Width= 17.00' Length= 370.2' Slope= 0.0243 '/' Inlet Invert= 342.69', Outlet Invert= 333.69'

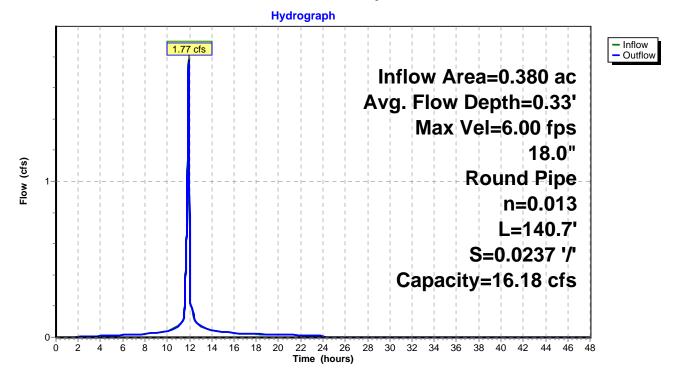
‡

Reach GC4: Grass Channel 4




# Summary for Reach P24: Pipe 24

Inflow Area =0.380 ac, 87.37% Impervious, Inflow Depth =2.69" for 10 Year Storm eventInflow =1.78 cfs @11.92 hrs, Volume =0.085 afOutflow =1.77 cfs @11.93 hrs, Volume =0.085 af, Atten = 1%, Lag = 0.3 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 6.00 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.67 fps, Avg. Travel Time= 1.4 min

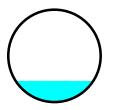
Peak Storage= 41 cf @ 11.93 hrs Average Depth at Peak Storage= 0.33' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 16.18 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 140.7' Slope= 0.0237 '/' Inlet Invert= 332.99', Outlet Invert= 329.65'



Reach P24: Pipe 24




# Summary for Reach P34: Pipe 34

Inflow Area =0.203 ac, 57.14% Impervious, Inflow Depth =2.30" for 10 Year Storm eventInflow =0.84 cfs @11.93 hrs, Volume =0.039 afOutflow =0.84 cfs @11.93 hrs, Volume =0.039 af, Atten = 0%, Lag = 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.76 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.75 fps, Avg. Travel Time= 0.8 min

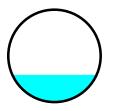
Peak Storage= 11 cf @ 11.93 hrs Average Depth at Peak Storage= 0.34' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 7.33 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 34.9' Slope= 0.0049 '/' Inlet Invert= 343.87', Outlet Invert= 343.70'

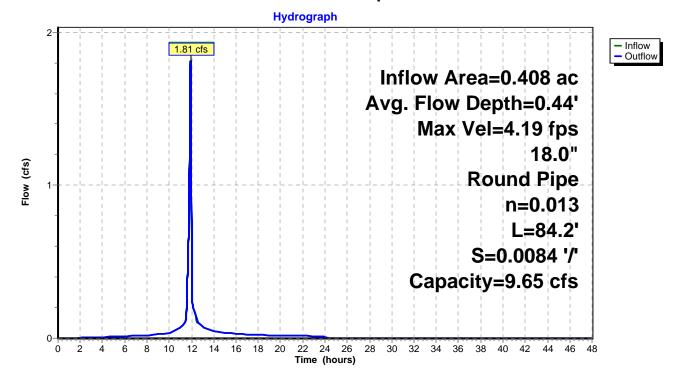


#### Hydrograph 0.9 - Inflow 0.84 cfs 0.85 Outflow 0.8 Inflow Area=0.203 ac 0.75 Avg. Flow Depth=0.34' 0.7 0.65 Max Vel=2.76 fps 0.6 18.0" 0.55 (cfs) 0.5 **Round Pipe** Flow 0.45 n=0.013 04 0.35 L=34.9' 0.3 S=0.0049 '/' 0.25 0.2 Capacity=7.33 cfs 0.15 0.1 0.05 0 Ò Ż 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 6 Time (hours)

Reach P34: Pipe 34


# Summary for Reach P35: Pipe 35

Inflow Area =0.408 ac, 71.81% Impervious, Inflow Depth =2.53" for 10 Year Storm eventInflow =1.82 cfs @11.91 hrs, Volume=0.086 afOutflow =1.81 cfs @11.92 hrs, Volume=0.086 af, Atten= 0%, Lag= 0.3 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.19 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.15 fps, Avg. Travel Time= 1.2 min

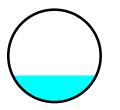
Peak Storage= 36 cf @ 11.92 hrs Average Depth at Peak Storage= 0.44' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 9.65 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 84.2' Slope= 0.0084 '/' Inlet Invert= 343.59', Outlet Invert= 342.88'



Reach P35: Pipe 35




# Summary for Reach P36: Pipe 36

Inflow Area =0.604 ac, 80.79% Impervious, Inflow Depth =2.67" for 10 Year Storm eventInflow =2.82 cfs @11.91 hrs, Volume =0.134 afOutflow =2.82 cfs @11.91 hrs, Volume =0.134 af, Atten = 0%, Lag = 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.78 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.04 fps, Avg. Travel Time= 0.3 min

Peak Storage= 12 cf @ 11.91 hrs Average Depth at Peak Storage= 0.57' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 15.70 cfs

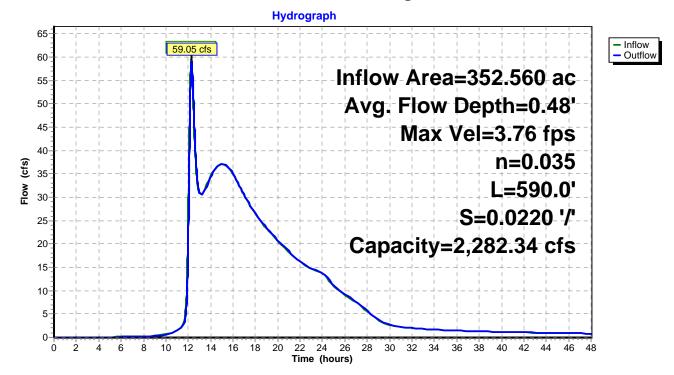
24.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 16.6' Slope= 0.0048 '/' Inlet Invert= 342.77', Outlet Invert= 342.69'



#### Hydrograph 3 Inflow 2.82 cfs Outflow Inflow Area=0.604 ac Avg. Flow Depth=0.57' Max Vel=3.78 fps 2 24.0" Flow (cfs) **Round Pipe** n=0.013 L=16.6' 1 S=0.0048 '/' Capacity=15.70 cfs 0ò Ż 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)

# Reach P36: Pipe 36

#### Summary for Reach R1: Reach through OS 1


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.76 fps, Min. Travel Time= 2.6 min Avg. Velocity = 1.44 fps, Avg. Travel Time= 6.8 min

Peak Storage= 9,262 cf @ 12.30 hrs Average Depth at Peak Storage= 0.48' Bank-Full Depth= 4.00' Flow Area= 172.0 sf, Capacity= 2,282.34 cfs

31.00' x 4.00' deep channel, n= 0.035 Side Slope Z-value= 3.0 '/' Top Width= 55.00' Length= 590.0' Slope= 0.0220 '/' Inlet Invert= 266.00', Outlet Invert= 253.00'



#### Reach R1: Reach through OS 1



15 10 5

2

6 8 10

0

12 14

16 18

20 22 24 26 28

Time (hours)

30 32 34

36 38

40 42

46 48

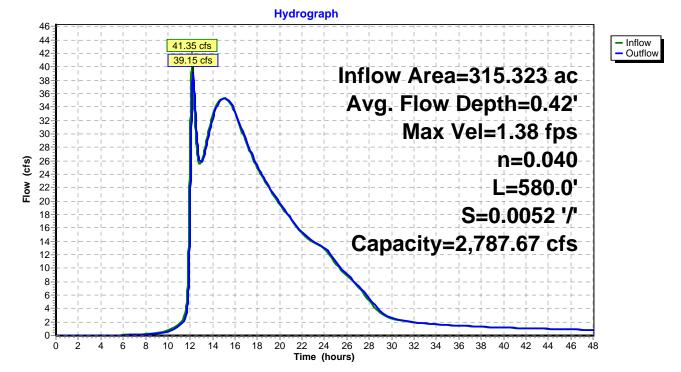
44

#### Summary for Reach R2: Reach through OS2

Inflow Area = 337.278 ac. 2.67% Impervious, Inflow Depth > 1.15" for 10 Year Storm event Inflow 58.22 cfs @ 12.25 hrs. Volume= 32.461 af = 58.06 cfs @ 12.27 hrs, Volume= Outflow 32.454 af, Atten= 0%, Lag= 1.2 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 6.51 fps, Min. Travel Time= 1.5 min Avg. Velocity = 2.72 fps, Avg. Travel Time= 3.6 min Peak Storage= 5,174 cf @ 12.27 hrs Average Depth at Peak Storage= 0.76' Bank-Full Depth= 4.00' Flow Area= 112.0 sf, Capacity= 1,850.26 cfs 8.00' x 4.00' deep channel, n= 0.035 Side Slope Z-value= 5.0 '/' Top Width= 48.00' Length= 580.0' Slope= 0.0500 '/' Inlet Invert= 295.00', Outlet Invert= 266.00' ‡ Reach R2: Reach through OS2 Hydrograph 65 Inflow 58.06 cfs 60 Outflow Inflow Area=337.278 ac 55 50 Avg. Flow Depth=0.76' 45 Max Vel=6.51 fps 40 n=0.035 (cfs) 35 L=580.0' _low 30 S=0.0500 '/' 25 20 Capacity=1,850.26 cfs

#### Summary for Reach R3: Reach through OS3

Inflow Area = 315.323 ac, 2.65% Impervious, Inflow Depth > 1.16" for 10 Year Storm event Inflow = 41.35 cfs @ 12.18 hrs, Volume= 30.507 afOutflow = 39.15 cfs @ 12.26 hrs, Volume= 30.473 af, Atten= 5%, Lag= 4.9 min Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Max. Velocity= 1.38 fps, Min. Travel Time= 7.0 min Avg. Velocity= 0.62 fps, Avg. Travel Time= 15.6 min

Peak Storage= 16,462 cf @ 12.26 hrs Average Depth at Peak Storage= 0.42' Bank-Full Depth= 4.00' Flow Area= 560.0 sf, Capacity= 2,787.67 cfs

60.00' x 4.00' deep channel, n= 0.040 Winding stream, pools & shoals Side Slope Z-value= 20.0 '/' Top Width= 220.00' Length= 580.0' Slope= 0.0052 '/' Inlet Invert= 298.00', Outlet Invert= 295.00'

‡

Reach R3: Reach through OS3

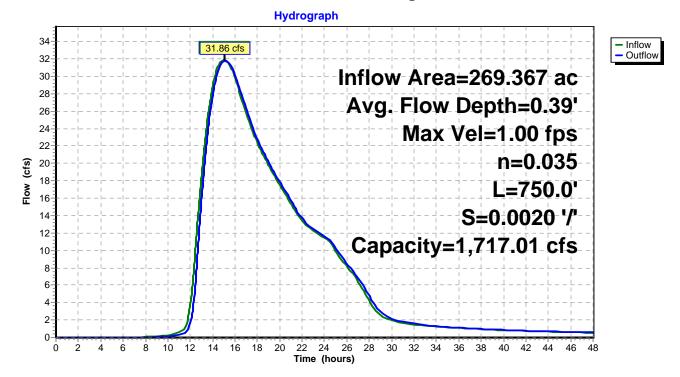


#### Summary for Reach R4: Reach through OS4

 Inflow Area =
 269.367 ac, 2.03% Impervious, Inflow Depth > 1.11" for 10 Year Storm event

 Inflow =
 31.91 cfs @
 15.00 hrs, Volume=
 24.907 af

 Outflow =
 31.86 cfs @
 15.13 hrs, Volume=
 24.863 af, Atten= 0%, Lag= 8.2 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.00 fps, Min. Travel Time= 12.6 min Avg. Velocity = 0.43 fps, Avg. Travel Time= 28.9 min

Peak Storage= 24,015 cf @ 15.13 hrs Average Depth at Peak Storage= 0.39' Bank-Full Depth= 4.00' Flow Area= 412.0 sf, Capacity= 1,717.01 cfs

80.00' x 4.00' deep channel, n= 0.035 Side Slope Z-value= 5.0 6.5 '/' Top Width= 126.00' Length= 750.0' Slope= 0.0020 '/' Inlet Invert= 299.50', Outlet Invert= 298.00'



#### **Reach R4: Reach through OS4**



22.431 ac.

Inflow Area =

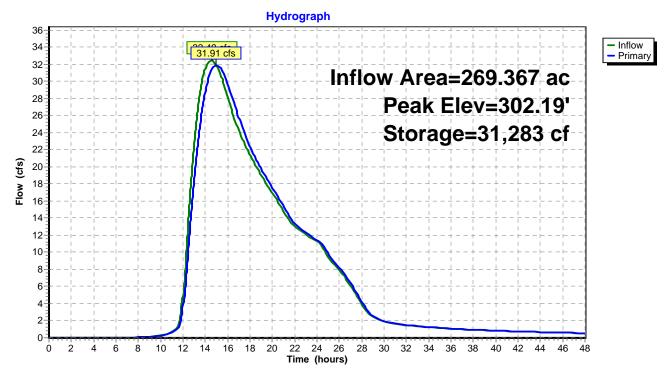
#### Summary for Reach R5: Ditch behind Spare Time

0.00% Impervious, Inflow Depth = 0.75" for 10 Year Storm event

Inflow 5.16 cfs @ 13.27 hrs. Volume= 1.411 af = 5.13 cfs @ 13.31 hrs, Volume= Outflow 1.411 af, Atten= 1%, Lag= 2.4 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.26 fps, Min. Travel Time= 4.3 min Avg. Velocity = 0.60 fps, Avg. Travel Time= 9.1 min Peak Storage= 1,324 cf @ 13.31 hrs Average Depth at Peak Storage= 0.79' Bank-Full Depth= 2.00' Flow Area= 20.0 sf, Capacity= 43.39 cfs 2.00' x 2.00' deep channel, n= 0.025 Side Slope Z-value= 4.0 '/' Top Width= 18.00' Length= 325.0' Slope= 0.0012 '/' Inlet Invert= 312.00', Outlet Invert= 311.61' ‡ **Reach R5: Ditch behind Spare Time** Hydrograph Inflow 5.13 cfs Outflow 5-Inflow Area=22.431 ac Avg. Flow Depth=0.79' 4-Max Vel=1.26 fps n=0.025 -low (cfs) 3-L=325.0' S=0.0012 '/' 2-Capacity=43.39 cfs 1-0-2 4 6 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Ô 8 Time (hours)

## Summary for Pond 1P: Hercules Drive / S/N 005

Inflow Area =	269.367 ac,	2.03% Impervious, Inflow [	Depth > 1.11" for 10 Year Storm event
Inflow =	32.49 cfs @	14.57 hrs, Volume=	24.914 af
Outflow =	31.91 cfs @	15.00 hrs, Volume=	24.907 af, Atten= 2%, Lag= 25.4 min
Primary =	31.91 cfs @	15.00 hrs, Volume=	24.907 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 300.01' Surf.Area= 698 sf Storage= 262 cf Peak Elev= 302.19' @ 15.00 hrs Surf.Area= 37,662 sf Storage= 31,283 cf (31,021 cf above start)

Plug-Flow detention time= 12.8 min calculated for 24.895 af (100% of inflow) Center-of-Mass det. time= 11.7 min (1,174.5 - 1,162.8)

Volume	Inv	ert Avai	il.Storage	Storage Descripti	on		
#1	299.0	299.00' 289,977 cf		Custom Stage Data (Irregular)Listed below (Recalc)			
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
299.0		12	38.0	0	0	12	
300.0		664	524.0	255	255	21,749	
301.0		8,419	934.0	3,816	4,071	69,324	
302.0		34,889	1,232.0	20,149	24,220	120,701	
303.0	00	50,252	1,311.0	42,338	66,557	136,738	
304.0	00	63,333	1,347.0	56,667	123,224	144,468	
306.0	00	105,180	1,900.0	166,753	289,977	287,393	
Device	Routing	In	vert Outl	et Devices			
#1	Primary	300	.01' <b>36.0</b>	" Round Culvert			
#2	Primary		L= 7 Inlet n= 0 0.07' <b>36.0</b> L= 7 Inlet	6.0' CMP, project	0.01' / 299.50' Š= 7.07 sf ing, no headwall, 9.72' / 300.07' S=	= 0.0067 '/' Cc= 0.900 Ke= 0.900	
	Primary OutFlow Max=31.91 cfs @ 15.00 hrs HW=302.19' TW=299.89' (Dynamic Tailwater)						
⊢−1=Cι	<b>T-1=Culvert</b> (Barrel Controls 16.71 cfs @ 4.23 fps)						

ert (Barrel Controls 16.71 cts @ 4.23 tps)

-2=Culvert (Barrel Controls 15.20 cfs @ 3.31 fps)



### Pond 1P: Hercules Drive / S/N 005

## Summary for Pond 2P: Lower Mtn View Dr

Inflow Area :	=	110.396 ac,	4.77% Impervious, Inflow I	Depth > 1.28" for 10 Year Storm event
Inflow =	=	64.20 cfs @	12.13 hrs, Volume=	11.739 af
Outflow =	=	13.93 cfs @	12.76 hrs, Volume=	11.735 af, Atten= 78%, Lag= 37.5 min
Primary =	=	13.93 cfs @	12.76 hrs, Volume=	11.735 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 307.54' Surf.Area= 1,916 sf Storage= 898 cf Peak Elev= 309.96' @ 13.15 hrs Surf.Area= 96,059 sf Storage= 92,367 cf (91,468 cf above start)

Plug-Flow detention time= 51.4 min calculated for 11.714 af (100% of inflow) Center-of-Mass det. time= 46.1 min (1,136.3 - 1,090.2)

Volume	Inv	ert Ava	il.Storage	Storage Descript	ion	
#1	305.8	81' 2,6	97,851 cf	Custom Stage D	ata (Irregular)List	ted below (Recalc)
Elevatio	on	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
305.8	31	0	20.0	0	0	0
306.0	00	86	86.0	5	5	557
307.0	00	523	295.0	274	279	6,896
308.0	00	3,791	669.0	1,907	2,187	35,591
309.0	00	48,653	2,441.0	22,008	24,195	474,139
310.0	00	98,391	2,208.0	72,077	96,272	560,370
312.0	00	463,287	3,621.0	516,787	613,059	1,215,826
316.5	50	463,287	3,621.0	2,084,792	2,697,851	1,232,120
Device	Routing	In	vert Outl	et Devices		
#1	Primary	305	.81' <b>24.0</b>	" Round Culvert		
	,		L= 1	02.0' CMP, proje	cting, no headwall	, Ke= 0.900
			Inlet	/ Outlet Invert= 30	)5.81'/304.74' S	= 0.0105 '/' Cc= 0.900
			n= 0	0.025 Corrugated r	metal, Flow Area=	= 3.14 sf
#2	Primary	316	5.13' <b>190</b> .	.0' long x 25.0' br	eadth Broad-Cres	sted Rectangular Weir
				d (feet) 0.20 0.40		
			Coe	f. (English) 2.68 2	2.70 2.70 2.64 2.	.63 2.64 2.64 2.63
<b>Primary OutFlow</b> Max-13.92 cfs @ 12.76 brs HW-309.93' TW-307.92' (Dynamic Tailwater)						

**Primary OutFlow** Max=13.92 cfs @ 12.76 hrs HW=309.93' TW=307.92' (Dynamic Tailwater) -1=Culvert (Outlet Controls 13.92 cfs @ 4.43 fps)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

13.93 cfs

12 14 16 18 20

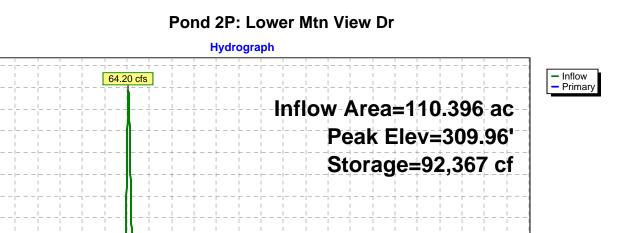
70-

65

60-55-

50-

45


15-10-5-0-

2

Ó

4 6 8 10

Flow (cfs) 40 35 30-25 20-



24 26

Time (hours)

22

28

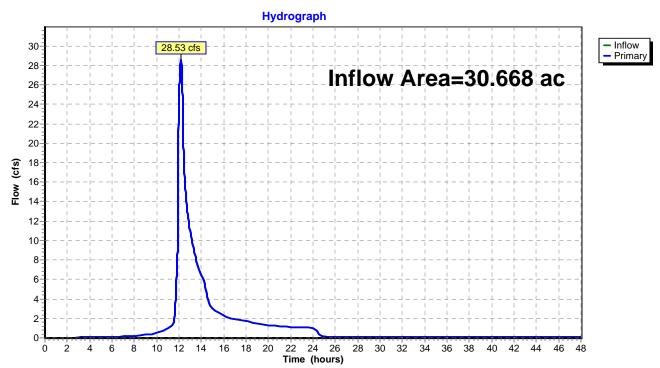
30 32

34 36 38

40

42 44

46 48


Printed 5/10/2016

Page 80

## Summary for Pond 008: POI 008

Inflow Are	a =	30.668 ac,	7.96% Impervious, Inflow D	epth > 1.77"	for 10 Year Storm event
Inflow	=	28.53 cfs @	12.16 hrs, Volume=	4.521 af	
Primary	=	28.53 cfs @	12.16 hrs, Volume=	4.521 af, Att	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs



#### Pond 008: POI 008

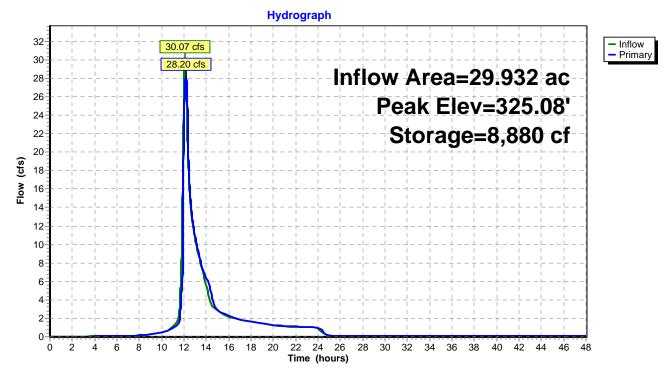
## Summary for Pond 8D: Detention

Inflow Area =	29.932 ac,	6.80% Impervious, Inf	low Depth > 1.76"	for 10 Year Storm event
Inflow =	30.07 cfs @	12.09 hrs, Volume=	4.385 af	
Outflow =	28.20 cfs @	12.17 hrs, Volume=	4.385 af, Atte	en= 6%, Lag= 4.3 min
Primary =	28.20 cfs @	12.17 hrs, Volume=	4.385 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 325.08' @ 12.17 hrs Surf.Area= 4,508 sf Storage= 8,880 cf

Plug-Flow detention time= 8.0 min calculated for 4.384 af (100% of inflow) Center-of-Mass det. time= 7.9 min (914.0 - 906.1)

Volume	١n	vert Avail.St	orage	Storage	Description	
#1	320.	00' 37,	593 cf	Custom	Stage Data (Pi	rismatic)Listed below (Recalc)
		o ( )		<b>a</b> .		
Elevatio	on	Surf.Area	Inc.	Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic	-feet)	(cubic-feet)	
320.0	00	0		0	0	
321.0	00	312		156	156	
322.0	00	1,044		678	834	
322.5	50	1,583		657	1,491	
323.0	00	1,895		870	2,360	
324.0	00	3,015		2,455	4,815	
325.0	00	4,374		3,695	8,510	
326.0	00	5,977	Ę	5,176	13,685	
330.0	00	5,977	23	3,908	37,593	
Device	Routing	Invert	Outle	t Device	S	
#1	Primary	324.00	24.0"	x 24.0"	Horiz. Orifice/C	Grate C= 0.600
			Limite	ed to wei	r flow at low hea	ads
#2	Primary	320.00	6.0" \	Vert. Ori	fice/Grate C=	0.600
#3	Primary	322.00	12.0"	Vert. O	rifice/Grate C=	= 0.600
	-					


Primary OutFlow Max=28.20 cfs @ 12.17 hrs HW=325.08' TW=0.00' (Dynamic Tailwater)

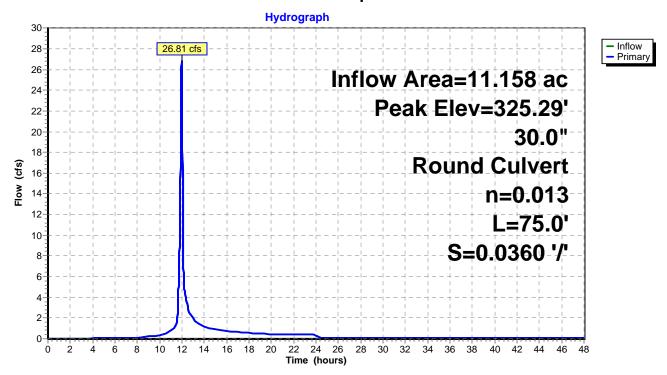
**1=Orifice/Grate** (Orifice Controls 20.04 cfs @ 5.01 fps)

-2=Orifice/Grate (Orifice Controls 2.08 cfs @ 10.59 fps)

-3=Orifice/Grate (Orifice Controls 6.08 cfs @ 7.74 fps)

#### **Pond 8D: Detention**




## Summary for Pond 48: Pipe 48

Inflow Area =11.158 ac, 14.99% Impervious, Inflow Depth > 1.87" for 10 Year Storm eventInflow =26.81 cfs @ 11.97 hrs, Volume=1.739 afOutflow =26.81 cfs @ 11.97 hrs, Volume=1.739 af, Atten= 0%, Lag= 0.0 minPrimary =26.81 cfs @ 11.97 hrs, Volume=1.739 af

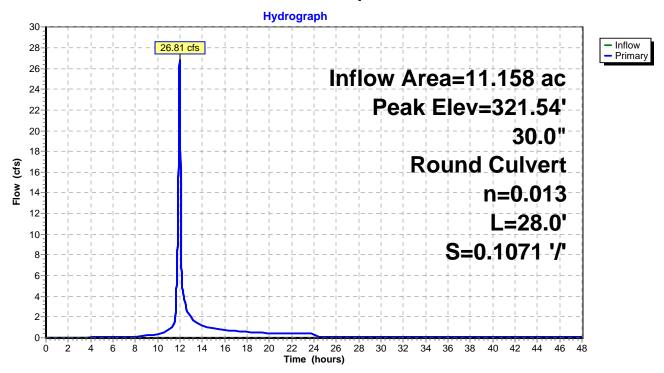
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 325.29' @ 11.97 hrs Flood Elev= 326.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	322.75'	<b>30.0" Round Culvert</b> L= 75.0' Ke= 0.500 Inlet / Outlet Invert= 322.75' / 320.05' S= 0.0360 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf

Primary OutFlow Max=26.78 cfs @ 11.97 hrs HW=325.28' TW=321.53' (Dynamic Tailwater) ↓ 1=Culvert (Inlet Controls 26.78 cfs @ 5.46 fps)



Pond 48: Pipe 48


## Summary for Pond 49: Pipe 49

Inflow Area =11.158 ac, 14.99% Impervious, Inflow Depth > 1.87" for 10 Year Storm eventInflow =26.81 cfs @ 11.97 hrs, Volume=1.739 afOutflow =26.81 cfs @ 11.97 hrs, Volume=1.739 af, Atten= 0%, Lag= 0.0 minPrimary =26.81 cfs @ 11.97 hrs, Volume=1.739 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 321.54' @ 11.97 hrs Flood Elev= 324.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	319.00'	<b>30.0" Round Culvert</b> L= 28.0' Ke= 0.500 Inlet / Outlet Invert= 319.00' / 316.00' S= 0.1071 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf

Primary OutFlow Max=26.78 cfs @ 11.97 hrs HW=321.53' TW=318.05' (Dynamic Tailwater) ↓ 1=Culvert (Inlet Controls 26.78 cfs @ 5.46 fps)



Pond 49: Pipe 49

### **Summary for Pond P: Pond 98**

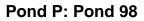
Page 86

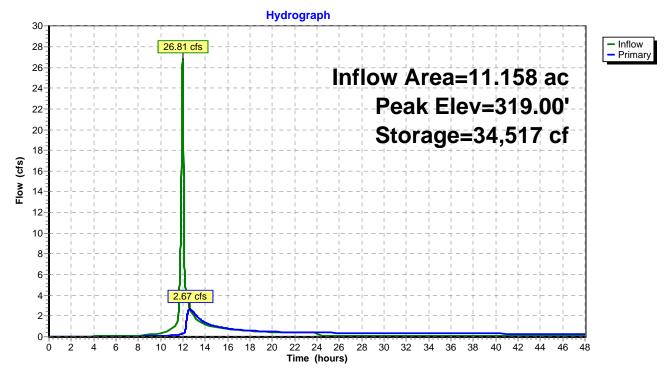
Inflow Area =	11.158 ac, 14.99% Impervious, Inflow	Depth > 1.87" for 10 Year Storm event	
Inflow =	26.81 cfs @ 11.97 hrs, Volume=	1.739 af	
Outflow =	2.67 cfs @ 12.59 hrs, Volume=	1.488 af, Atten= 90%, Lag= 37.4 min	
Primary =	2.67 cfs @ 12.59 hrs, Volume=	1.488 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 319.00' @ 12.59 hrs Surf.Area= 0 sf Storage= 34,517 cf

Plug-Flow detention time= 656.8 min calculated for 1.488 af (86% of inflow) Center-of-Mass det. time= 509.3 min ( 1,451.3 - 942.0 )

Volume	Invert	Avail.Stor	rage Storage Description
#1	316.00'	87,67	79 cf Custom Stage DataListed below
Elevatio		m.Store	
(fee	t) (cub	<u>pic-feet)</u>	
316.0	0	0	
317.0		8,893	
317.5	0	13,961	
318.5	0	26,849	
319.0		34,580	
320.0		51,060	
321.0		68,835	
322.0	0	87,679	
Dovice	Douting	Invert	Outlet Devices
Device	Routing		
#1	Primary	319.00'	<b>10.0' long Spillway</b> 2 End Contraction(s) 2.0' Crest Height
#2	Device 4	318.80'	<b>24.0" x 24.0" Horiz. Overflow</b> C= 0.600 Limited to weir flow at low heads
#3	Device 4	316.00'	<b>3.0" Vert. Low Flow</b> $C= 0.600$
#4	Primary	315.25'	18.0" Round Culvert
		0.0.20	L= 39.0' CPP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 315.25' / 315.00' S= 0.0064 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf
			2 12.59 hrs HW=319.00' TW=0.00' (Dynamic Tailwater)
T—1=Sp	illway (Cor	ntrols 0.00 cfs)	


-4=Culvert (Passes 2.67 cfs of 12.99 cfs potential flow)


-2=Overflow (Weir Controls 2.27 cfs @ 1.45 fps)

-3=Low Flow (Orifice Controls 0.40 cfs @ 8.16 fps)

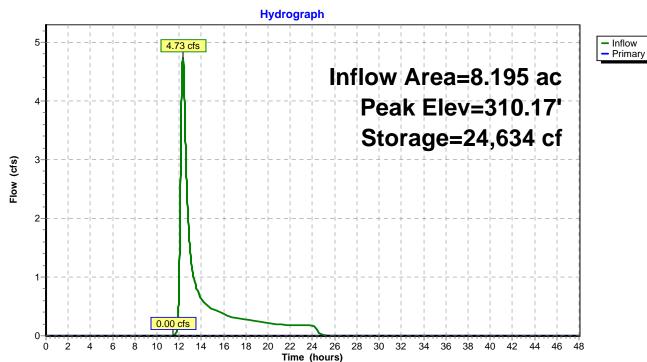
#### **DSAnalysis Post with BMP**

Prepared by VHB HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC





## Summary for Pond P1: Behind Health Lab


Inflow Area =	8.195 ac, 0.00	% Impervious, Inflow D	epth = 0.83" for 10 Year Storm event
Inflow =	4.73 cfs @ 12.3	32 hrs, Volume=	0.566 af
Outflow =	0.00 cfs @ 11.4	17 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs @ 11.4	17 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 310.17' @ 25.92 hrs Surf.Area= 141,660 sf Storage= 24,634 cf

Plug-Flow detention time= 3.3 min calculated for 0.000 af (0% of inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

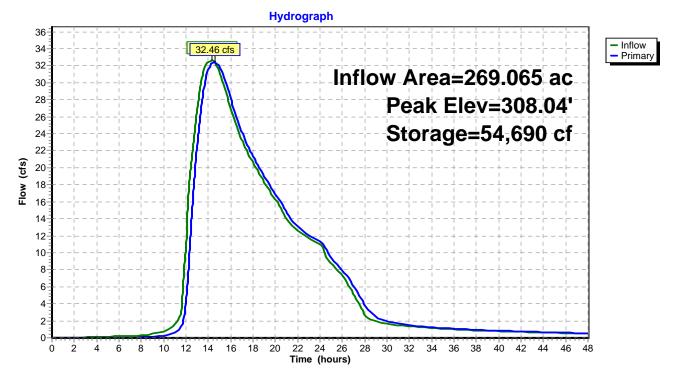
Volume	Inv	ert Avai	I.Storage	Storage Descript	ion		
#1	310.0	00' 3	72,741 cf	Custom Stage D	a <b>ta (Irregular)</b> List	ted below (Recalc)	)
Elevatior (feet	-	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
310.00 312.50		140,477 157,885	1,706.0 1,775.0	0 372,741	0 372,741	140,477 160,080	
Device	Routing	In	vert Outle	et Devices			
#1	Primary	Head		tom Weir/Orifice, d (feet) 0.00 1.00 h (feet) 3.00 9.00	•	8)	

Primary OutFlow Max=0.00 cfs @ 11.47 hrs HW=310.00' TW=310.03' (Dynamic Tailwater)



# Pond P1: Behind Health Lab

#### Summary for Pond P10: Reach between LMV and Hercules


Inflow Area =	269.065 ac,	1.96% Impervious, Inflow [	Depth > 1.12" for 10 Year Storm event
Inflow =	32.65 cfs @	14.32 hrs, Volume=	25.021 af
Outflow =	32.46 cfs @	14.57 hrs, Volume=	24.855 af, Atten= 1%, Lag= 15.3 min
Primary =	32.46 cfs @	14.57 hrs, Volume=	24.855 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 307.54' Surf.Area= 88,869 sf Storage= 3,516 cf Peak Elev= 308.04' @ 14.57 hrs Surf.Area= 115,552 sf Storage= 54,690 cf (51,174 cf above start)

Plug-Flow detention time= 48.9 min calculated for 24.769 af (99% of inflow) Center-of-Mass det. time= 31.4 min (1,163.8 - 1,132.4)

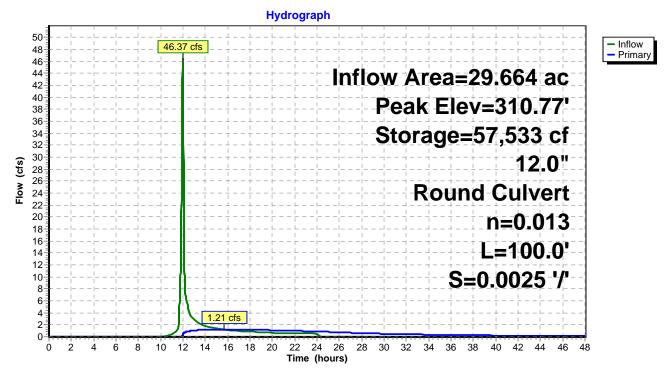
Volume	Inv	ert Ava	il.Storage	Storage Descripti	on		
#1	307.	50' 1	14,777 cf	Storage 1066' DS	6 of LMV (Irregula	<b>r)</b> Listed below (Red	calc)
Elevatio (fee 307.9 308.0 308.9	et) 50 00	Surf.Area (sq-ft) 86,932 112,678 148,186	Perim. (feet) 3,099.0 3,270.0 3,641.0	Inc.Store (cubic-feet) 0 49,764 65,014	Cum.Store (cubic-feet) 0 49,764 114,777	Wet.Area (sq-ft) 86,932 173,614 377,657	
Device	Routing	In	vert Outl	et Devices			
#1	Primary	307		mmetrical Weir, C et (feet) -143.00 -		00 21 00 11 00	
				0 38.00 60.00 88		.00 -21.00 -11.00	0.00
				r. (feet) 310.00 30		34 308.76 307.71	307.54
			307.	.67 308.66 309.24	. 310.00		

Primary OutFlow Max=32.46 cfs @ 14.57 hrs HW=308.04' TW=302.17' (Dynamic Tailwater)



#### Pond P10: Reach between LMV and Hercules

## Summary for Pond P2/3: Upstream of Park Drive


Inflow Area =	29.664 ac,	0.00% Impervious, Inflow I	Depth = 0.88" for 10 Year Storm event
Inflow =	46.37 cfs @	11.98 hrs, Volume=	2.168 af
Outflow =	1.21 cfs @	15.63 hrs, Volume=	1.790 af, Atten= 97%, Lag= 219.0 min
Primary =	1.21 cfs @	15.63 hrs, Volume=	1.790 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 310.77' @ 15.63 hrs Surf.Area= 84,106 sf Storage= 57,533 cf

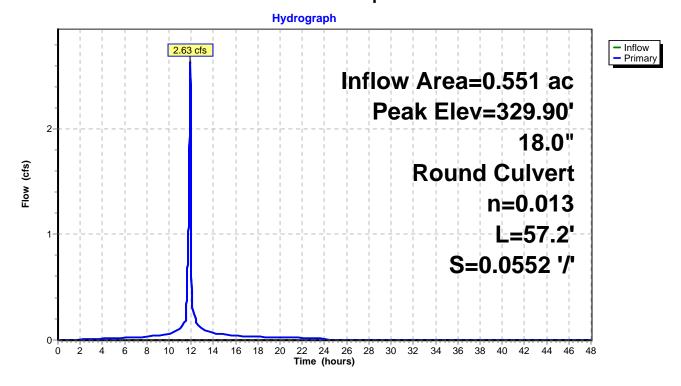
Plug-Flow detention time= 647.0 min calculated for 1.790 af (83% of inflow) Center-of-Mass det. time= 568.5 min (1,417.6 - 849.1)

Volume	Invert	Avail	.Storage	Storage Descriptio	n		
#1 #2	310.00' 310.00'		28,517 cf 33,492 cf	Pond 2 (Irregular) Pond 3 (Irregular)			
<u>#</u> ∠	310.00					calc)	
		21	2,008 cf	Total Available Sto	rage		
Elevation (feet)	Su	urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
310.00		39,781	975.0	0	0	39,781	
312.25		76,433	1,197.0	128,517	128,517	78,230	
Elevation	Su	urf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
310.00		25,767	687.0	0	0	25,767	
312.25		49,751	855.0	83,492	83,492	46,455	
Device R	outing	Inv	vert Outle	et Devices			
#1         Primary         310.00' <b>12.0" Round Culvert</b> L= 100.0'         RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 310.00' / 309.75'         S= 0.0025 '/'         Cc= 0.900 n= 0.013, Flow Area= 0.79 sf			0				

**Primary OutFlow** Max=1.21 cfs @ 15.63 hrs HW=310.77' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 1.21 cfs @ 2.57 fps)



## Pond P2/3: Upstream of Park Drive


## Summary for Pond P25: Pipe 25

Inflow Area =0.551 ac, 90.20% Impervious, Inflow Depth =2.76" for 10 Year Storm eventInflow =2.63 cfs @11.92 hrs, Volume=0.127 afOutflow =2.63 cfs @11.92 hrs, Volume=0.127 afPrimary =2.63 cfs @11.92 hrs, Volume=0.127 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 329.90' @ 11.92 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	329.15'	<b>18.0"</b> Round Culvert L= 57.2' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= $329.15' / 325.99'$ S= 0.0552 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=2.62 cfs @ 11.92 hrs HW=329.90' TW=327.97' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 2.62 cfs @ 2.95 fps)



### Pond P25: Pipe 25

## Summary for Pond P26: Pipe 26

Inflow Area =5.326 ac, 4.56% Impervious, Inflow Depth =1.72" for 10 Year Storm eventInflow =9.19 cfs @12.12 hrs, Volume=0.764 afOutflow =9.19 cfs @12.12 hrs, Volume=0.764 af, Atten= 0%, Lag= 0.0 minPrimary =9.19 cfs @12.12 hrs, Volume=0.764 af

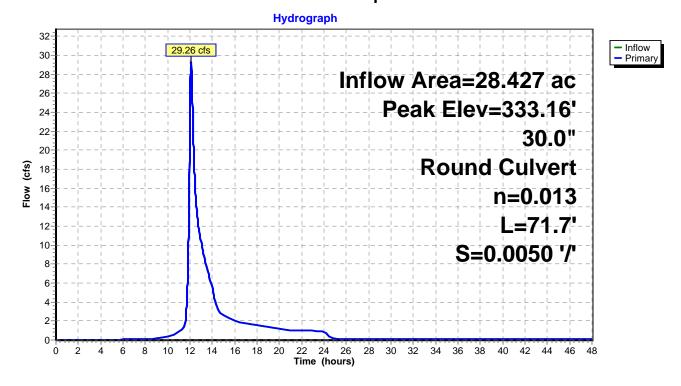
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 333.53' @ 12.12 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	329.02'	<b>24.0"</b> Round Culvert L= 35.6' Ke= 0.500 Inlet / Outlet Invert= 329.02' / 328.85' S= 0.0048 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=9.35 cfs @ 12.12 hrs HW=333.52' TW=333.14' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 9.35 cfs @ 2.98 fps)



## Pond P26: Pipe 26


## Summary for Pond P27: Pipe 27

Inflow Area =28.427 ac, 3.86% Impervious, Inflow Depth > 1.73" for 10 Year Storm eventInflow =29.26 cfs @12.10 hrs, Volume=4.090 afOutflow =29.26 cfs @12.10 hrs, Volume=4.090 afPrimary =29.26 cfs @12.10 hrs, Volume=4.090 af

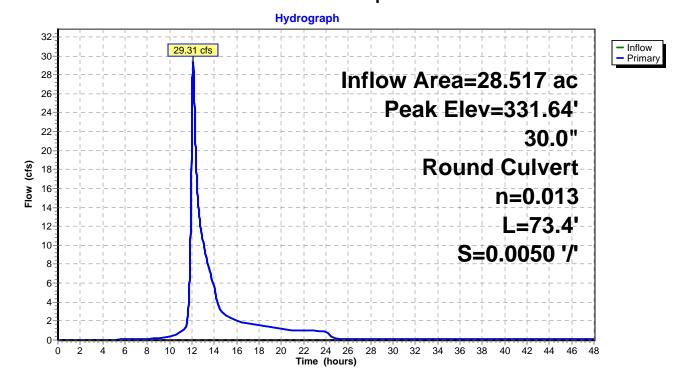
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 333.16' @ 12.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	328.75'	<b>30.0" Round Culvert</b> L= 71.7' Ke= 0.500 Inlet / Outlet Invert= 328.75' / 328.39' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf

Primary OutFlow Max=28.79 cfs @ 12.10 hrs HW=333.11' TW=331.62' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 28.79 cfs @ 5.87 fps)



#### Pond P27: Pipe 27


## Summary for Pond P28: Pipe 28

Inflow Area =28.517 ac, 4.15% Impervious, Inflow Depth > 1.73" for 10 Year Storm eventInflow =29.31 cfs @12.10 hrs, Volume=4.111 afOutflow =29.31 cfs @12.10 hrs, Volume=4.111 af, Atten= 0%, Lag= 0.0 minPrimary =29.31 cfs @12.10 hrs, Volume=4.111 af

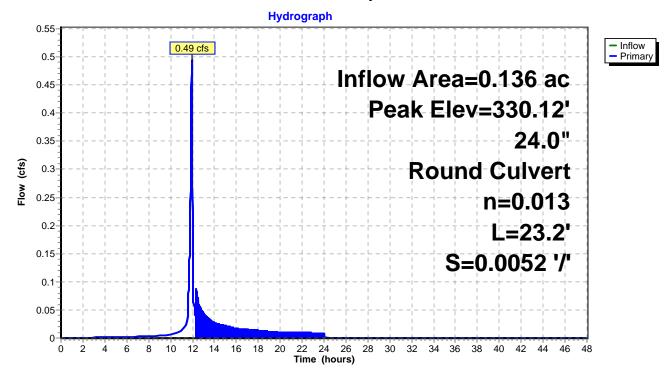
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 331.64' @ 12.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	328.29'	<b>30.0" Round Culvert</b> L= 73.4' Ke= 0.500 Inlet / Outlet Invert= 328.29' / 327.92' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf

Primary OutFlow Max=29.06 cfs @ 12.10 hrs HW=331.62' TW=330.11' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 29.06 cfs @ 5.92 fps)



### Pond P28: Pipe 28


## Summary for Pond P29: Pipe 29

Inflow Area =0.136 ac, 33.09% Impervious, Inflow Depth =1.92" for 10 Year Storm eventInflow =0.49 cfs @11.93 hrs, Volume=0.022 afOutflow =0.49 cfs @11.93 hrs, Volume=0.022 af, Atten=0%, Lag=0.0 minPrimary =0.49 cfs @11.93 hrs, Volume=0.022 af

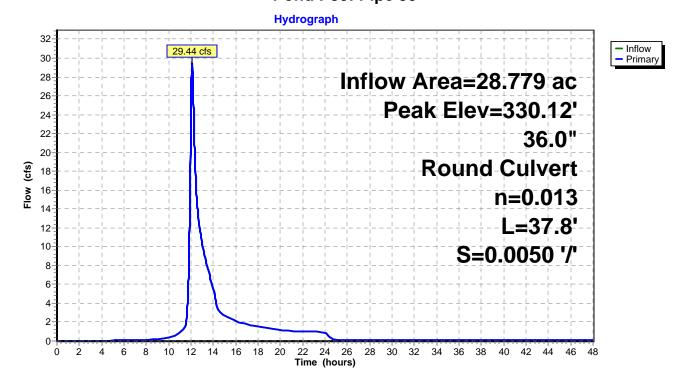
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 330.12' @ 12.12 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	326.67'	<b>24.0"</b> Round Culvert L= 23.2' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= $326.67' / 326.55'$ S= $0.0052 '/$ ' Cc= $0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=0.00 cfs @ 11.93 hrs HW=328.70' TW=328.78' (Dynamic Tailwater)



## Pond P29: Pipe 29


## Summary for Pond P30: Pipe 30

Inflow Area =28.779 ac, 4.58% Impervious, Inflow Depth > 1.73" for 10 Year Storm eventInflow =29.44 cfs @12.10 hrs, Volume=4.159 afOutflow =29.44 cfs @12.10 hrs, Volume=4.159 afPrimary =29.44 cfs @12.10 hrs, Volume=4.159 af

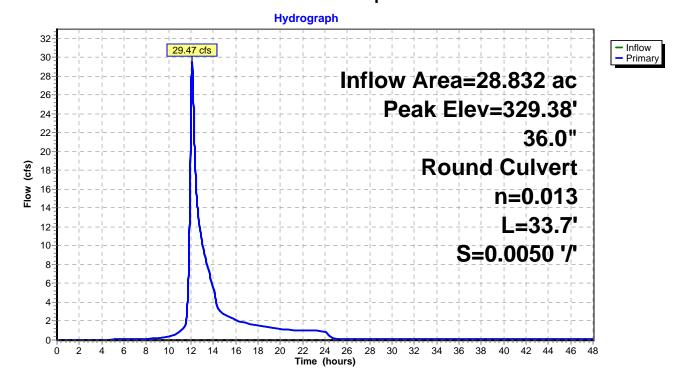
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 330.12' @ 12.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	326.45'	<b>36.0" Round Culvert</b> L= 37.8' Ke= 0.500 Inlet / Outlet Invert= 326.45' / 326.26' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 7.07 sf

Primary OutFlow Max=29.20 cfs @ 12.10 hrs HW=330.11' TW=329.37' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 29.20 cfs @ 4.13 fps)



### Pond P30: Pipe 30


## Summary for Pond P31: Pipe 31

Inflow Area =28.832 ac, 4.75% Impervious, Inflow Depth > 1.74" for 10 Year Storm eventInflow =29.47 cfs @12.10 hrs, Volume=4.173 afOutflow =29.47 cfs @12.10 hrs, Volume=4.173 af, Atten= 0%, Lag= 0.0 minPrimary =29.47 cfs @12.10 hrs, Volume=4.173 af

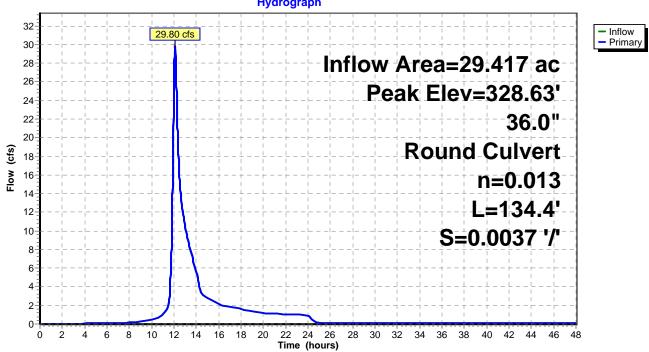
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 329.38' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	326.16'	<b>36.0" Round Culvert</b> L= 33.7' Ke= 0.500 Inlet / Outlet Invert= 326.16' / 325.99' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 7.07 sf

Primary OutFlow Max=29.40 cfs @ 12.10 hrs HW=329.37' TW=328.63' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 29.40 cfs @ 4.16 fps)



#### Pond P31: Pipe 31


## Summary for Pond P32: Pipe 32

6.45% Impervious, Inflow Depth > 1.76" for 10 Year Storm event Inflow Area = 29.417 ac, Inflow 29.80 cfs @ 12.10 hrs. Volume= 4.307 af = 29.80 cfs @ 12.10 hrs, Volume= Outflow 4.307 af, Atten= 0%, Lag= 0.0 min = 29.80 cfs @ 12.10 hrs, Volume= 4.307 af Primary =

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 328.63' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	325.89'	<b>36.0" Round Culvert</b> L= 134.4' Ke= 0.500 Inlet / Outlet Invert= 325.89' / 325.39' S= 0.0037 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 7.07 sf

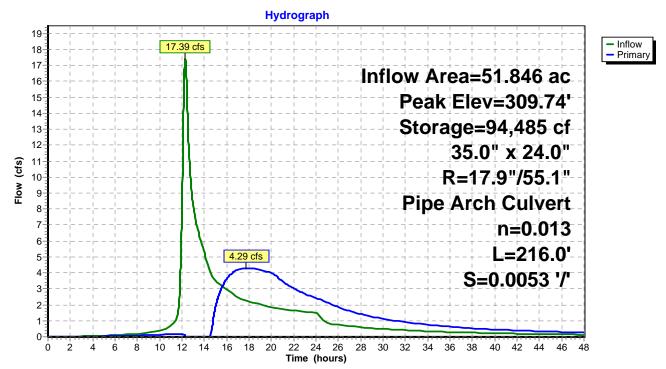
Primary OutFlow Max=29.78 cfs @ 12.10 hrs HW=328.63' TW=325.00' (Dynamic Tailwater) ☐ 1=Culvert (Barrel Controls 29.78 cfs @ 5.78 fps)



#### Pond P32: Pipe 32

Hydrograph

## Summary for Pond P4: Upstream of Interstate


Inflow Area =	51.846 ac,	4.26% Impervious, Inflow D	Depth > 1.05" for 10 Year Storm event
Inflow =	17.39 cfs @	12.29 hrs, Volume=	4.533 af
Outflow =	4.29 cfs @	17.77 hrs, Volume=	4.385 af, Atten= 75%, Lag= 329.1 min
Primary =	4.29 cfs @	17.77 hrs, Volume=	4.385 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 309.74' @ 15.62 hrs Surf.Area= 124,935 sf Storage= 94,485 cf

Plug-Flow detention time= 396.8 min calculated for 4.385 af (97% of inflow) Center-of-Mass det. time= 347.1 min (1,427.9 - 1,080.8)

Volume	Inv	ert Avai	I.Storage	Storage Descripti	ion		
#1	308.8	84' 2	64,873 cf	Custom Stage D	<b>)ata (Irregular)</b> List	ed below (Recalc)	
Elevatio		Surf.Area (sq-ft)	Perim. (feet)		Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
308.8	34	100	40.0	0	0	100	
309.0	00	113,232	2,956.0	6,224	6,224	695,316	
311.0	)0	146,115	3,003.0	258,649	264,873	718,386	
Device #1	Routing Primary	<u>In</u> 308	.84' <b>35.</b> ( L= ) Inle	216.0' Ke= 0.500	)8.84' / 307.69' S=	Arch CMP_Arch_1/2 = 0.0053 '/' Cc= 0.90 4.63 sf	

**Primary OutFlow** Max=4.30 cfs @ 17.77 hrs HW=309.66' TW=309.01' (Dynamic Tailwater) **1=CMP_Arch_1/2 35x24** (Outlet Controls 4.30 cfs @ 2.95 fps)



## Pond P4: Upstream of Interstate

## Summary for Pond P5: in Shaws Parking

Data from Champlain Consulting Engineers 8 SEP 00

Inflow Ar Inflow Outflow Primary	=	17.067 ac, 0. 63.26 cfs @ 1 10.02 cfs @ 12 10.02 cfs @ 12	1.98 hrs, Volu 2.22 hrs, Volu	me= 3.21 me= 2.32	5 af, Atten= 84%, Lag= 14.0 min	
				00-48.00 hrs, dt= ,910 sf Storage=		
		on time= 279.0 n et. time= 185.0 n		for 2.324 af (72%) 00.5 )	of inflow)	
Volume	Inve	ert Avail.Sto	rage Storage	e Description		
#1	354.5	50' 168,10	07 cf Custon	n Stage Data (Pri	smatic)Listed below	
Elevatio		Surf.Area	Inc.Store	Cum.Store		
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)		
354.5		16,374	0	0		
356.0	0	18,340	26,036	26,036		
358.0	0	21,318	39,658	65,694		
360.0	0	24,759	46,077	111,771		
362.0	0	31,577	56,336	168,107		
Device	Routing	Invert	Outlet Device	es		
#1	Primary	356.10'	2.0" Horiz. 2	" ORIFICE/GRAT	E C= 0.600	
#2	Primary	357.00'	6.0" Horiz. 6	" HORIZONTAL	<b>DRIFICE/GRATE X9 X 9.00</b> C= 0.600	
	······			ir flow at low head		
#3	Primary	359.60'				
10	#3 Primary 359.60' <b>18.0" Horiz. 18" HORIZONTAL ORIFICE/GRATE</b> C= 0.600 Limited to weir flow at low heads					
Drimory	<b>Primary OutFlow</b> Max-10.02 of $@$ 12.22 brs. HW-358.34' TW-343.10' (Dynamic Tailwater)					

Primary OutFlow Max=10.02 cfs @ 12.22 hrs HW=358.34' TW=343.19' (Dynamic Tailwater) -1=2" ORIFICE/GRATE (Orifice Controls 0.16 cfs @ 7.21 fps) -2=6" HORIZONTAL ORIFICE/GRATE X9 (Orifice Controls 9.86 cfs @ 5.58 fps)

-3=18" HORIZONTAL ORIFICE/GRATE (Controls 0.00 cfs)

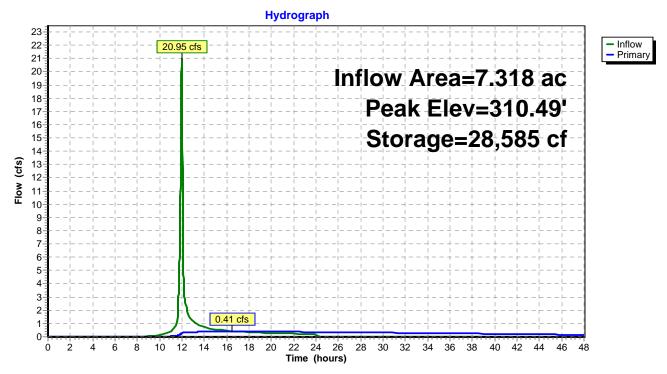
# Pond P5: in Shaws Parking



### Summary for Pond P6: next to Spare Time

Inflow Are	a =	7.318 ac,	0.00% Impervious, Inflow I	Depth = 1.61" for 10 Year Storm event
Inflow	=	20.95 cfs @	11.98 hrs, Volume=	0.981 af
Outflow	=	0.41 cfs @	16.49 hrs, Volume=	0.887 af, Atten= 98%, Lag= 270.9 min
Primary	=	0.41 cfs @	16.49 hrs, Volume=	0.887 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 310.49' @ 16.49 hrs Surf.Area= 14,614 sf Storage= 28,585 cf


Plug-Flow detention time= 844.7 min calculated for 0.887 af (90% of inflow) Center-of-Mass det. time= 795.3 min ( 1,625.2 - 829.8 )

Volume	Inv	ert Avail	.Storage	Storage Description	n	
#1	308.	00' 5	52,935 cf	Custom Stage Da	<b>ata (Irregular)</b> Liste	ed below (Recalc)
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
308.0	00	8,207	459.0	0	0	8,207
310.0	00	13,684	465.0	21,659	21,659	9,231
312.0	00	17,677	465.0	31,276	52,935	10,161
Device	Routing			et Devices	C 0.600	
#1 #2	Primary	308. 310.		Vert. Orifice/Grate "Round Culvert	C = 0.600	
#2	Primary	310.	L= 3 Inlet	4.0' CPP, mitered	).14'/310.09' S=	Ke= 0.700 0.0015 '/' Cc= 0.900
Primary OutFlow Max=0.41 cfs @ 16.49 hrs HW=310.49' TW=307.99' (Dynamic Tailwater)						

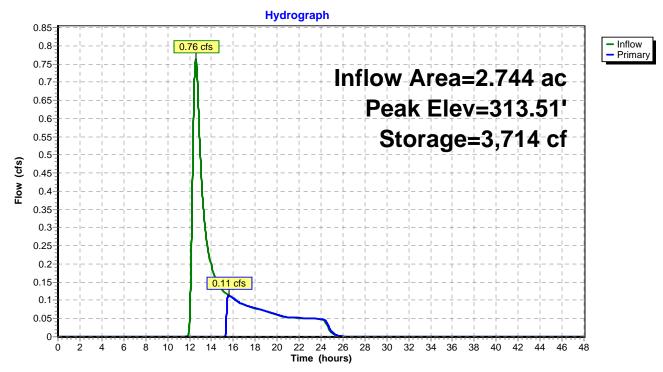
-1=Orifice/Grate (Orifice Controls 0.36 cfs @ 7.40 fps)

-2=Culvert (Barrel Controls 0.05 cfs @ 0.23 fps)

# Pond P6: next to Spare Time



## Summary for Pond P7: Small Pond across Hercules


Inflow Area =	2.744 ac,	0.00% Impervious, Inflow	Depth = 0.60" for 10 Year Storm event
Inflow =	0.76 cfs @	12.60 hrs, Volume=	0.137 af
Outflow =	0.11 cfs @	15.57 hrs, Volume=	0.053 af, Atten= 85%, Lag= 178.6 min
Primary =	0.11 cfs @	15.57 hrs, Volume=	0.053 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 313.51' @ 15.57 hrs Surf.Area= 3,312 sf Storage= 3,714 cf

Plug-Flow detention time= 402.5 min calculated for 0.053 af (38% of inflow) Center-of-Mass det. time= 230.1 min (1,163.1 - 932.9)

Volume	Inv	<u>rert Ava</u>	il.Storage	Storage Descripti	on		
#1	312.	00'	5,495 cf	Custom Stage D	<b>ata (Irregular)</b> List	ted below (Recalc)	
Elevatio (fee 312.0 314.0	et) 00	Surf.Area (sq-ft) 1,699 3,952	Perim. (feet) 250.0 313.0	Inc.Store (cubic-feet) 0 5,495	Cum.Store (cubic-feet) 0 5,495	Wet.Area (sq-ft) 1,699 4,577	
Device #1	#1 Primary 313.50' <b>5</b> H		3.50' <b>50.0</b> Head	d (feet) 0.20 0.40	0.60 0.80 1.00	ted Rectangular We 1.20 1.40 1.60 63 2.64 2.64 2.63	ir
				(g)			

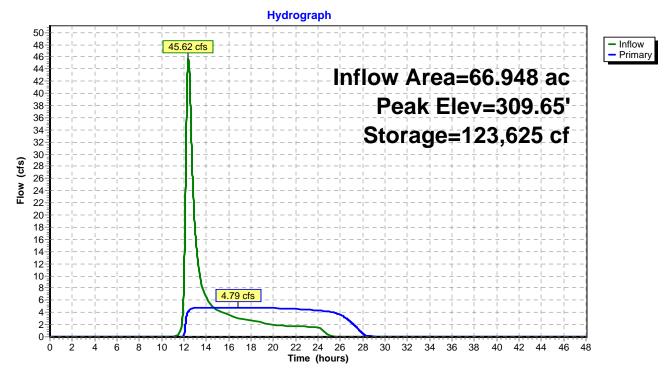
Primary OutFlow Max=0.11 cfs @ 15.57 hrs HW=313.51' TW=312.45' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir** (Weir Controls 0.11 cfs @ 0.25 fps)



## Pond P7: Small Pond across Hercules

## Summary for Pond P8: Nat'l Guard Wetland

Inflow Area	a =	66.948 ac,	0.00% Impervious, Inflow D	epth = 1.04" for 10 Year Storm event
Inflow	=	45.62 cfs @	12.39 hrs, Volume=	5.788 af
Outflow	=	4.79 cfs @	16.82 hrs, Volume=	5.629 af, Atten= 90%, Lag= 265.6 min
Primary	=	4.79 cfs @	16.82 hrs, Volume=	5.629 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 309.65' @ 14.69 hrs Surf.Area= 209,274 sf Storage= 123,625 cf

Plug-Flow detention time= 295.5 min calculated for 5.629 af (97% of inflow) Center-of-Mass det. time= 279.8 min (1,170.2 - 890.4)

Volume	Inve	ert Avail	.Storage	Storage Description	on	
#1	306.6	60' 2,72	25,483 cf	Custom Stage D	ata (Irregular)Liste	d below (Recalc)
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>
306.6 308.6 312.6	0	3,900 19,200 1,822,000	2,500.0 7,100.0 6,500.0	0 21,169 2,704,314	0 21,169 2,725,483	3,900 3,518,054 4,167,976
Device	Routing	Inv	vert Outle	et Devices		
#1	Primary	306.	Inlet			0 0.0020 '/' Cc= 0.900
#2	Primary	312.	Head	d (feet) 0.20 0.40	adth Broad-Creste 0.60 0.80 1.00 1 .70 2.70 2.64 2.63	
Primary OutFlow Max=4.79 cfs @ 16.82 hrs HW=309.62' TW=307.98' (Dynamic Tailwater) -1=Culvert (Outlet Controls 4.79 cfs @ 6.10 fps)						

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

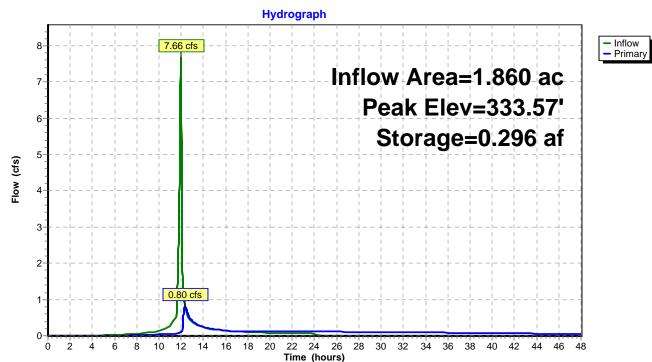
# Pond P8: Nat'l Guard Wetland



# **Summary for Pond P9: Charlebois Pond**

Inflow Area =	1.860 ac,	0.00% Impervious, Inflow D	Depth = 2.45" for 10 Year Storm event
Inflow =	7.66 cfs @	11.97 hrs, Volume=	0.379 af
Outflow =	0.80 cfs @	12.34 hrs, Volume=	0.357 af, Atten= 90%, Lag= 22.4 min
Primary =	0.80 cfs @	12.34 hrs, Volume=	0.357 af
Primary =	0.80 cfs @	12.34 hrs, Volume=	0.357 at

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 331.00' Surf.Area= 0.050 ac Storage= 0.082 af Peak Elev= 333.57' @ 12.34 hrs Surf.Area= 0.119 ac Storage= 0.296 af (0.214 af above start)


Plug-Flow detention time= 979.3 min calculated for 0.274 af (72% of inflow) Center-of-Mass det. time= 670.0 min (1,459.3 - 789.3)

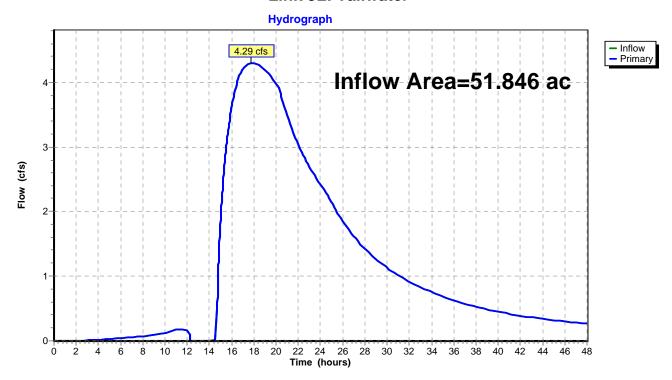
Volume	Invert	Avail.Stora	ge St	orage Description
#1	327.00'	0.351	af C	ustom Stage Data (Prismatic)Listed below (Recalc)
Elevatior (feet)			c.Store e-feet)	
327.00		)03	0.000	
328.00		009	0.006	
329.00	) 0.0	)18	0.014	0.020
330.00	) 0.0	)29	0.024	0.043
331.00	) 0.0	)50	0.039	
332.00		)75	0.062	0.145
333.00		02	0.088	
334.00	) 0.1	32	0.117	0.351
Device	Routing	Invert	Outlet	Devices
#1	Primary	331.00'	15.0"	Round Culvert
#2	Device 1	331.00'	Inlet / n= 0.0	5' CPP, square edge headwall, Ke= 0.500 Outlet Invert= 331.00' / 330.00' S= 0.0220 '/' Cc= 0.900 12, Flow Area= 1.23 sf ert. Orifice/Grate C= 0.600
	Primary	333.50'	36.0"	<b>x 36.0" Horiz. Orifice/Grate</b> C= 0.600 d to weir flow at low heads
Primary (	<b>DutFlow</b> Ma	x=0.80 cfs @	12.34	hrs HW=333.57' TW=323.54' (Dynamic Tailwater)

-1=Culvert (Passes 0.12 cfs of 8.23 cfs potential flow)

**2=Orifice/Grate** (Orifice Controls 0.12 cfs @ 7.61 fps)

-3=Orifice/Grate (Weir Controls 0.68 cfs @ 0.85 fps)




# Pond P9: Charlebois Pond

# Summary for Link 3L: Tailwater

Inflow Area =51.846 ac, 4.26% Impervious, Inflow Depth > 1.01" for 10 Year Storm eventInflow =4.29 cfs @17.77 hrs, Volume=4.385 afPrimary =4.29 cfs @17.77 hrs, Volume=4.385 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

49 Point man	ual elevatio	n table, To	= 0.00 hrs,	dt= 1.00 hr	s, feet =			
307.54	307.54	307.54	307.54	307.55	307.55	307.56	307.56	307.57
307.59	307.61	307.66	308.85	309.96	309.87	309.63	309.39	309.17
308.96	308.73	308.48	308.21	308.11	308.06	308.03	307.88	307.84
307.80	307.75	307.72	307.70	307.68	307.68	307.67	307.66	307.66
307.65	307.65	307.65	307.64	307.64	307.64	307.63	307.63	307.63
307.63	307.63	307.62	307.62					



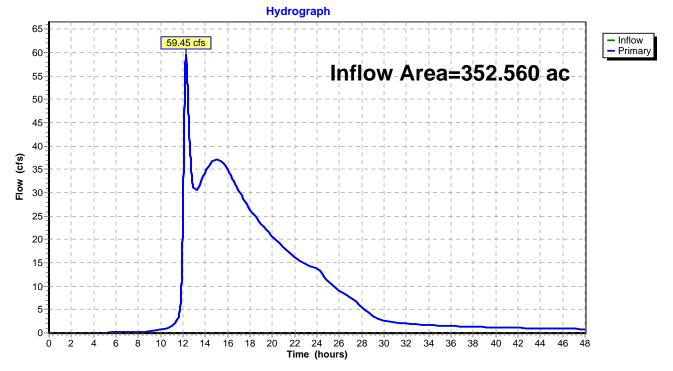
Link 3L: Tailwater

# Summary for Link SN1: SN001

Inflow Area	a =	368.573 ac,	2.69% Impervious, Inflow I	Depth > 1.08"	for 10 Year Storm event
Inflow	=	59.27 cfs @	12.30 hrs, Volume=	33.083 af	
Primary	=	59.27 cfs @	12.30 hrs, Volume=	33.083 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

#### Hydrograph 65 Inflow Primary 59.27 cfs 60 Inflow Area=368.573 ac 55-50-45 40-(cts) 35-Flow 30 25 20 15 10-5 0 22 24 26 Time (hours) 28 30 32 34 36 2 4 10 12 14 16 18 20 38 40 42 44 46 Ó 6 8 48


#### Link SN1: SN001

# Summary for Link SN2: SN002

Inflow Are	a =	352.560 ac,	2.71% Impervious, Inflow I	Depth > 1.12"	for 10 Year Storm event
Inflow	=	59.45 cfs @	12.27 hrs, Volume=	32.917 af	
Primary	=	59.45 cfs @	12.27 hrs, Volume=	32.917 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

# Link SN2: SN002

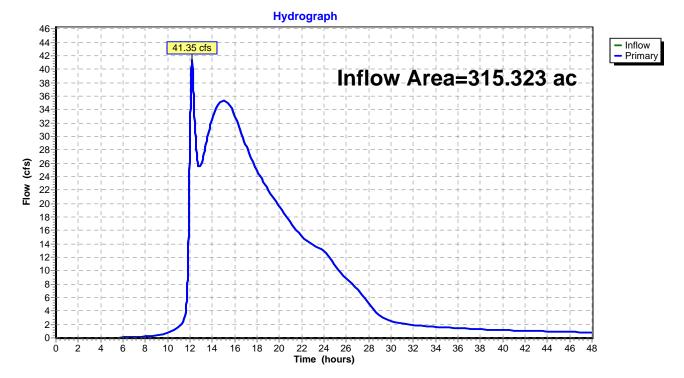


# Summary for Link SN3: SN003

Inflow Are	a =	337.278 ac,	2.67% Impervious, Inflow I	Depth > 1.15"	for 10 Year Storm event
Inflow	=	58.22 cfs @	12.25 hrs, Volume=	32.461 af	
Primary	=	58.22 cfs @	12.25 hrs, Volume=	32.461 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

#### Hydrograph 65- Inflow Primary 58.22 cfs 60-Inflow Area=337.278 ac 55 50 45 40-**(cts)** 35 Flow 30-25 20-15-10-5 0 22 24 26 Time (hours) 2 30 32 34 36 4 6 10 12 14 16 18 20 28 38 40 42 44 46 Ó 8 48


#### Link SN3: SN003

# Summary for Link SN4: SN004

Inflow Are	a =	315.323 ac,	2.65% Impervious, Inflow	Depth > 1.16"	for 10 Year Storm event
Inflow	=	41.35 cfs @	12.18 hrs, Volume=	30.507 af	
Primary	=	41.35 cfs @	12.18 hrs, Volume=	30.507 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

#### Link SN4: SN004

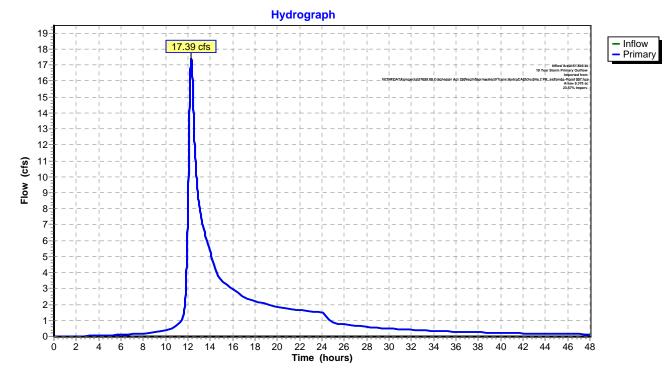


# Summary for Link SN6: SN006

Inflow Are	a =	110.396 ac,	4.77% Impervious, Inflow [	Depth > 1.28"	for 10 Year Storm event
Inflow	=	64.20 cfs @	12.13 hrs, Volume=	11.739 af	
Primary	=	64.20 cfs @	12.13 hrs, Volume=	11.739 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

#### Hydrograph 70- Inflow Primary 64.20 cfs 65 Inflow Area=110.396 ac 60-55 50-45-Flow (cfs) 40 35 30-25 20 15-10-5-0 22 24 26 Time (hours) 30 2 10 12 14 16 18 20 28 32 34 36 40 42 44 46 48 Ó 4 6 8 38


#### Link SN6: SN006

# Summary for Link SN7: SN007

Inflow Area	a =	51.846 ac,	4.26% Impervious, Inflow De	epth > 1.05" for 10 Year Storm event
Inflow	=	17.39 cfs @	12.29 hrs, Volume=	4.533 af
Primary	=	17.39 cfs @	12.29 hrs, Volume=	4.533 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

10 Year Storm Primary Outflow Imported from \\VTNFDATA\projects\57699.00 Colchester Act 250\tech\Stormwater\V




# Link SN7: SN007

# Summary for Link SN8: SN008

Inflow Are	a =	88.031 ac,	5.28% Impervious, Inflow De	epth > 1.31" for 10 Year Storm even	t
Inflow	=	37.93 cfs @	12.15 hrs, Volume=	9.613 af	
Primary	=	37.93 cfs @	12.15 hrs, Volume=	9.613 af, Atten= 0%, Lag= 0.0 min	

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

#### Link SN8: SN008





Type II 24-hr 10 Year Storm Rainfall=3.20" Printed 4/27/2016

Prepared by VHB HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Page 2

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1: Subcat 1	Runoff Area=0.324 ac 90.74% Impervious Runoff Depth=2.82"
Flow Length=345'	Slope=0.0067 '/' Tc=3.5 min CN=80/98 Runoff=1.52 cfs 0.076 af
Subcatchment2: Subcat 2	Runoff Area=0.139 ac 92.81% Impervious Runoff Depth=2.85"
Flow Length=123'	Slope=0.0065 '/' Tc=1.3 min CN=80/98 Runoff=0.70 cfs 0.033 af
Subcatchment 3: Subcat 3	Runoff Area=0.233 ac 91.85% Impervious Runoff Depth=2.84"
Flow Length=240'	Slope=0.0077 '/' Tc=2.2 min CN=80/98 Runoff=1.14 cfs 0.055 af
Subcatchment4: Pipe 4	Runoff Area=0.269 ac 57.25% Impervious Runoff Depth=2.30"
Flow Length=189'	Slope=0.0089 '/' Tc=1.6 min CN=80/98 Runoff=1.14 cfs 0.052 af
Subcatchment 5: Subcat 5	Runoff Area=0.212 ac 48.11% Impervious Runoff Depth=2.16" ow Length=206' Tc=2.1 min CN=80/98 Runoff=0.84 cfs 0.038 af
Subcatchment6: Subcat 6	Runoff Area=0.091 ac 83.52% Impervious Runoff Depth=2.71"
Flow Length=115'	Slope=0.0088 '/' Tc=1.0 min CN=80/98 Runoff=0.45 cfs 0.021 af
Subcatchment7: Subcat7	Runoff Area=0.116 ac 70.69% Impervious Runoff Depth=2.51"
Flow Length=119'	Slope=0.0096 '/' Tc=1.0 min CN=80/98 Runoff=0.53 cfs 0.024 af
Subcatchment8: Subcat8	Runoff Area=0.142 ac 98.59% Impervious Runoff Depth=2.95"
Flow Length=192'	Slope=0.0036 '/' Tc=2.6 min CN=80/98 Runoff=0.71 cfs 0.035 af
Subcatchment9: Subcat9	Runoff Area=0.173 ac 92.49% Impervious Runoff Depth=2.85"
	ow Length=182' Tc=2.5 min CN=80/98 Runoff=0.84 cfs 0.041 af
Subcatchment 11: Subcat 11 Flow Length=46'	Runoff Area=0.015 ac 100.00% Impervious Runoff Depth=2.97"
Subcatchment 11: Subcat 11	Runoff Area=0.015 ac 100.00% Impervious Runoff Depth=2.97" Slope=0.0211 '/' Tc=0.3 min CN=0/98 Runoff=0.08 cfs 0.004 af Runoff Area=0.016 ac 100.00% Impervious Runoff Depth=2.97"
Subcatchment 11: Subcat 11 Flow Length=46' Subcatchment 12: Subcat 12 Flow Length=47' Subcatchment 13: Subcat 13	Runoff Area=0.015 ac 100.00% Impervious Runoff Depth=2.97" Slope=0.0211 '/' Tc=0.3 min CN=0/98 Runoff=0.08 cfs 0.004 af Runoff Area=0.016 ac 100.00% Impervious Runoff Depth=2.97"
Subcatchment 11: Subcat 11 Flow Length=46' Subcatchment 12: Subcat 12 Flow Length=47' Subcatchment 13: Subcat 13 Flow Subcatchment 14: Subcat 14	Runoff Area=0.015 ac 100.00% Impervious Runoff Depth=2.97" Slope=0.0211 '/' Tc=0.3 min CN=0/98 Runoff=0.08 cfs 0.004 af Runoff Area=0.016 ac 100.00% Impervious Runoff Depth=2.97" Slope=0.0189 '/' Tc=0.3 min CN=0/98 Runoff=0.09 cfs 0.004 af Runoff Area=0.074 ac 91.89% Impervious Runoff Depth=2.84"
Subcatchment 11: Subcat 11	Runoff Area=0.015 ac 100.00% Impervious Runoff Depth=2.97"
Flow Length=46'	Slope=0.0211 '/' Tc=0.3 min CN=0/98 Runoff=0.08 cfs 0.004 af
Subcatchment 12: Subcat 12	Runoff Area=0.016 ac 100.00% Impervious Runoff Depth=2.97"
Flow Length=47'	Slope=0.0189 '/' Tc=0.3 min CN=0/98 Runoff=0.09 cfs 0.004 af
Subcatchment 13: Subcat 13	Runoff Area=0.074 ac 91.89% Impervious Runoff Depth=2.84"
Flow Length=116'	ow Length=124' Tc=1.5 min CN=80/98 Runoff=0.37 cfs 0.018 af
Subcatchment 15: Subcat 15	Runoff Area=0.063 ac 100.00% Impervious Runoff Depth=2.97"
Subcatchment 11: Subcat 11	Runoff Area=0.015 ac 100.00% Impervious Runoff Depth=2.97"
Flow Length=46'	Slope=0.0211 '/' Tc=0.3 min CN=0/98 Runoff=0.08 cfs 0.004 af
Subcatchment 12: Subcat 12	Runoff Area=0.016 ac 100.00% Impervious Runoff Depth=2.97"
Flow Length=47'	Slope=0.0189 '/' Tc=0.3 min CN=0/98 Runoff=0.09 cfs 0.004 af
Subcatchment 13: Subcat 13	Runoff Area=0.074 ac 91.89% Impervious Runoff Depth=2.84"
Flow Length=116'	ow Length=124' Tc=1.5 min CN=80/98 Runoff=0.37 cfs 0.018 af
Subcatchment 15: Subcat 15	Runoff Area=0.063 ac 100.00% Impervious Runoff Depth=2.97"
Flow Length=114'	Slope=0.0203 '/' Tc=0.7 min CN=0/98 Runoff=0.33 cfs 0.016 af
Subcatchment 16: Subcat 16	Runoff Area=0.062 ac 100.00% Impervious Runoff Depth=2.97"

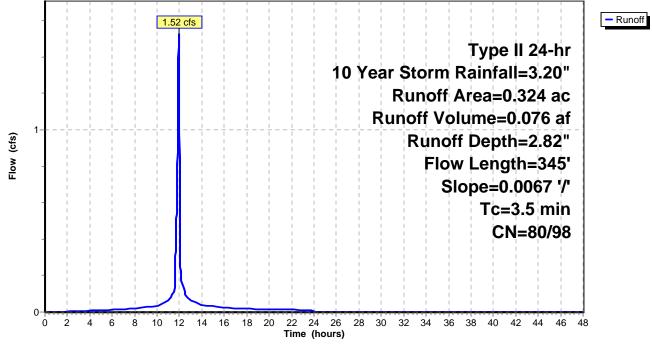
**On-Site 7 PR_asPonds** Prepared by VHB Type II 24-hr 10 Year Storm Rainfall=3.20" Printed 4/27/2016

Prepared by VHB		Printed 4/27/2016
HydroCAD® 10.00 s/n 01038 © 2013 Hydro	CAD Software Solutions LLC	Page 3
Subcatchment 19: Subcat 19	Runoff Area=0.325 ac 29.54% Impervious Flow Length=213' Tc=2.7 min CN=80/98 Run	
Subcatchment 20: Subcat 20 Flow Length=107	Runoff Area=0.109 ac 88.99% Impervious ' Slope=0.0206 '/' Tc=0.6 min CN=80/98 Run	
Subcatchment 21: Subcat 21 Flow Length=61	Runoff Area=0.028 ac 89.29% Impervious ' Slope=0.0047 '/' Tc=0.7 min CN=80/98 Run	
Subcatchment 22: Subcat 22 Flow Length=90	Runoff Area=0.043 ac 93.02% Impervious ' Slope=0.0080 '/' Tc=0.8 min CN=80/98 Run	
Subcatchment 23: Subcat 23	Runoff Area=0.342 ac 44.44% Impervious Flow Length=272' Tc=2.8 min CN=80/98 Run	
Subcatchment 58: Subcat 58	Runoff Area=0.602 ac 15.12% Impervious Flow Length=155' Tc=3.6 min CN=80/98 Run	
Subcatchment OS7a: OS7a	Runoff Area=1.853 ac 0.00% Impervious Flow Length=598' Tc=26.3 min CN=86/0 Run	
Subcatchment OS7b: OS7b Flow Length=26	Runoff Area=1.485 ac 0.00% Impervious 0' Slope=0.1483 '/' Tc=6.1 min CN=81/0 Run	off=3.89 cfs 0.182 af
Subcatchment OS9a: OS9a	Runoff Area=1.216 ac 0.00% Impervious Flow Length=340' Tc=1.8 min CN=87/0 Run	off=4.74 cfs 0.194 af
Subcatchment OS9b: OS9b	Runoff Area=1.309 ac 0.00% Impervious Flow Length=470' Tc=7.6 min CN=94/0 Run	off=5.21 cfs 0.277 af
	Avg. Flow Depth=0.08' Max Vel=2.30 fps Infle L=65.5' S=0.0220 '/' Capacity=15.58 cfs Outfle	ow=0.08 cfs 0.004 af
	Avg. Flow Depth=0.08' Max Vel=2.36 fps Infle L=65.0' S=0.0222 '/' Capacity=15.63 cfs Outfle	ow=0.08 cfs 0.004 af
	Avg. Flow Depth=0.19' Max Vel=3.38 fps Infle L=66.0' S=0.0147 '/' Capacity=12.73 cfs Outfle	ow=0.45 cfs 0.021 af
	Avg. Flow Depth=0.19' Max Vel=3.31 fps Infle L=66.0' S=0.0147 '/' Capacity=12.73 cfs Outfle	ow=0.42 cfs 0.020 af
	Avg. Flow Depth=0.46' Max Vel=3.27 fps Infle L=34.8' S=0.0049 '/' Capacity=7.34 cfs Outfle	ow=1.52 cfs 0.072 af
	Avg. Flow Depth=0.31' Max Vel=2.92 fps Inflo 3 L=3.2' S=0.0063 '/' Capacity=8.30 cfs Outflo	ow=0.75 cfs 0.035 af
	Avg. Flow Depth=0.52' Max Vel=3.48 fps Infle L=44.7' S=0.0049 '/' Capacity=7.37 cfs Outfle	ow=1.88 cfs 0.089 af
Reach P19: Pipe 19 18.0" Round Pipe n=0.013	Avg. Flow Depth=0.70' Max Vel=4.15 fps Infle L=13.5' S=0.0052 '/' Capacity=7.56 cfs Outfle	

<b>On-Site 7 PR_asPonds</b> Prepared by VHB	<i>Type II 24-hr 10 Year Storm Rainfall</i> =3.20" Printed 4/27/2016
	© 2013 HydroCAD Software Solutions LLC Page 4
Reach P20: Pipe 20 18.0" Round P	Avg. Flow Depth=0.71' Max Vel=4.11 fps Inflow=3.40 cfs 0.359 af Pipe n=0.013 L=47.9' S=0.0050 '/' Capacity=7.44 cfs Outflow=3.40 cfs 0.359 af
Reach P21: Pipe 21 18.0" Round P	Avg. Flow Depth=0.86' Max Vel=4.38 fps Inflow=4.56 cfs 0.455 af hipe n=0.013 L=36.8' S=0.0049 '/' Capacity=7.35 cfs Outflow=4.56 cfs 0.455 af
Reach P22: Pipe 22 18.0" Round Pip	Avg. Flow Depth=0.58' Max Vel=7.50 fps Inflow=4.77 cfs 0.465 af be n=0.013 L=89.6' S=0.0201 '/' Capacity=14.89 cfs Outflow=4.77 cfs 0.465 af
Pond 007: POI 007	Inflow=6.87 cfs 1.635 af Primary=6.87 cfs 1.635 af
Pond 7D: Detention 7	Peak Elev=320.76' Storage=22,912 cf Inflow=27.15 cfs 1.635 af Outflow=6.87 cfs 1.635 af
Pond P1: Pipe 1	Peak Elev=325.01' Storage=42 cf Inflow=1.52 cfs 0.076 af 18.0" Round Culvert n=0.013 L=67.2' S=0.0051 '/' Outflow=1.44 cfs 0.076 af
Pond P10: Pipe 10	Peak Elev=320.84' Storage=30 cf Inflow=19.34 cfs 1.028 af 30.0" Round Culvert n=0.013 L=34.6' S=0.0055 '/' Outflow=19.34 cfs 1.028 af
Pond P2: Pipe 2	Peak Elev=324.99' Storage=46 cf Inflow=6.87 cfs 0.387 af 18.0" Round Culvert n=0.013 L=74.0' S=0.0050 '/' Outflow=6.87 cfs 0.387 af
Pond P23: Pipe 23	Peak Elev=320.83' Inflow=6.04 cfs 0.525 af 24.0" Round Culvert n=0.013 L=85.2' S=0.0050 '/' Outflow=6.04 cfs 0.525 af
Pond P3: Pipe 3	Peak Elev=324.33' Storage=43 cf Inflow=12.05 cfs 0.636 af 24.0" Round Culvert n=0.013 L=186.7' S=0.0050 '/' Outflow=12.03 cfs 0.636 af
Pond P4: Pipe 4	Peak Elev=323.54' Storage=45 cf Inflow=13.13 cfs 0.687 af 24.0" Round Culvert n=0.013 L=121.4' S=0.0050 '/' Outflow=13.01 cfs 0.687 af
Pond P5: Pipe 5	Peak Elev=322.82' Storage=35 cf Inflow=0.84 cfs 0.038 af 18.0" Round Culvert n=0.013 L=56.3' S=0.0050 '/' Outflow=0.77 cfs 0.038 af
Pond P6: Pipe 6	Peak Elev=322.81' Storage=40 cf Inflow=1.19 cfs 0.059 af 18.0" Round Culvert n=0.013 L=61.9' S=0.0050 '/' Outflow=1.12 cfs 0.059 af
Pond P7: Pipe 7	Peak Elev=322.80' Storage=45 cf Inflow=17.87 cfs 0.952 af 24.0" Round Culvert n=0.013 L=96.4' S=0.0050 '/' Outflow=17.84 cfs 0.952 af
Pond P8: Pipe 8	Peak Elev=321.43' Storage=26 cf Inflow=0.71 cfs 0.035 af 18.0" Round Culvert n=0.013 L=123.6' S=0.0050 '/' Outflow=0.68 cfs 0.035 af
Pond P9: Pipe 9	Peak Elev=321.42' Storage=35 cf Inflow=19.38 cfs 1.028 af 30.0" Round Culvert n=0.013 L=33.6' S=0.0051 '/' Outflow=19.34 cfs 1.028 af
Total Runoff	Area = 9.375 ac Runoff Volume = 1.635 af Average Runoff Depth = 2.09"

76.43% Pervious = 7.165 ac 23.57% Impervious = 2.210 ac

### Summary for Subcatchment 1: Subcat 1


Runoff = 1.52 cfs @ 11.94 hrs, Volume= 0.076 af, Depth= 2.82"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

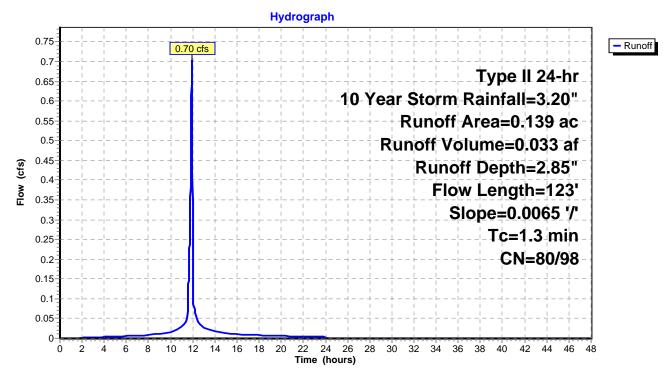
 Area	(ac)	CN	Desc	Description						
0.	294	98	Pave	aved roads w/curbs & sewers, HSG D						
 0.	030	80	>75%	75% Grass cover, Good, HSG D						
0.324 96 Weighted Average										
0.030 9.26% Pervious Area										
0.	294		90.7	4% Imperv	vious Area					
 Tc Length S (min) (feet)			Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
3.5	34	50.	.0067	1.66		Shallow Concentrated Flow, Paved Kv= 20.3 fps				

# Subcatchment 1: Subcat 1





### Summary for Subcatchment 2: Subcat 2


Runoff = 0.70 cfs @ 11.91 hrs, Volume= 0.033 af, Depth= 2.85"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

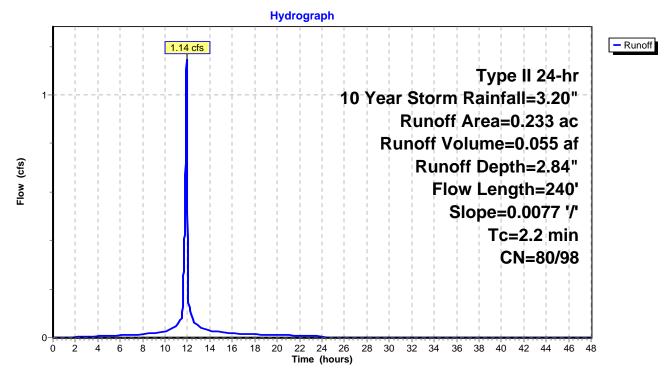
c) C	N Dese	cription				
39 S	8 Pave	ed roads w	/curbs & se	ewers, HSG D		
40 S	8 Pave	ed roads w	/curbs & se	ewers, HSG D		
0.006 80 >75% Grass cover, Good, HSG D						
)2 8	30 >75°	% Grass co	over, Good	, HSG D		
)2 8	30 >75°	% Grass co	over, Good	, HSG D		
39 g	7 Weig	ghted Aver	age			
0	7.19	% Perviou	s Area			
29	92.8	1% Imperv	rious Area			
.ength	Slope	Velocity	Capacity	Description		
(feet)	(ft/ft)	(ft/sec)	(cfs)			
123	0.0065	1.64		Shallow Concentrated Flow,		
	39 9 10 9 16 8 19 8 19 8 19 8 19 9 19 9 19 9 19 10 10 10 10 10 10 10 10 10 10 10 10 10	89         98         Pave           90         98         Pave           96         80         >759           92         80         >759           92         80         >759           93         97         Weig           0         7.19           29         92.8           eength         Slope           (feet)         (ft/ft)	98         Paved roads w           99         98         Paved roads w           90         98         Paved roads w           96         90         >75% Grass co           92         80         >75% Grass co           92         80         >75% Grass co           92         80         >75% Grass co           93         97         Weighted Aver           0         7.19% Pervious           29         92.81% Impervious           ength         Slope         Velocity           (feet)         (ft/ft)         (ft/sec)	8998Paved roads w/curbs & set8998Paved roads w/curbs & set8098Paved roads w/curbs & set80>75% Grass cover, Good9280>75% Grass cover, Good9280>75% Grass cover, Good9397Weighted Average07.19% Pervious Area2992.81% Impervious AreaengthSlopeVelocity(feet)(ft/ft)(ft/sec)(cfs)		

Paved Kv= 20.3 fps

#### Subcatchment 2: Subcat 2



### Summary for Subcatchment 3: Subcat 3


Runoff = 1.14 cfs @ 11.92 hrs, Volume= 0.055 af, Depth= 2.84"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

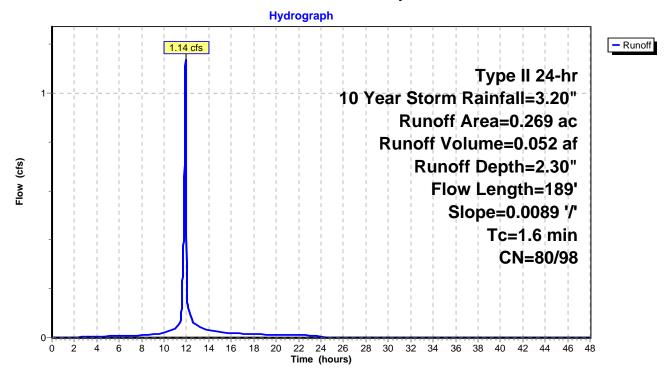
Area	(ac)	CN	Desc	ription		
0.	201	98	Pave	d roads w	/curbs & se	ewers, HSG D
0.	013	98	Pave	d roads w	/curbs & se	ewers, HSG D
0.	011	80	>75%	6 Grass co	over, Good,	, HSG D
0.	800	80	>75%	6 Grass co	over, Good,	, HSG D
0.	233	97	Weig	hted Aver	age	
0.	019		8.15	% Perviou	s Area	
0.	214		91.85	5% Imperv	ious Area	
Тс	Lengtl	h	Slope	Velocity	Capacity	Description
(min)	(feet	:)	(ft/ft)	(ft/sec)	(cfs)	
2.2	240	0 0	.0077	1.78		Shallow Concentrated Flow,

Paved Kv= 20.3 fps

#### Subcatchment 3: Subcat 3



## Summary for Subcatchment 4: Pipe 4


Runoff = 1.14 cfs @ 11.92 hrs, Volume= 0.052 af, Depth= 2.30"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

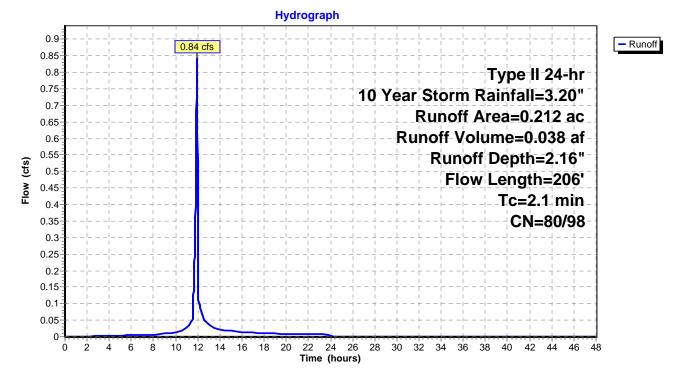
Area	(ac) (	CN De	scription				
0.	128	98 Pa	ved roads w	/curbs & se	ewers, HSG D		
0.	026	98 Pa	ved roads w	/curbs & se	ewers, HSG D		
0.	0.010 80 >75% Grass cover, Good, HSG D						
0.105 80 >75% Grass cover, Good, HSG D							
0.	269	90 W	eighted Ave	rage			
0.	115	42	.75% Pervic	us Area			
0.	154	57	.25% Imper	vious Area			
Тс	Length	Slop	e Velocity	Capacity	Description		
(min)	(feet)	(ft/f	) (ft/sec)	(cfs)			
1.6	189	0.008	9 1.92		Shallow Concentrated Flow,		

Paved Kv= 20.3 fps

### Subcatchment 4: Pipe 4



#### Summary for Subcatchment 5: Subcat 5


Runoff = 0.84 cfs @ 11.93 hrs, Volume= 0.038 af, Depth= 2.16"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

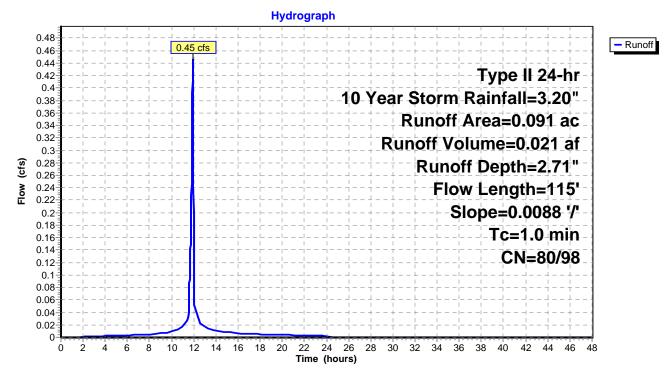
_	Area	(ac) (	CN Des	cription						
	0.102 98 Paved roads w/curbs & sewers, HSG D									
	0.	083	80 >75	% Grass c	over, Good	, HSG D				
0.027 80 >75% Grass cover, Good, HSG D										
	0.	212	89 Wei	ghted Avei	rage					
	0.	110	51.8	9% Pervio	us Area					
	0.	102	48.1	1% Imperv	vious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	0.1	12	0.0200	2.87		Shallow Concentrated Flow,				
	2.0	194	0.0554	1.65		Paved Kv= 20.3 fps <b>Shallow Concentrated Flow,</b> Short Grass Pasture Kv= 7.0 fps				
_	2.4	2000	Tatal							

2.1 206 Total

# Subcatchment 5: Subcat 5



### Summary for Subcatchment 6: Subcat 6


Runoff = 0.45 cfs @ 11.91 hrs, Volume= 0.021 af, Depth= 2.71"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

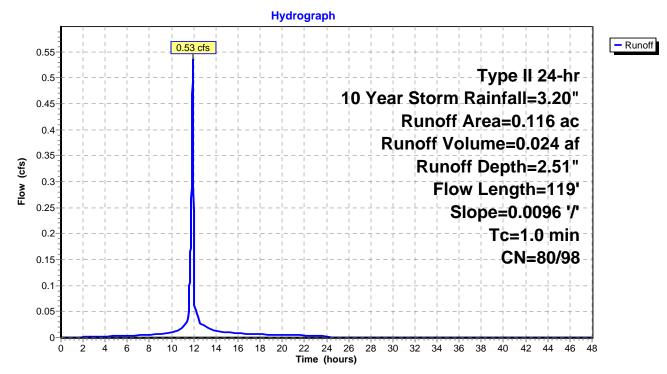
 Area	(ac)	CN	Desc	cription		
0.	072	98	Pave	ed roads w	/curbs & se	ewers, HSG D
0.	004	98	Pave	ed roads w	/curbs & se	ewers, HSG D
0.	009	80	>75%	6 Grass co	over, Good,	, HSG D
0.	002	80	>75%	6 Grass co	over, Good,	, HSG D
 0.	004	80	>75%	6 Grass co	over, Good,	, HSG D
0.	091	95	Weig	hted Aver	age	
0.	015		16.4	8% Pervio	us Area	
0.	076		83.52	2% Imperv	rious Area	
Тс	Length	۱	Slope	Velocity	Capacity	Description
 (min)	(feet	)	(ft/ft)	(ft/sec)	(cfs)	
1.0	115	5 0	.0088	1.90		Shallow Concentrated Flow,
						Deved Ky 20.2 free

Paved Kv= 20.3 fps

#### Subcatchment 6: Subcat 6



### Summary for Subcatchment 7: Subcat 7


Runoff = 0.53 cfs @ 11.91 hrs, Volume= 0.024 af, Depth= 2.51"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

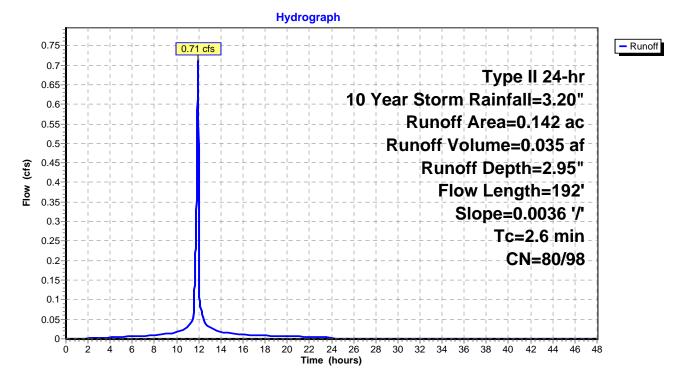
_	Area	(ac)	CN	Desc	ription		
	0.	070	98	Pave	ed roads w	/curbs & se	ewers, HSG D
	0.	012	98	Pave	ed roads w	/curbs & se	ewers, HSG D
	0.	005	80	>75%	6 Grass co	over, Good,	, HSG D
	0.029 80 >75% Grass cover, Good,						, HSG D
	0.	116	93	Weig	hted Aver	age	
	0.	034		29.3	1% Pervio	us Area	
	0.	082		70.69	9% Imperv	vious Area	
	Тс	Length	n S	Slope	Velocity	Capacity	Description
	(min)	(feet	) (	<u>(ft/ft)</u>	(ft/sec)	(cfs)	
	1.0	119	0.0	0096	1.99		Shallow Concentrated Flow,

Paved Kv= 20.3 fps

#### Subcatchment 7: Subcat 7



### Summary for Subcatchment 8: Subcat 8


Runoff = 0.71 cfs @ 11.93 hrs, Volume= 0.035 af, Depth= 2.95"

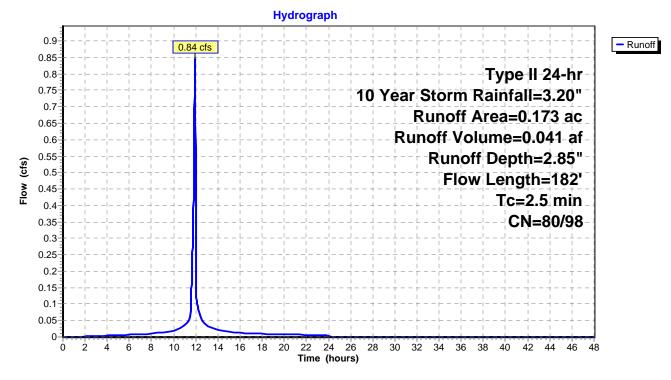
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) (	ac) CN Description									
	0.	129	98 F	ave	d roads w	/curbs & se	ewers, HSG D					
	0.	011	98 F	ave	d roads w	/curbs & se	ewers, HSG D					
	0.	002	, HSG D									
0.142 98 Weighted Average												
0.002 1.41% Pervious Area						s Area						
	0.	140	9	8.59	% Imperv	vious Area						
	_					- ·						
	Tc	Length		•	Velocity	Capacity	Description					
	(min)	(feet)	(ft/	/ft)	(ft/sec)	(cfs)						
	2.6	192	0.00	36	1.22		Shallow Concentrated Flow,					
							Payed $K_{V} = 20.3$ fps					

Paved Kv= 20.3 fps

#### Subcatchment 8: Subcat 8




#### Summary for Subcatchment 9: Subcat 9

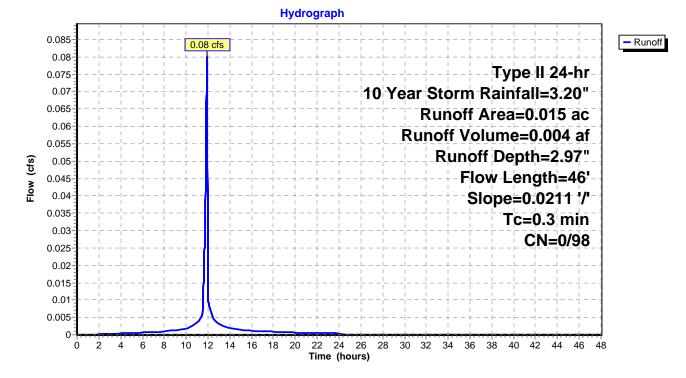
Runoff = 0.84 cfs @ 11.93 hrs, Volume= 0.041 af, Depth= 2.85"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) C	N Dese	cription				
0.160 98 Paved roads w/curbs & sewers, HSG D								
0.013 80 >75% Grass cover, Good, HSG D								
	0.	173 9	97 Weig	ghted Aver	age			
	0.	013	-	% Perviou				
	0.	160	92.4	9% Imperv	∕ious Area			
	_							
	Tc	Length	Slope	Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	1.1	73	0.0229	1.06		Shallow Concentrated Flow,		
						Short Grass Pasture Kv= 7.0 fps		
	1.4	109	0.0039	1.27		Shallow Concentrated Flow,		
_						Paved Kv= 20.3 fps		
	2.5	182	Total					

### Subcatchment 9: Subcat 9




### Summary for Subcatchment 11: Subcat 11

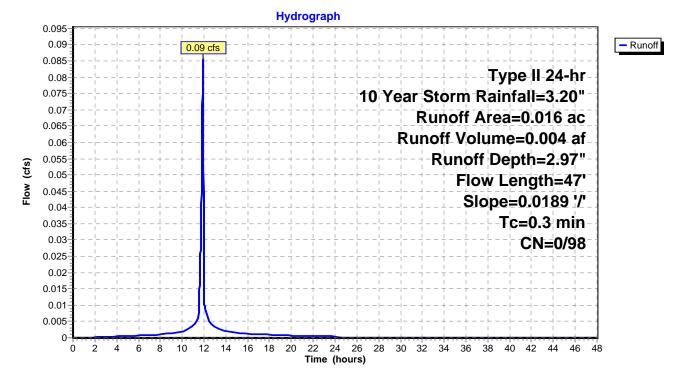
Runoff = 0.08 cfs @ 11.90 hrs, Volume= 0.004 af, Depth= 2.97"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Dese	cription					
0.	0.015 98 Paved roads w/curbs & sewers, HSG D							
0.	0.015 100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
0.3	46	0.0211	2.95		Shallow Concentrated Flow, Paved Kv= 20.3 fps			

#### Subcatchment 11: Subcat 11




### Summary for Subcatchment 12: Subcat 12

Runoff = 0.09 cfs @ 11.90 hrs, Volume= 0.004 af, Depth= 2.97"

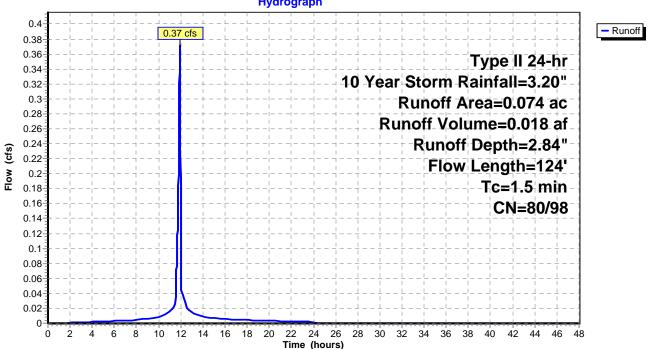
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Desc	Description							
0.	016 9	8 Pave	Paved roads w/curbs & sewers, HSG D							
0.	0.016 100.00% Impervious Area									
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
0.3	47	0.0189	2.79		Shallow Concentrated Flow, Paved Kv= 20.3 fps					

### Subcatchment 12: Subcat 12



### Summary for Subcatchment 13: Subcat 13


0.37 cfs @ 11.92 hrs, Volume= 0.018 af, Depth= 2.84" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

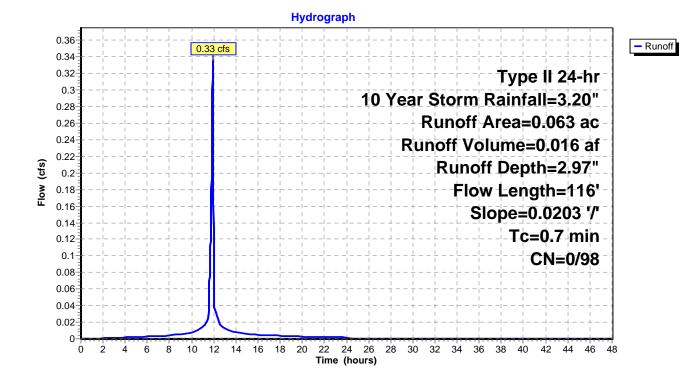
_	Area	(ac) C	N Dese	Description									
	0.	060 9	98 Pave	Paved roads w/curbs & sewers, HSG D									
	0.008 98 Paved roads w/curbs & sewers, HSG D												
_	0.006 80 >75% Grass cover, Good, HSG D												
	0.	074 9	97 Weig	ghted Aver	age								
	0.	006	8.11	% Perviou	s Area								
	0.	068	91.8	9% Imperv	vious Area								
	Тс	Length	Slope	Velocity	Capacity	Description							
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)								
	0.1	8	0.0065	1.64		Shallow Concentrated Flow,							
						Paved Kv= 20.3 fps							
	1.1	54	0.0131	0.80		Shallow Concentrated Flow,							
						Short Grass Pasture Kv= 7.0 fps							
	0.3	62	0.0329	3.68		Shallow Concentrated Flow,							
						Paved Kv= 20.3 fps							
	1 5	104	Total										

1.5 124 Total

### Subcatchment 13: Subcat 13



#### Hydrograph


### Summary for Subcatchment 14: Subcat 14

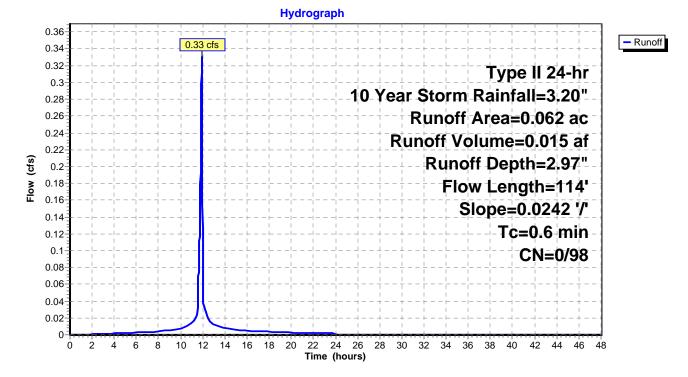
Runoff = 0.33 cfs @ 11.91 hrs, Volume= 0.016 af, Depth= 2.97"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Dese	cription							
0.	063 9	8 Pave	Paved roads w/curbs & sewers, HSG D							
0.	0.063 100.00% Impervious Area									
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
0.7	116	0.0203	2.89		Shallow Concentrated Flow, Paved Kv= 20.3 fps					

#### Subcatchment 14: Subcat 14




### Summary for Subcatchment 15: Subcat 15

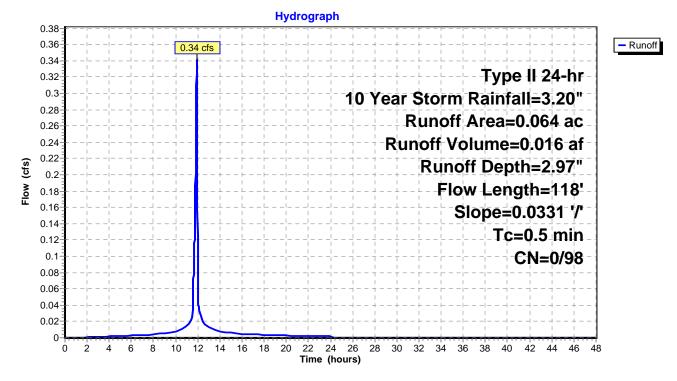
Runoff = 0.33 cfs @ 11.91 hrs, Volume= 0.015 af, Depth= 2.97"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Desc	cription						
0.	062 9	Paved roads w/curbs & sewers, HSG D							
0.	0.062 100.00% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
0.6	114	0.0242	3.16		Shallow Concentrated Flow, Paved Kv= 20.3 fps				

#### Subcatchment 15: Subcat 15




### Summary for Subcatchment 16: Subcat 16

Runoff = 0.34 cfs @ 11.91 hrs, Volume= 0.016 af, Depth= 2.97"

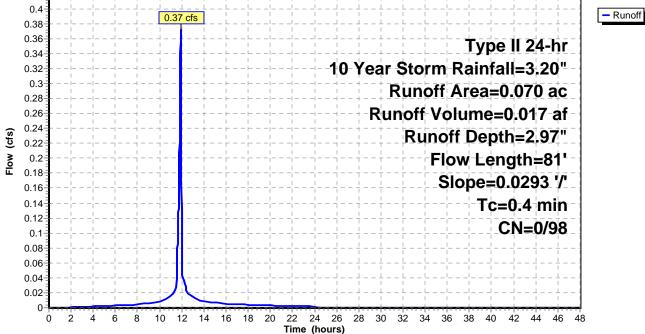
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Dese	Description						
0.	064 9	8 Pave	Paved roads w/curbs & sewers, HSG D						
0.064 100.00% Impervious Area									
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
0.5	118	0.0331	3.69		Shallow Concentrated Flow, Paved Kv= 20.3 fps				

#### Subcatchment 16: Subcat 16



### Summary for Subcatchment 18: Subcat 18


Runoff = 0.37 cfs @ 11.90 hrs, Volume= 0.017 af, Depth= 2.97"

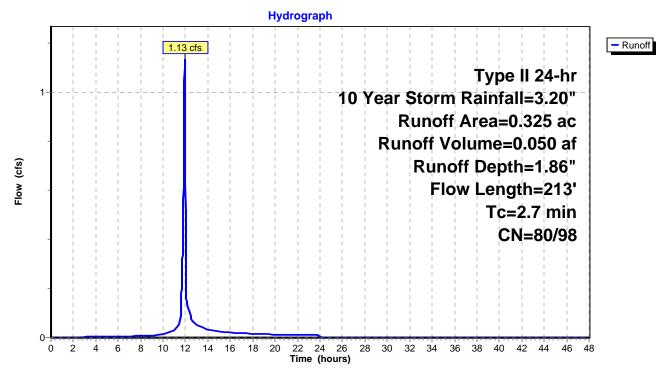
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) C	N Desc	cription						
0.	0.070 98 Paved roads w/curbs & sewers, HSG D								
0.	0.070 100.00% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
0.4	81	0.0293	3.47		Shallow Concentrated Flow, Paved Kv= 20.3 fps				

#### Subcatchment 18: Subcat 18






### Summary for Subcatchment 19: Subcat 19

Runoff = 1.13 cfs @ 11.93 hrs, Volume= 0.050 af, Depth= 1.86"

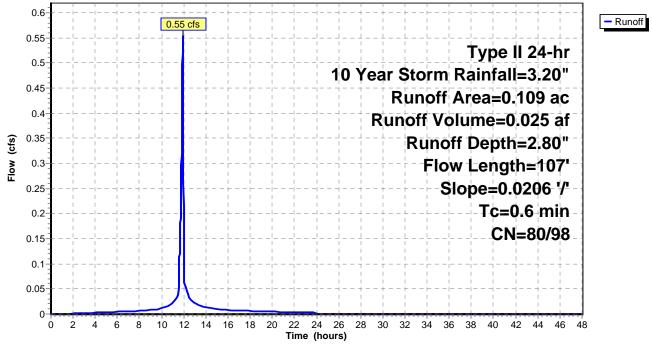
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac)	CN	Desc	Description								
	0.	044	98	Pave	aved roads w/curbs & sewers, HSG D								
	0.	052	98	Pave	Paved roads w/curbs & sewers, HSG D								
	0.	214	80	>75%	6 Grass co	over, Good	, HSG D						
_	0.	015	80	>75%	6 Grass co	over, Good	, HSG D						
	0.	325	85	Weig	hted Aver	age							
	0.	229		70.46	6% Pervio	us Area							
	0.	096		29.54	4% Imperv	vious Area							
_	Tc (min)	Length (feet)		ope ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
_	0.1	15	5 0.0	200	2.87		Shallow Concentrated Flow,						
	2.6	198	8 0.0	321	1.25		Paved Kv= 20.3 fps <b>Shallow Concentrated Flow,</b> Short Grass Pasture Kv= 7.0 fps						
	2.7	213	3 Tot	tal									

#### Subcatchment 19: Subcat 19



### Summary for Subcatchment 20: Subcat 20


Runoff = 0.55 cfs @ 11.91 hrs, Volume= 0.025 af, Depth= 2.80"

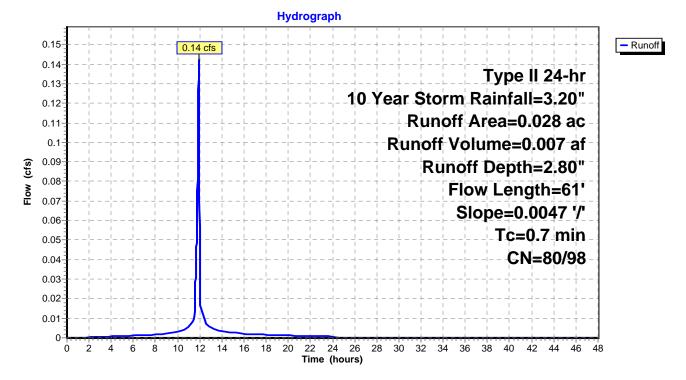
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

 Area	(ac)	CN	Desc	Description							
0.	097	98	Pave	ed roads w	/curbs & se	ewers, HSG D					
 0.	012	80	>75%	6 Grass co	over, Good	, HSG D					
0.	109	96	Weig	hted Aver	age						
0.	012		11.0	1% Pervio	us Area						
0.	097		88.9	9% Imperv	vious Area						
 Tc (min)	Length (feet)		lope ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
0.6	107	0.0	206	2.91		Shallow Concentrated Flow, Paved Kv= 20.3 fps					

## Subcatchment 20: Subcat 20






### Summary for Subcatchment 21: Subcat 21

Runoff = 0.14 cfs @ 11.91 hrs, Volume= 0.007 af, Depth= 2.80"

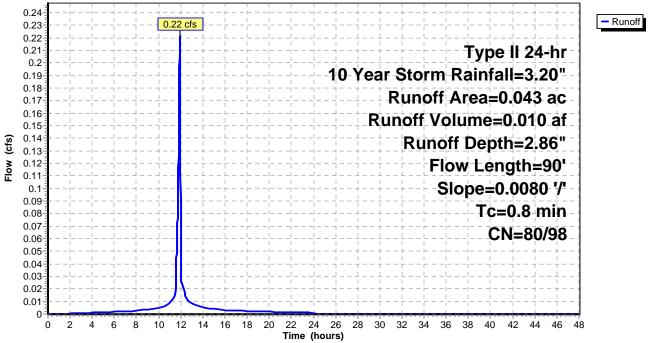
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

Area	(ac) (	CN De	Description							
0.023 98 Paved roads w/curbs & sewers, HSG D										
0.	.002	98 Pav	ved roads w	/curbs & se	ewers, HSG D					
0.	.003	80 >75	% Grass c	over, Good	, HSG D					
0.	.028	96 We	ighted Aver	age						
0.	.003	10.	71% Pervio	us Area						
0.	.025	89.	89.29% Impervious Area							
Тс	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
0.7	61	0.0047	1.39		Shallow Concentrated Flow,					
					Paved Kv= 20.3 fps					

Subcatchment 21: Subcat 21



#### Summary for Subcatchment 22: Subcat 22


Runoff = 0.22 cfs @ 11.91 hrs, Volume= 0.010 af, Depth= 2.86"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) (	CN	Desc	Description							
	0.	040	98	Pave	d roads w	/curbs & se	ewers, HSG D					
	0.	003	80	>75%	6 Grass co	over, Good,	, HSG D					
	0.	043	97		hted Aver							
	0.	003			% Perviou							
	0.	040		93.02	2% Imperv	vious Area						
(	Tc (min)	Length (feet)		lope ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
	0.8	90	0.0	080	1.82		Shallow Concentrated Flow, Paved Kv= 20.3 fps					

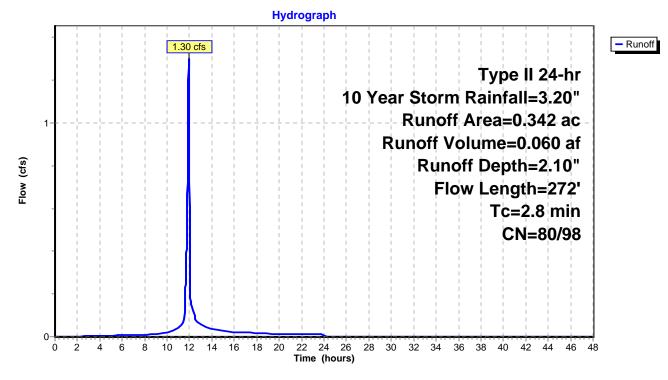
# Subcatchment 22: Subcat 22

#### Hydrograph



# Summary for Subcatchment 23: Subcat 23

Runoff = 1.30 cfs @ 11.93 hrs, Volume= 0.060 af, Depth= 2.10"


Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

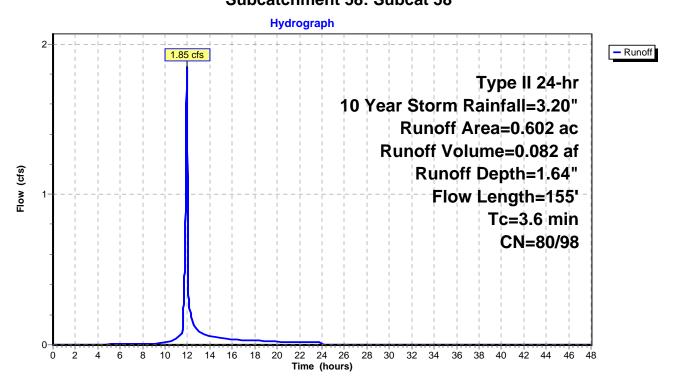
Area	(ac)	CN De	scription								
0.	.064	98 Pa	Paved roads w/curbs & sewers, HSG D								
0.	.062	98 Pa	ved roads w	/curbs & se	ewers, HSG D						
0.	.008		5% Grass c								
0.	.020		5% Grass c								
-	.095		5% Grass c	,							
	.067		5% Grass c	,							
0.	.026				ewers, HSG D						
-	.342		eighted Ave	0							
-	.190		56% Pervic								
0.	.152	44	44% Imper	vious Area							
τ.	1	01		0	Description						
Tc (min)	Length			Capacity	Description						
(min)	(feet)			(cfs)							
2.8	253	0.0462	2 1.50		Shallow Concentrated Flow,						
0.0	40	0.000	10.00	40.40	Short Grass Pasture Kv= 7.0 fps						
0.0	19	0.0298	3 10.26	18.13	Pipe Channel,						
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'						
	070	<b>. . . .</b>			n= 0.013 Corrugated PE, smooth interior						
2.8	272	Total									

### On-Site 7 PR_asPonds

Prepared by VHB HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC






#### Summary for Subcatchment 58: Subcat 58

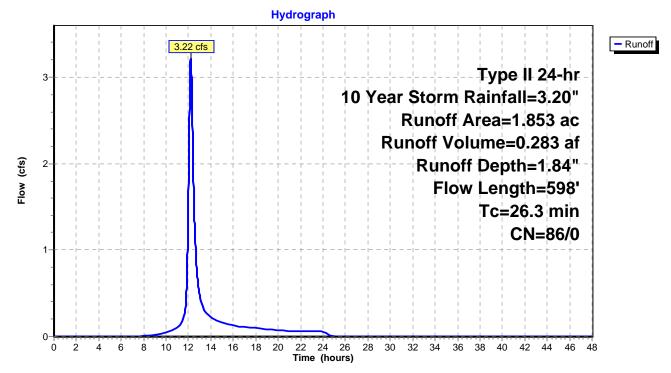
Runoff = 1.85 cfs @ 11.95 hrs, Volume= 0.082 af, Depth= 1.64"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

 Area	(ac) (	N Des	cription			
0.091 98 Paved roads w/curbs & sewers, HSG D						
0.	004	30 >759	% Grass co	over, Good	, HSG D	
0.	104			over, Good		
0.	029			over, Good		
0.				over, Good	,	
			ghted Aver		,	
-	511		8% Pervio			
-	-					
0.	091	15.1	2% imperv	ious Area/		
То	Longth	Slope	Volocity	Conocity	Description	
Tc	Length	Slope	Velocity	Capacity	Description	
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
3.3	97	0.0050	0.49		Shallow Concentrated Flow,	
					Short Grass Pasture Kv= 7.0 fps	
0.1	18	0.0389	4.00		Shallow Concentrated Flow,	
					Paved Kv= 20.3 fps	
0.2	40	0.1630	2.83		Shallow Concentrated Flow,	
2					Short Grass Pasture Kv= 7.0 fps	
 3.6	155	Total				
0.0	100	rotar				

## Subcatchment 58: Subcat 58




#### Summary for Subcatchment OS7a: OS7a

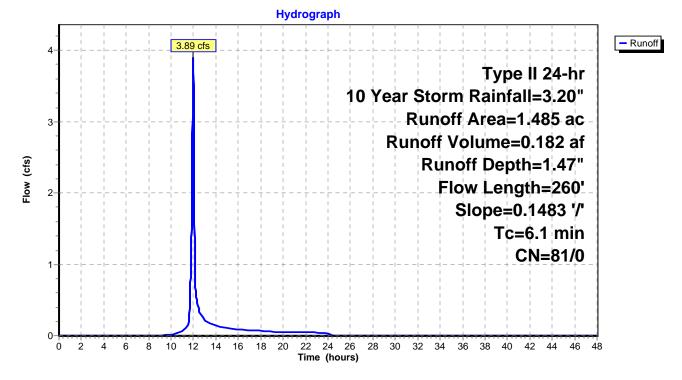
Runoff = 3.22 cfs @ 12.19 hrs, Volume= 0.283 af, Depth= 1.84"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) C	N Desc	cription		
*	1.	853 8	36 weig	hted CN		
	1.	853	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	17.5	50	0.0132	0.05		Sheet Flow,
	8.5	410	0.0132	0.80		Grass: Bermuda n= 0.410 P2= 2.30" <b>Shallow Concentrated Flow,</b> Short Grass Pasture Kv= 7.0 fps
	0.1	78	0.0256	9.51	16.81	<b>Pipe Channel, CMP_Round 18</b> " 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
	0.2	60	0.1455	5.72		n= 0.013 <b>Shallow Concentrated Flow,</b> Grassed Waterway Kv= 15.0 fps
	26.3	598	Total			

#### Subcatchment OS7a: OS7a




#### Summary for Subcatchment OS7b: OS7b

Runoff = 3.89 cfs @ 11.98 hrs, Volume= 0.182 af, Depth= 1.47"

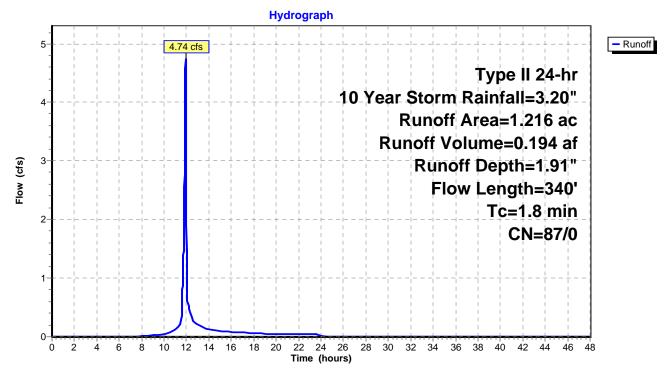
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) C	N Dese	cription		
*	1.	.485 8	31 weig	hted CN		
	1.485		100.00% Pervious Area		ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	4.3	50	0.1483	0.19	(013)	Sheet Flow,
						Grass: Dense n= 0.240 P2= 2.30"
	1.8	210	0.1483	1.93		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
_	6.1	260	Total			

#### Subcatchment OS7b: OS7b



#### Summary for Subcatchment OS9a: OS9a


Runoff = 4.74 cfs @ 11.92 hrs, Volume= 0.194 af, Depth= 1.91"

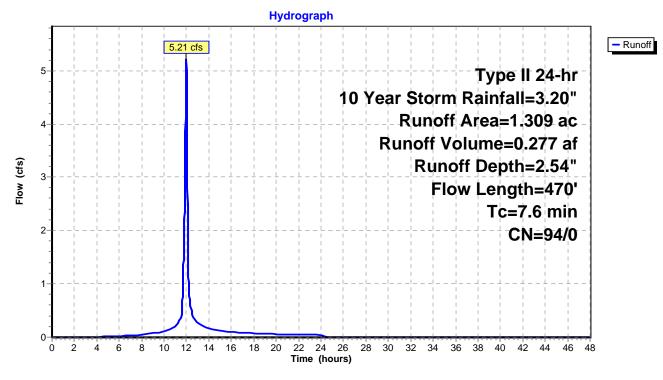
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

_	Area	(ac) C	N Dese	cription		
*	1.	216 8	37 weig	hted CN		
	1.	216	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	0.5	50	0.0649	1.63		Sheet Flow, Smooth surfaces n= 0.011 P2= 2.30"
	0.1	30	0.0649	5.17		Shallow Concentrated Flow, Paved Kv= 20.3 fps
	0.4	160	0.1290	7.29		Shallow Concentrated Flow, Paved Kv= 20.3 fps
	0.8	100	0.0211	2.18		Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
_	4.0	240	Tatal			

1.8 340 Total

#### Subcatchment OS9a: OS9a




#### Summary for Subcatchment OS9b: OS9b

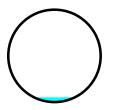
Runoff = 5.21 cfs @ 11.99 hrs, Volume= 0.277 af, Depth= 2.54"

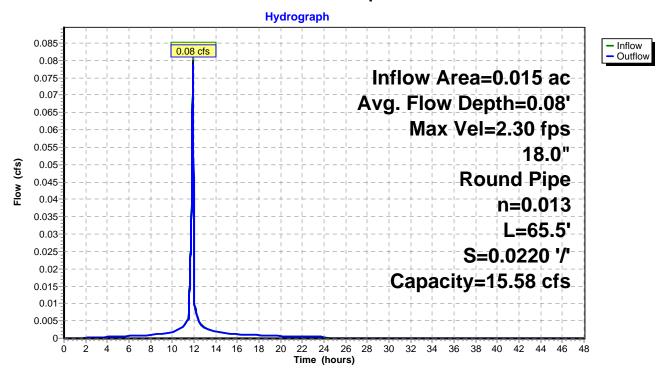
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 10 Year Storm Rainfall=3.20"

	Area	(ac) C	N Dese	cription		
*	1.	309 9	94 weig	hted CN		
	1.	309	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.2	50	0.0606	0.13		Sheet Flow,
						Grass: Dense n= 0.240 P2= 2.30"
	0.2	20	0.0606	1.72		Shallow Concentrated Flow,
	1.2	400	0.0732	5.49		Short Grass Pasture Kv= 7.0 fps <b>Shallow Concentrated Flow,</b> Paved Kv= 20.3 fps
	7.6	470	Total			

#### Subcatchment OS9b: OS9b




#### Summary for Reach P11: Pipe 11


Inflow Area =0.015 ac, 100.00% Impervious, Inflow Depth =2.97" for 10 Year Storm eventInflow =0.08 cfs @ 11.90 hrs, Volume=0.004 afOutflow =0.08 cfs @ 11.91 hrs, Volume=0.004 af, Atten= 1%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.30 fps, Min. Travel Time= 0.5 min Avg. Velocity = 0.82 fps, Avg. Travel Time= 1.3 min

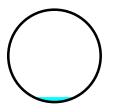
Peak Storage= 2 cf @ 11.91 hrs Average Depth at Peak Storage= 0.08' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 15.58 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 65.5' Slope= 0.0220 '/' Inlet Invert= 326.66', Outlet Invert= 325.22'





#### Reach P11: Pipe 11


#### Summary for Reach P12: Pipe 12

Inflow Area =0.016 ac, 100.00% Impervious, Inflow Depth =2.97" for 10 Year Storm eventInflow =0.09 cfs @ 11.90 hrs, Volume=0.004 afOutflow =0.08 cfs @ 11.91 hrs, Volume=0.004 af, Atten= 1%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.36 fps, Min. Travel Time= 0.5 min Avg. Velocity = 0.83 fps, Avg. Travel Time= 1.3 min

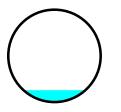
Peak Storage= 2 cf @ 11.91 hrs Average Depth at Peak Storage= 0.08' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 15.63 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 65.0' Slope= 0.0222 '/' Inlet Invert= 326.66', Outlet Invert= 325.22'





Reach P12: Pipe 12


#### Summary for Reach P13: Pipe 13

Inflow Area =0.089 ac, 93.26% Impervious, Inflow Depth =2.86" for 10 Year Storm eventInflow =0.45 cfs @11.91 hrs, Volume =0.021 afOutflow =0.45 cfs @11.92 hrs, Volume =0.021 af, Atten = 0%, Lag = 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.38 fps, Min. Travel Time= 0.3 min Avg. Velocity = 0.95 fps, Avg. Travel Time= 1.2 min

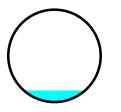
Peak Storage= 9 cf @ 11.92 hrs Average Depth at Peak Storage= 0.19' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 12.73 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 66.0' Slope= 0.0147 '/' Inlet Invert= 325.12', Outlet Invert= 324.15'

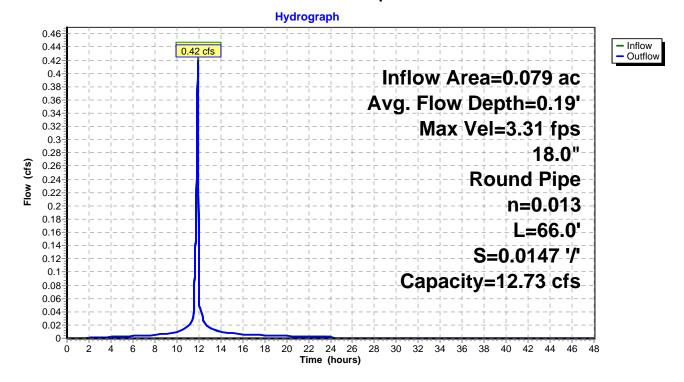


Hydrograph 0.5 0.48 - Inflow 0.45 cfs 0.46 Outflow 0.44 Inflow Area=0.089 ac 0.42 0.4 Avg. Flow Depth=0.19' 0.38 0.36-Max Vel=3.38 fps 0.34 0.32 18.0" 0.3 0.28 (cfs) 0.26 **Round Pipe** Flow 0.24 0.22 n=0.013 0.2 0.18 L=66.0' 0.16 0.14 S=0.0147 '/' 0.12 0.1 Capacity=12.73 cfs 0.08 0.06 0.04 0.02 0 Ò Ż 6 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 4 8 Time (hours)

#### Reach P13: Pipe 13


#### Summary for Reach P14: Pipe 14

Inflow Area =0.079 ac, 100.00% Impervious, Inflow Depth =2.97" for 10 Year Storm eventInflow =0.42 cfs @ 11.91 hrs, Volume=0.020 afOutflow =0.42 cfs @ 11.91 hrs, Volume=0.020 af, Atten= 1%, Lag= 0.2 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.31 fps, Min. Travel Time= 0.3 min Avg. Velocity = 0.93 fps, Avg. Travel Time= 1.2 min

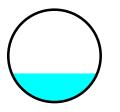
Peak Storage= 8 cf @ 11.91 hrs Average Depth at Peak Storage= 0.19' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 12.73 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 66.0' Slope= 0.0147 '/' Inlet Invert= 325.12', Outlet Invert= 324.15'

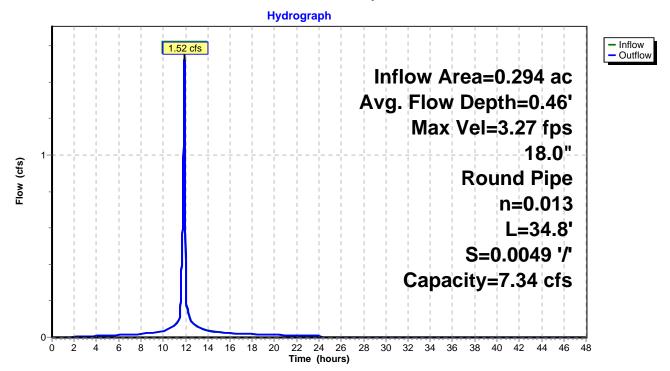


Reach P14: Pipe 14




#### Summary for Reach P15: Pipe 15

Inflow Area =0.294 ac, 97.96% Impervious, Inflow Depth =2.94" for 10 Year Storm eventInflow =1.52 cfs @11.91 hrs, Volume=0.072 afOutflow =1.52 cfs @11.91 hrs, Volume=0.072 af, Atten= 0%, Lag= 0.1 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.27 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.91 fps, Avg. Travel Time= 0.6 min

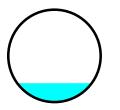
Peak Storage= 16 cf @ 11.91 hrs Average Depth at Peak Storage= 0.46' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 7.34 cfs

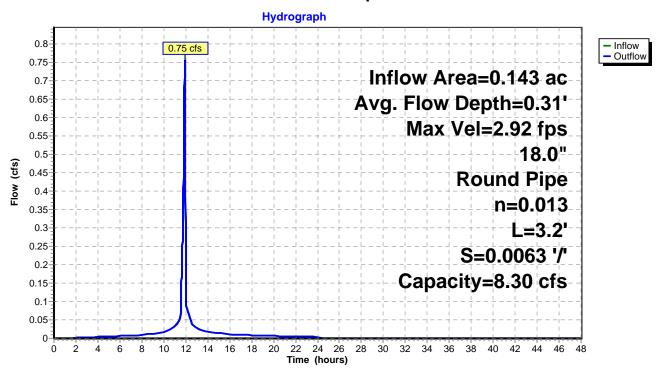
18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 34.8' Slope= 0.0049 '/' Inlet Invert= 323.93', Outlet Invert= 323.76'



#### Reach P15: Pipe 15




#### Summary for Reach P16: Pipe 16


Inflow Area =0.143 ac, 100.00% Impervious, Inflow Depth =2.97" for 10 Year Storm eventInflow =0.76 cfs @ 11.91 hrs, Volume=0.035 afOutflow =0.75 cfs @ 11.91 hrs, Volume=0.035 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.92 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.81 fps, Avg. Travel Time= 0.1 min

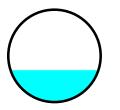
Peak Storage= 1 cf @ 11.91 hrs Average Depth at Peak Storage= 0.31' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 8.30 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 3.2' Slope= 0.0063 '/' Inlet Invert= 324.05', Outlet Invert= 324.03'





#### Reach P16: Pipe 16


#### Summary for Reach P18: Pipe 18

Inflow Area =0.364 ac, 98.35% Impervious, Inflow Depth =2.94" for 10 Year Storm eventInflow =1.88 cfs @11.91 hrs, Volume=0.089 afOutflow =1.88 cfs @11.91 hrs, Volume=0.089 af, Atten= 0%, Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.48 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.97 fps, Avg. Travel Time= 0.8 min

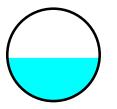
Peak Storage= 24 cf @ 11.91 hrs Average Depth at Peak Storage= 0.52' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 7.37 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 44.7' Slope= 0.0049 '/' Inlet Invert= 323.04', Outlet Invert= 322.82'

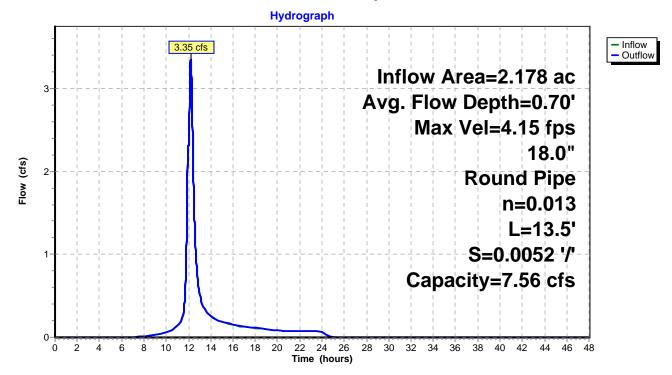


#### Hydrograph 2 Inflow 1.88 cfs Outflow Inflow Area=0.364 ac Avg. Flow Depth=0.52' Max Vel=3.48 fps 18.0" Flow (cfs) **Round Pipe** n=0.013 L=44.7' S=0.0049 '/' Capacity=7.37 cfs 0-Ó Ż 4 6 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 8 Time (hours)

#### Reach P18: Pipe 18


#### Summary for Reach P19: Pipe 19

Inflow Area =2.178 ac, 4.41% Impervious, Inflow Depth = 1.84" for 10 Year Storm eventInflow =3.35 cfs @12.19 hrs, Volume=0.334 afOutflow =3.35 cfs @12.19 hrs, Volume=0.334 af, Atten= 0%, Lag= 0.0 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.15 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.29 fps, Avg. Travel Time= 0.2 min

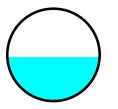
Peak Storage= 11 cf @ 12.19 hrs Average Depth at Peak Storage= 0.70' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 7.56 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 13.5' Slope= 0.0052 '/' Inlet Invert= 322.97', Outlet Invert= 322.90'

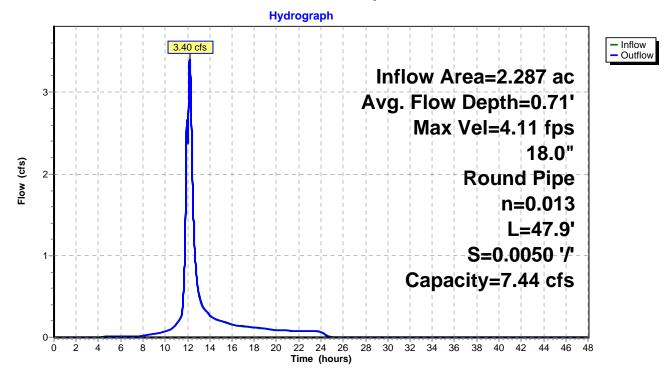


Reach P19: Pipe 19




#### Summary for Reach P20: Pipe 20

Inflow Area =2.287 ac, 8.44% Impervious, Inflow Depth =1.89" for 10 Year Storm eventInflow =3.40 cfs @12.19 hrs, Volume=0.359 afOutflow =3.40 cfs @12.19 hrs, Volume=0.359 af, Atten= 0%, Lag= 0.1 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.11 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.33 fps, Avg. Travel Time= 0.6 min

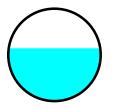
Peak Storage= 40 cf @ 12.19 hrs Average Depth at Peak Storage= 0.71' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 7.44 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 47.9' Slope= 0.0050 '/' Inlet Invert= 322.40', Outlet Invert= 322.16'

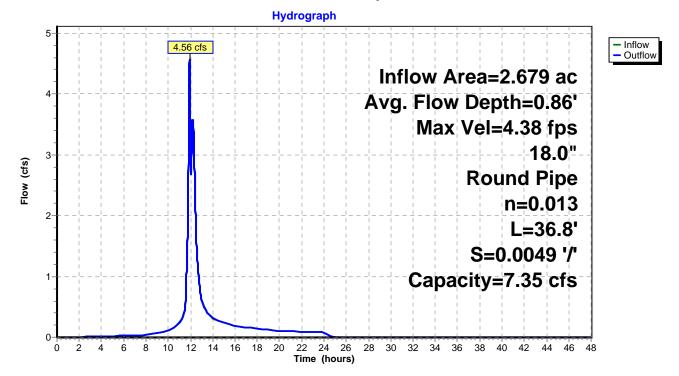


Reach P20: Pipe 20




#### Summary for Reach P21: Pipe 21

Inflow Area =2.679 ac, 21.50% Impervious, Inflow Depth =2.04" for 10 Year Storm eventInflow =4.56 cfs @ 11.92 hrs, Volume=0.455 afOutflow =4.56 cfs @ 11.92 hrs, Volume=0.455 af, Atten= 0%, Lag= 0.1 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.38 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.47 fps, Avg. Travel Time= 0.4 min

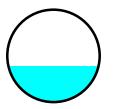
Peak Storage= 38 cf @ 11.92 hrs Average Depth at Peak Storage= 0.86' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 7.35 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 36.8' Slope= 0.0049 '/' Inlet Invert= 321.66', Outlet Invert= 321.48'



Reach P21: Pipe 21




#### Summary for Reach P22: Pipe 22

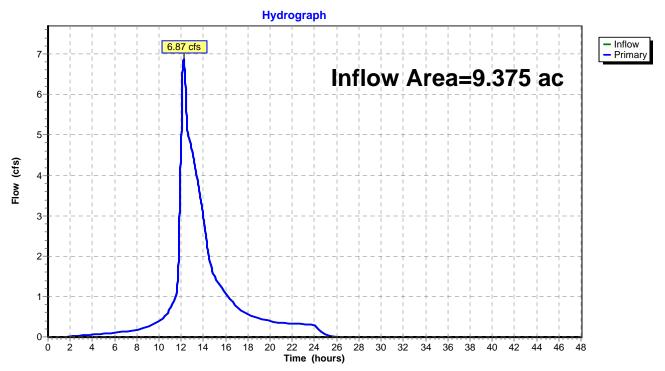
Inflow Area =2.722 ac, 22.63% Impervious, Inflow Depth =2.05" for 10 Year Storm eventInflow =4.77 cfs @ 11.92 hrs, Volume=0.465 afOutflow =4.77 cfs @ 11.92 hrs, Volume=0.465 af, Atten= 0%, Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 7.50 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.44 fps, Avg. Travel Time= 0.6 min

Peak Storage= 57 cf @ 11.92 hrs Average Depth at Peak Storage= 0.58' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 14.89 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 89.6' Slope= 0.0201 '/' Inlet Invert= 320.98', Outlet Invert= 319.18'




#### Hydrograph 4.77 cfs - Inflow 5 Outflow Inflow Area=2.722 ac Avg. Flow Depth=0.58' 4 Max Vel=7.50 fps 18.0" 3 Flow (cfs) **Round Pipe** n=0.013 2 L=89.6' S=0.0201 '/' Capacity=14.89 cfs 1 0ż 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 0 4 Time (hours)

#### Reach P22: Pipe 22

## Summary for Pond 007: POI 007

Inflow Area	a =	9.375 ac, 23.57% Impervious, Inflow Depth = 2.09" for 10 Year Storm event
Inflow	=	6.87 cfs @ 12.20 hrs, Volume= 1.635 af
Primary	=	6.87 cfs @ 12.20 hrs, Volume= 1.635 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs



#### Pond 007: POI 007

#### Summary for Pond 7D: Detention 7

Inflow Area	=	9.375 ac, 23.57% Impervious, Inflow Depth = 2.09" for 10 Year Storm event
Inflow =	=	27.15 cfs @ 11.93 hrs, Volume= 1.635 af
Outflow =	=	6.87 cfs @ 12.20 hrs, Volume= 1.635 af, Atten= 75%, Lag= 16.1 min
Primary =	=	6.87 cfs @ 12.20 hrs, Volume= 1.635 af

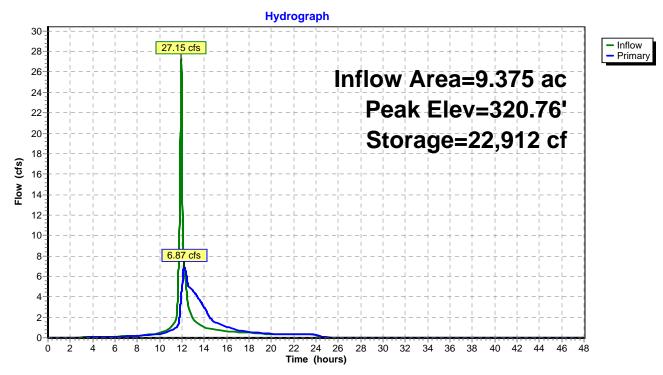
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 320.76' @ 12.20 hrs Surf.Area= 10,255 sf Storage= 22,912 cf

Plug-Flow detention time= 48.6 min calculated for 1.635 af (100% of inflow) Center-of-Mass det. time= 48.5 min (845.3 - 796.8)

Volume	Inve	rt Avail.Sto	rage Storage	e Description	
#1	317.50	)' 36,94	43 cf Custon	n Stage Data (Pi	rismatic)Listed below (Recalc)
Eleveti				Over Otana	
Elevatio		Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
317.5	50	50	0	0	
318.0	00	4,851	1,225	1,225	
319.0	00	7,436	6,144	7,369	
320.0	00	9,016	8,226	15,595	
321.0	00	10,648	9,832	25,427	
322.0	00	12,385	11,517	36,943	
Device	Routing	Invert	Outlet Device	es	
#1	Device 4	320.60'	24.0" x 24.0"	' Horiz. Overflow	<b>v</b> C= 0.600
			Limited to we	ir flow at low hea	ads
#2	Device 4	317.50'	8.0" Vert. Lo	<b>w Flow</b> C= 0.6	00
#3	Device 4	318.50'	8.0" Vert. Mi	d Flow C= 0.60	00
#4	Primary	317.50'	24.0" Round		
			L= 50.0' RC	P, square edge l	neadwall, Ke= 0.500
					317.25' S= 0.0050 '/' Cc= 0.900
				ow Area= 3.14 sf	
			,		

Primary OutFlow Max=6.87 cfs @ 12.20 hrs HW=320.76' TW=0.00' (Dynamic Tailwater)

**4=Culvert** (Passes 6.87 cfs of 21.26 cfs potential flow)


-1=Overflow (Weir Controls 1.66 cfs @ 1.31 fps)

-2=Low Flow (Orifice Controls 2.88 cfs @ 8.24 fps)

-3=Mid Flow (Orifice Controls 2.33 cfs @ 6.68 fps)

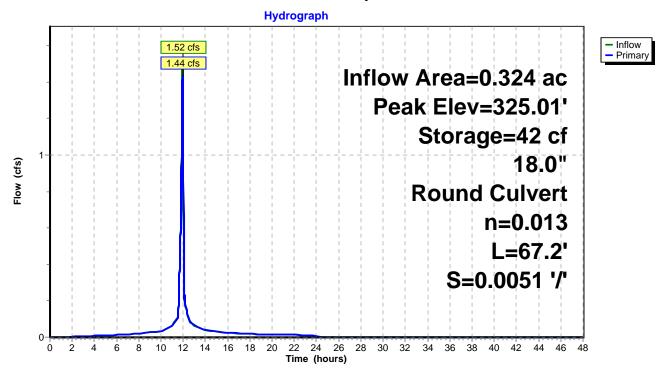
Prepared by VHB HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Pond 7D: Detention 7



#### Summary for Pond P1: Pipe 1

Inflow Area =0.324 ac, 90.74% Impervious, Inflow Depth =2.82" for 10 Year Storm eventInflow =1.52 cfs @11.94 hrs, Volume=0.076 afOutflow =1.44 cfs @11.95 hrs, Volume=0.076 af, Atten= 6%, Lag= 0.6 minPrimary =1.44 cfs @11.95 hrs, Volume=0.076 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 325.01' @ 11.98 hrs Surf.Area= 13 sf Storage= 42 cf

Plug-Flow detention time= 0.7 min calculated for 0.076 af (100% of inflow) Center-of-Mass det. time= 0.6 min (754.8 - 754.2)

Volume	Invert	Avail.Storage	Storage Description
#1	321.64'	50 cf	4.00'D x 4.00'H Vertical Cone/Cylinder
Device	Routing	Invert Out	let Devices
#1	Primary	Inle	<b>0" Round Culvert</b> L= 67.2' Ke= 0.500 t / Outlet Invert= 321.64' / 321.30' S= 0.0051 '/' Cc= 0.900 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

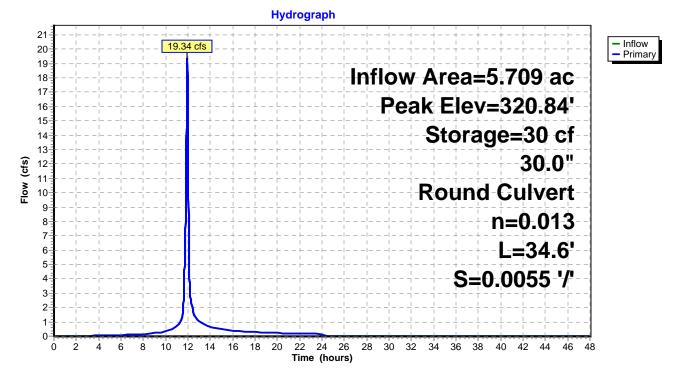
Primary OutFlow Max=0.00 cfs @ 11.95 hrs HW=324.56' TW=324.79' (Dynamic Tailwater)

#### Pond P1: Pipe 1



#### Summary for Pond P10: Pipe 10

Inflow Area =5.709 ac, 23.66% Impervious, Inflow Depth =2.16" for 10 Year Storm eventInflow =19.34 cfs @11.94 hrs, Volume=1.028 afOutflow =19.34 cfs @11.94 hrs, Volume=1.028 afPrimary =19.34 cfs @11.94 hrs, Volume=1.028 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 320.84' @ 11.99 hrs Surf.Area= 13 sf Storage= 30 cf

Plug-Flow detention time= 0.1 min calculated for 1.028 af (100% of inflow) Center-of-Mass det. time= 0.1 min (790.4 - 790.3)

Volume	Invert	Avail.Storage	Storage Description
#1	318.44'	50 cf	4.00'D x 4.00'H Vertical Cone/Cylinder
Device	Routing	Invert Out	et Devices
#1	Primary	Inle	<b>P Round Culvert</b> L= 34.6' Ke= 0.500 (/ Outlet Invert= 318.44' / 318.25' S= 0.0055 '/' Cc= 0.900 (0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf

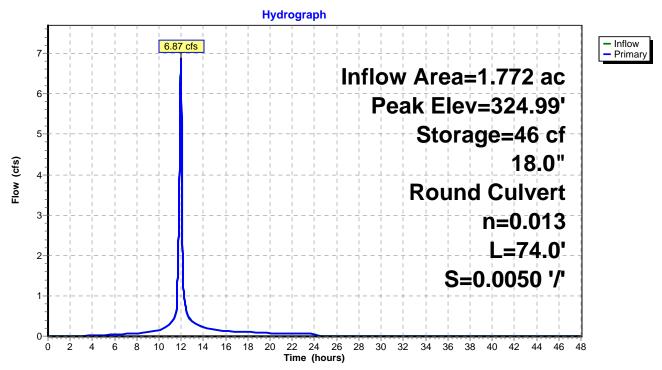
Primary OutFlow Max=19.32 cfs @ 11.94 hrs HW=320.76' TW=319.98' (Dynamic Tailwater) -1=Culvert (Barrel Controls 19.32 cfs @ 5.31 fps)

#### Pond P10: Pipe 10



#### Summary for Pond P2: Pipe 2

Page 48


Inflow Area =	1.772 ac, 23.87% Impervious, Inflow	Depth = 2.62" for 10 Year Storm event
Inflow =	6.87 cfs @ 11.97 hrs, Volume=	0.387 af
Outflow =	6.87 cfs @ 11.97 hrs, Volume=	0.387 af, Atten= 0%, Lag= 0.2 min
Primary =	6.87 cfs @ 11.97 hrs, Volume=	0.387 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 324.99' @ 11.97 hrs Surf.Area= 13 sf Storage= 46 cf

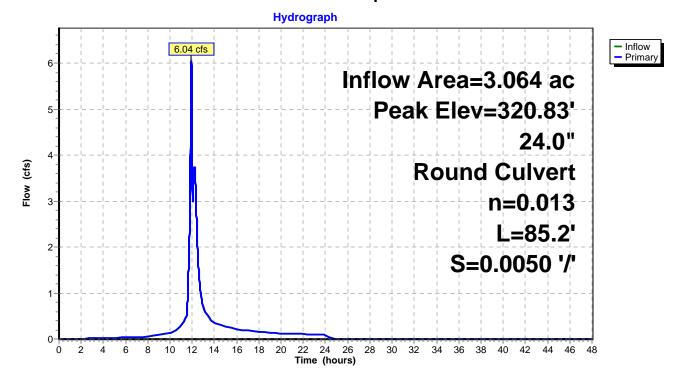
Plug-Flow detention time= 0.3 min calculated for 0.387 af (100% of inflow) Center-of-Mass det. time= 0.2 min (776.6 - 776.4)

Volume	Invert	Avail.Storage	Storage Description
#1	321.30'	50 cf	4.00'D x 4.00'H Vertical Cone/Cylinder
Device	Routing	Invert Out	let Devices
#1	Primary	Inle	<b>D" Round Culvert</b> L= 74.0' Ke= 0.500 t / Outlet Invert= 321.30' / 320.93' S= 0.0050 '/' Cc= 0.900 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=7.42 cfs @ 11.97 hrs HW=324.96' TW=324.18' (Dynamic Tailwater) 1=Culvert (Outlet Controls 7.42 cfs @ 4.20 fps)



#### Pond P2: Pipe 2


#### Summary for Pond P23: Pipe 23

Inflow Area =3.064 ac, 25.07% Impervious, Inflow Depth =2.06" for 10 Year Storm eventInflow =6.04 cfs @11.92 hrs, Volume =0.525 afOutflow =6.04 cfs @11.92 hrs, Volume =0.525 af, Atten = 0%, Lag = 0.0 minPrimary =6.04 cfs @11.92 hrs, Volume =0.525 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 320.83' @ 12.20 hrs

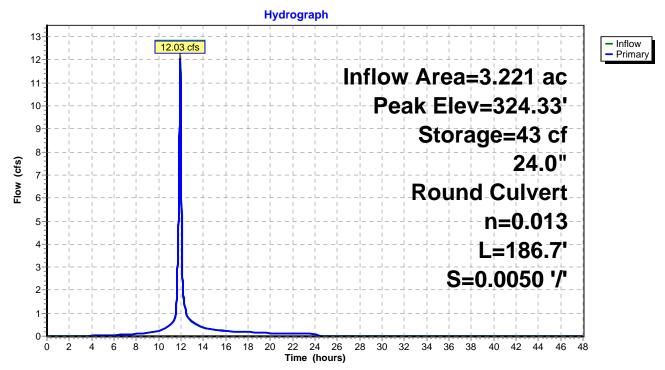
Device	Routing	Invert	Outlet Devices
#1	Primary	318.68'	<b>24.0"</b> Round Culvert L= 85.2' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 318.68' / 318.25' S= $0.0050$ '/' Cc= $0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=5.31 cfs @ 11.92 hrs HW=320.19' TW=319.87' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 5.31 cfs @ 2.89 fps)



#### Pond P23: Pipe 23

#### Summary for Pond P3: Pipe 3


Inflow Area =3.221 ac, 19.78% Impervious, Inflow Depth =2.37" for 10 Year Storm eventInflow =12.05 cfs @11.93 hrs, Volume=0.636 afOutflow =12.03 cfs @11.93 hrs, Volume=0.636 af, Atten= 0%, Lag= 0.0 minPrimary =12.03 cfs @11.93 hrs, Volume=0.636 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 324.33' @ 11.96 hrs Surf.Area= 13 sf Storage= 43 cf

Plug-Flow detention time= 0.1 min calculated for 0.636 af (100% of inflow) Center-of-Mass det. time= 0.1 min (785.4 - 785.3)

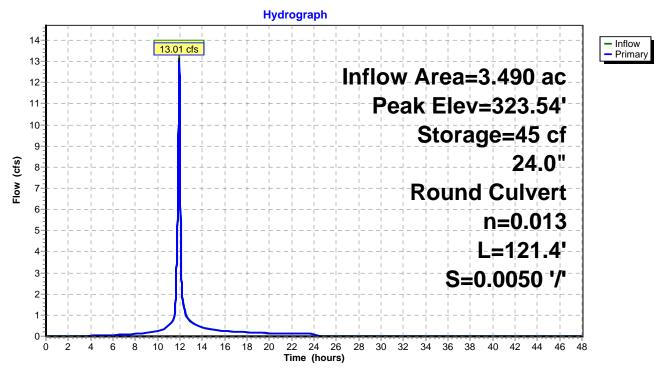
Volume	Invert	Avail.Storage	Storage Description
#1	320.93'	50 cf	4.00'D x 4.00'H Vertical Cone/Cylinder
Device	Routing	Invert Out	et Devices
#1	Primary	Inle	<b>Round Culvert</b> L= 186.7' Ke= 0.500 / Outlet Invert= 320.93' / 320.00' S= 0.0050 '/' Cc= 0.900 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=10.27 cfs @ 11.93 hrs HW=323.98' TW=323.34' (Dynamic Tailwater) -1=Culvert (Outlet Controls 10.27 cfs @ 3.27 fps)



#### Pond P3: Pipe 3

#### Summary for Pond P4: Pipe 4


Inflow Area =	3.490 ac, 22.66% Impervious, Inflow	Depth = 2.36" for 10 Year Storm event
Inflow =	13.13 cfs @ 11.93 hrs, Volume=	0.687 af
Outflow =	13.01 cfs @ 11.93 hrs, Volume=	0.687 af, Atten= 1%, Lag= 0.1 min
Primary =	13.01 cfs @ 11.93 hrs, Volume=	0.687 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 323.54' @ 11.95 hrs Surf.Area= 13 sf Storage= 45 cf

Plug-Flow detention time= 0.2 min calculated for 0.687 af (100% of inflow) Center-of-Mass det. time= 0.1 min (784.5 - 784.3)

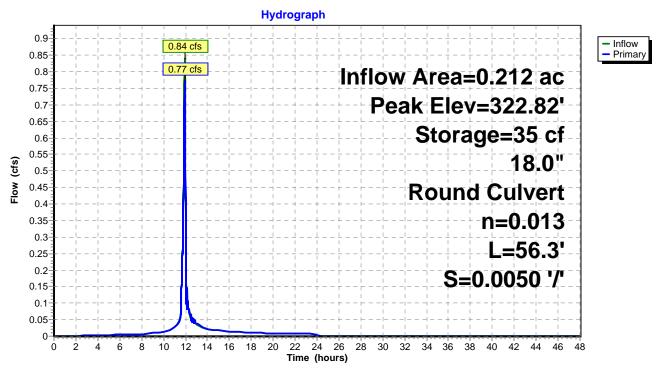
Volume	Invert	Avail.Storage	Storage Description
#1	320.00'	50 cf	4.00'D x 4.00'H Vertical Cone/Cylinder
Device	Routing	Invert Out	let Devices
#1	Primary	Inle	<b>D" Round Culvert</b> L= 121.4' Ke= 0.500 t / Outlet Invert= 320.00' / 319.39' S= 0.0050 '/' Cc= 0.900 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=11.58 cfs @ 11.93 hrs HW=323.33' TW=322.70' (Dynamic Tailwater) -1=Culvert (Outlet Controls 11.58 cfs @ 3.69 fps)



#### Pond P4: Pipe 4

#### Summary for Pond P5: Pipe 5


Inflow Area = 0.212 ac, 48.11% Impervious, Inflow Depth = 2.16" for 10 Year Storm event Inflow 0.84 cfs @ 11.93 hrs. Volume= 0.038 af = 0.77 cfs @ 11.93 hrs, Volume= Outflow 0.038 af, Atten= 8%, Lag= 0.1 min = 0.77 cfs @ 11.93 hrs, Volume= 0.038 af Primary =

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 322.82' @ 11.97 hrs Surf.Area= 13 sf Storage= 35 cf

Plug-Flow detention time= 1.1 min calculated for 0.038 af (100% of inflow) Center-of-Mass det. time= 1.1 min (779.3 - 778.2)

Volume	Invert	Avail.Storage	Storage Description
#1	320.00'	50 cf	4.00'D x 4.00'H Vertical Cone/Cylinder
Device	Routing	Invert Out	let Devices
#1	Primary	Inle	<b>D" Round Culvert</b> L= 56.3' Square-edged headwall, Ke= 0.500 t / Outlet Invert= 320.00' / 319.72' S= 0.0050 '/' Cc= 0.900 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

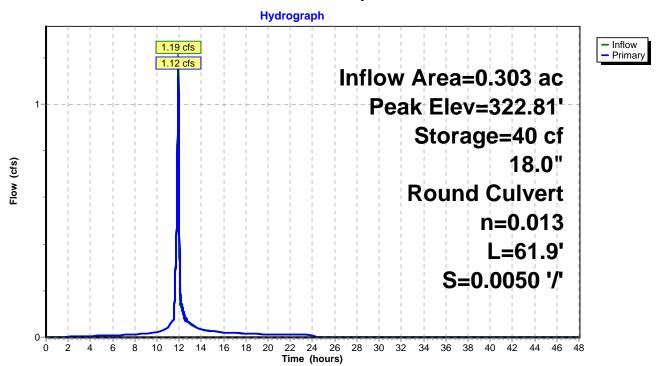
Primary OutFlow Max=0.00 cfs @ 11.93 hrs HW=322.26' TW=322.47' (Dynamic Tailwater) **1=Culvert** (Controls 0.00 cfs)



#### Pond P5: Pipe 5

#### Summary for Pond P6: Pipe 6

Page 53


Inflow Area =	0.303 ac, 58.75% Impervious, Inflow	Depth = 2.32" for 10 Year Storm event
Inflow =	1.19 cfs @ 11.92 hrs, Volume=	0.059 af
Outflow =	1.12 cfs @ 11.92 hrs, Volume=	0.059 af, Atten= 6%, Lag= 0.1 min
Primary =	1.12 cfs @ 11.92 hrs, Volume=	0.059 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 322.81' @ 11.96 hrs Surf.Area= 13 sf Storage= 40 cf

Plug-Flow detention time= 1.0 min calculated for 0.059 af (100% of inflow) Center-of-Mass det. time= 1.0 min (771.9 - 770.9)

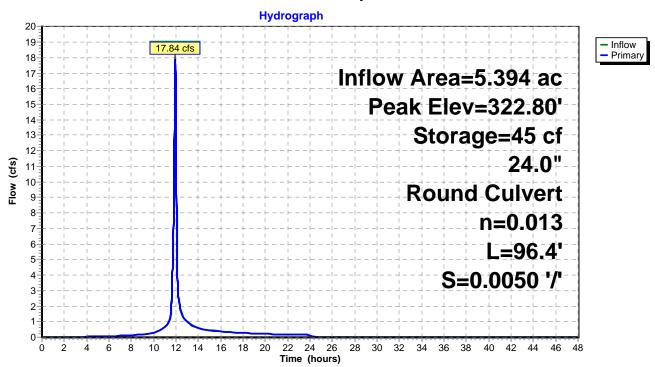
Volume	Invert	Avail.Storage	Storage Description
#1	319.65'	50 cf	4.00'D x 4.00'H Vertical Cone/Cylinder
Device	Routing	Invert Out	let Devices
#1	Primary	Inle	<b>D" Round Culvert</b> L= 61.9' Square-edged headwall, Ke= 0.500 t / Outlet Invert= 319.65' / 319.34' S= 0.0050 '/' Cc= 0.900 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=0.00 cfs @ 11.92 hrs HW=322.27' TW=322.48' (Dynamic Tailwater) 1=Culvert (Controls 0.00 cfs)



#### Pond P6: Pipe 6

#### Summary for Pond P7: Pipe 7


Inflow Area =5.394 ac, 19.48% Impervious, Inflow Depth =2.12" for 10 Year Storm eventInflow =17.87 cfs @11.94 hrs, Volume=0.952 afOutflow =17.84 cfs @11.94 hrs, Volume=0.952 af, Atten= 0%, Lag= 0.0 minPrimary =17.84 cfs @11.94 hrs, Volume=0.952 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 322.80' @ 11.95 hrs Surf.Area= 13 sf Storage= 45 cf

Plug-Flow detention time= 0.1 min calculated for 0.952 af (100% of inflow) Center-of-Mass det. time= 0.1 min (793.2 - 793.0)

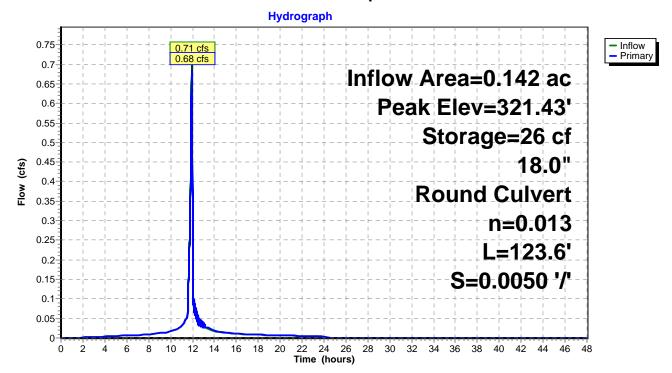
Volume	Invert	Avail.Storage	Storage Description
#1	319.19'	50 cf	4.00'D x 4.00'H Vertical Cone/Cylinder
Device	Routing	Invert Out	let Devices
#1	Primary	Inle	<b>D" Round Culvert</b> L= 96.4' Ke= 0.500 t / Outlet Invert= 319.19' / 318.71' S= 0.0050 '/' Cc= 0.900 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=17.51 cfs @ 11.94 hrs HW=322.75' TW=321.41' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 17.51 cfs @ 5.57 fps)



#### Pond P7: Pipe 7

#### Summary for Pond P8: Pipe 8


Inflow Area =	0.142 ac, 98.59% Impervious, Inflow D	epth = 2.95" for 10 Year Storm event
Inflow =	0.71 cfs @ 11.93 hrs, Volume=	0.035 af
Outflow =	0.68 cfs @ 11.93 hrs, Volume=	0.035 af, Atten= 4%, Lag= 0.2 min
Primary =	0.68 cfs @ 11.93 hrs, Volume=	0.035 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 321.43' @ 11.95 hrs Surf.Area= 13 sf Storage= 26 cf

Plug-Flow detention time= 1.7 min calculated for 0.035 af (100% of inflow) Center-of-Mass det. time= 1.6 min (751.5 - 749.9)

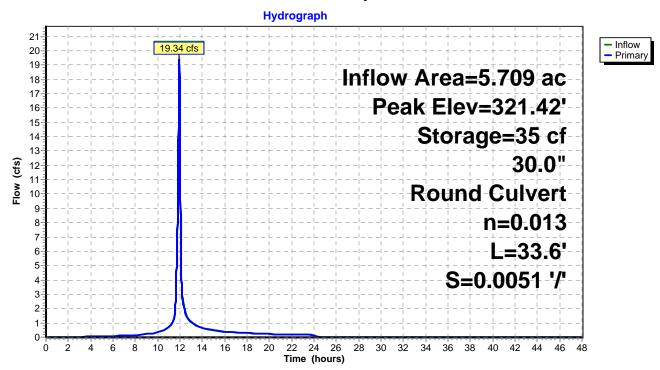
Volume	Invert	Avail.Storage	Storage Description
#1	319.33'	50 cf	4.00'D x 4.00'H Vertical Cone/Cylinder
Device	Routing	Invert Out	et Devices
#1	Primary	L= 1 Inlet	<ul> <li><b>Round Culvert</b></li> <li>23.6' Square-edged headwall, Ke= 0.500</li> <li>/ Outlet Invert= 319.33' / 318.71' S= 0.0050 '/' Cc= 0.900</li> <li>0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf</li> </ul>

Primary OutFlow Max=0.00 cfs @ 11.93 hrs HW=321.33' TW=321.40' (Dynamic Tailwater)



#### Pond P8: Pipe 8

#### Summary for Pond P9: Pipe 9


Inflow Area = 5.709 ac, 23.66% Impervious, Inflow Depth = 2.16" for 10 Year Storm event Inflow 19.38 cfs @ 11.93 hrs. Volume= 1.028 af = 19.34 cfs @ 11.94 hrs, Volume= Outflow 1.028 af, Atten= 0%, Lag= 0.1 min = 19.34 cfs @ 11.94 hrs, Volume= Primary 1.028 af =

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 321.42' @ 11.94 hrs Surf.Area= 13 sf Storage= 35 cf

Plug-Flow detention time= 0.1 min calculated for 1.028 af (100% of inflow) Center-of-Mass det. time= 0.1 min (790.3 - 790.1)

Volume	Invert	Avail.Storage	Storage Description
#1	318.61'	50 cf	4.00'D x 4.00'H Vertical Cone/Cylinder
Device	Routing	Invert Outl	et Devices
#1	Primary	Inlet	<b>Round Culvert</b> L= 33.6' Ke= 0.500 / Outlet Invert= 318.61' / 318.44' S= 0.0051 '/' Cc= 0.900 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf

Primary OutFlow Max=19.14 cfs @ 11.94 hrs HW=321.41' TW=320.76' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 19.14 cfs @ 3.90 fps)



#### Pond P9: Pipe 9



State of Vermont Agency of Transportation Highway Division Highway, Safety & Design Section Traffic Design Unit

# **Colchester HES NH 5600(14) Chloride Management Plan**



Compiled by: Vermont Agency of Transportation, Traffic Design Unit in coordination with VTrans Maintenance and Operations Bureau & Town of Colchester Department of Public Works

## **Table of Contents**

Executive Summary
1.0 – Project Location & Background Information
Location
Background
VTrans MS4
Guiding Principles
2.0 – Existing Winter Maintenance Activities
3.0 – Post-Construction Winter Maintenance Activities
4.0 – Chloride Management Strategies
Best Management Practices
5.0 – Conclusion
6.0 – Appendices
Appendix A
Appendix B



#### Executive Summary

This Chloride Management Plan (CMP) was developed for the Colchester US Routes 2 & 7 Corridor project Colchester HES NH 5600(14). This CMP outlines strategies and best management practices that will be implemented to minimize Chloride loading to Sunnyside Brook from the above-noted roadway corridor.

This CMP has been prepared in accordance with VTrans' *Snow and Ice Control Plan*, dated November, 2013 and with the Town of Colchester's *Snow and Ice Removal Plan*, dated July, 2013. Each of these documents outlines the procedures, equipment and materials each agency uses for winter maintenance of travel surfaces. This plan relies on these documents to describe how the project will minimize potential impacts to Sunnyside Brook resulting from winter Chloride usage.



# 1.0 – Project Location & Background Information

## 1.1. Location

The proposed project consists of the implementation of traffic congestion relieving measures along the entire length of a 1.05-mile stretch of US Routes 2 & 7 in the town of Colchester, Vermont (MM 0.00 to MM 1.05). Figure 1 shows the location of the project in relation to the region.



**Figure 1: Vicinity Map** 

## 1.2. Background

The Colchester HES NH 5600(14) project lies entirely within the Sunnyside Brook watershed. The watershed has a drainage area of 1.37 square miles (877 acres) in Colchester, Vermont (see Figure 2). The project impacts only a portion of the entire watershed, 0.91 square miles (582 acres). The Vermont Agency of Natural Resources lists Sunnyside Brook and watershed on the 2014 303(d) Part C List: Surface Waters in Need of Further Assessment. Waters on this list are classified as being "stressed," in that they are considered high priority waters for assessment and monitoring. However, waters included on the Part C list are not considered impaired.



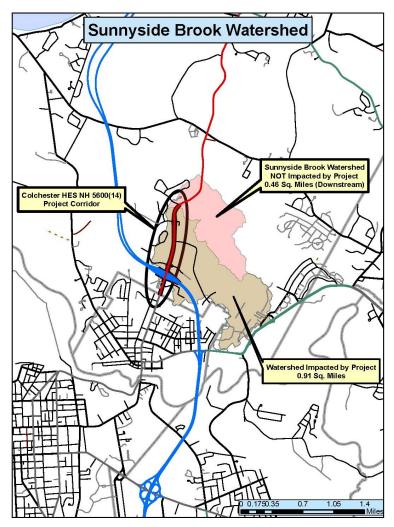



Figure 2: Watershed Map

Sunnyside Brook is identified by the Waterbody ID VT08-02. On the 2014 303(d) Part C List, the possible pollutants are listed as "Undefined" and "Org. Enrichment, Toxics, Sediment." The problems associated with these pollutants are listed as "Potential Impacts from land development and runoff," and "Potential impact surface water by past dumping; Land development," respectively. In both cases, Aquatic Life Support is listed as the impaired use in the stream. More specifically, the Vermont Agency of Natural Resources (VANR) has identified Chlorides as the chemical responsible for the listing.

## 1.3. VTrans MS4

The Colchester HES NH 5600(14) project falls in an urbanized area covered under an existing Small Municipal Separate Storm Sewer System (MS4). VTrans has developed a Stormwater Management Program (SWMP) as part of coverage under General Permit 3-9014, administered by VANR. The Program is committed to stewardship of the natural resources in Vermont and has developed a robust plan consisting of appropriate best management practices (BMPs) to reduce adverse impacts to the environment, including streams and other water courses, to the maximum extent practicable. A highly condensed list of example BMPs VTrans' MS4 permits is:



- All VTrans garages located within the MS4 area will be required to develop a Stormwater Pollution Prevention Plan (SWPPP) and a Spill Prevention Plan (SPP). VTrans will have annual trainings on these plans and the facilities will be inspected annually.
- Implement a Four-Level Winter Maintenance Priority Plan with a goal to be more efficient with winter maintenance and the usage of snow and ice controls and reduce sand and salt distribution. This plan consists of a highway corridor prioritization scheme that dictates the order and magnitude of roadway clearing. See VTrans *Snow and Ice Control Plan* for more information.
- Properly dispose of materials collected during street sweeping and storm drain cleaning.
- Conduct street sweeping and storm drain inspection and cleaning operations on VTrans assets within the MS4 area.
- Report annually on inspections and training conducted at VTrans garages.
- Report annually on salt and sand usage for winter road maintenance.
- Report annually on the total volume of material removed from street sweeping and storm drain cleaning.

The current GP 3-9014 permit for VTrans expires at the end of 2018.

### **1.4. Guiding Principles**

As the Colchester HES NH 5600(14) project is a roadway reconstruction project, it is expected that any Chlorides resulting from the project's implementation would be from winter maintenance activities. The plowing and de-icing of US Routes 2 & 7 and I-89 in conjunction with the Exit 16 onand off-ramps are responsibilities of the VTrans. VTrans recognizes several primary benefits to managing Chlorides for its winter maintenance activities: Safety, Vehicle Mobility, Environmental Protection and Fiscal Responsibility.

1.4.1. Safety. Effective roadway winter maintenance has a direct correlation with the reduction of vehicular collisions and off-road running.

1.4.2. Vehicle Mobility. Effective roadway winter maintenance has a direct correlation with the mobility of traffic as measured by delay and roadway and intersection capacity.

1.4.3. Environmental Protection. Excessive usage of various types of salts to melt roadway surface ice and snow creates an adverse effect to nearby natural resources.

1.4.4. Fiscal Responsibility. Efficient usage of road salt has a direct positive impact to the Agency's budget for winter maintenance by consuming less material and more efficient usages of labor and equipment.

This plan seeks to outline how Chloride usage will be managed as part of the Colchester HES NH 5600(14) project as guided by these three principles.



## 2.0 – Existing Winter Maintenance Activities

VTrans is responsible for maintaining safe roads at safe speeds on the following roadways within the Colchester HES NH 5600(14) project limits:

- US Routes 2 & 7
- Interstate 89 Exit 16
  - Southbound on-ramp
  - $\circ \quad \text{Southbound off-ramp} \\$
  - Northbound on-ramp
  - Northbound off-ramp

The Town of Colchester is responsible for maintaining the following roadways within the Colchester HES NH 5600(14) project limits:

- South Park Drive
- Mountain View Drive
- Lower Mountain View Drive
- Hercules Drive
- Champlain Drive
- Rathe Road
- Sunderland Woods

Both VTrans and the Town of Colchester use various methods of snow and ice removal from roadway surfaces depending on different circumstance including: time of day, storm duration, storm intensity, type of precipitation and ambient temperature. The methods used are described in greater detail in the *VTrans Snow and Ice Control Plan (2013 VTrans SIC Plan)* and the *Colchester Snow and Ice Removal Plan (2013 Town of Colchester SIR Plan)*, attached as appendices to this document, but includes the use of rock salt, salt brine, winter sand, other types of Chlorides, proprietary de-icing chemicals and plowing.

# 3.0 – Post-Construction Winter Maintenance Activities

Winter maintenance on roadways VTrans is responsible for will abide by the 2013 VTrans SIC Plan. Likewise, road clearing on town highways by the Town of Colchester will abide by the 2013 Town of Colchester SIR Plan.

It is not anticipated that snow and ice removal methods would change as a result of the project's construction. It is, however, expected that additional runs of plow trucks and other snow removal equipment will be needed due to the addition of new traffic turning lanes. These added runs will add to the overall lane miles needed for winter maintenance. The chart (next page) outlines these new areas requiring winter maintenance.



## Colchester HES NH 5600(14) Chloride Management Plan

Lane Mileage for Winter Maintenance Activities			
Roadway	Agency Responsible	Pre-Construction Lane Miles	Post-Construction Lane Miles
US Routes 2 & 7	VTrans	4.24	4.44
Exit 16 NB On-Ramp	VTrans	0.04	0.10
Exit 16 NB Off-Ramp	VTrans	0.18	0.20
Exit 16 SB On-Ramp	VTrans	0.07	0.06
Exit 16 SB Off-Ramp	VTrans	0.09	0.11
South Park Drive	Town of Colchester	0.02	0.02
Mountain View Drive	Town of Colchester	0.17	0.21
Lower Mountain View Drive	Town of Colchester	0.16	0.21
Hercules Drive	Town of Colchester	0.09	0.09
Champlain Drive	Town of Colchester	0.07	0.07
Rathe Road	Town of Colchester	0.10	0.10
Sunderland Woods	Town of Colchester	0.02	0.02
	Total Mileage =	5.25	5.63

While there is a slight increase in lane-miles requiring winter maintenance, this factor does not guarantee there will be an increase salt usage. The chief factor in determining the quantity of salt usage is the number of storms significant enough over the season to require roadway de-icing.

# 4.0 – Chloride Management Strategies

This section focuses on management strategies from the VTrans SIC Plan and the Colchester SIR Plan that are applicable to the Colchester HES NH 5600(14) project area.

### 4.1. Best Management Practices (BMPs)

The *VTrans SIC Plan* describes in great detail the equipment and materials involved with controlling snow and ice on roadways for the purposes of winter maintenance. Please refer to Section E of the *SIC Plan* for more information. The *Colchester SIR Plan* lists the equipment and materials the Colchester Department of Public Works uses for its activities. Please refer to Section 3 of the *SIR Plan* for more information.

While this information will not be reiterated herein, a list (next page) contains BMPs that are most readily available for achievable reductions without sacrificing levels of service. These will be used by the appropriate Agencies along this project corridor.



Best Management Practices for Chloride Reduction		
Chloride Reduction BMP	Definition	Potential % Chloride Reduction
Pre-Wetting	Application of salt brine or proprietary chemical to dry salt as it is being applied to the roadway.	20% - 30%
Pre-Treating	Application of salt brine or proprietary chemical to dry salt either before, during, or after it has been loaded into the truck.	10% - 30%
Anti-Icing	Application of salt brine or proprietary chemical up to 48 hours in advance of onset of winter storm.	10% - 30%
Equipment Calibration	Ensures equipment application of Chlorides is accurate.	5% - 20%
In-Cab Air/Ground Temperature Sensor	Installation and monitoring of pavement and air temperature sensors with in-cab readout.	1% - 10%
Training, Storage and Handling	Annual training of staff about various BMPs, improving storage and handling practices for loading and unloading salt.	10% - 25%

The reduction percentages are dependent on several factors including storm severity, equipment type, accurate calibration and operator skill.

# 5.0 – Conclusion

The Vermont Agency of Transportation is committed to the stewardship of natural resources in Colchester and in the rest of Vermont. In addition to being fiscally responsible, VTrans developed its *SIC Plan* to be more sensitive to these natural resources by creating and executing best management practices for winter maintenance, including the usage of salt. The *SIC Plan* and Colchester's *SIR Plan* will be followed for winter maintenance after this project is constructed.

While the leaching of Chloride from winter salt into Sunnyside Brook is very dependent on the number and the severity of winter storm events, the agencies are committed to these plans which are designed to positively impact the brook and other natural resources.

# 6.0 – Appendices

Appendix A: VTrans *Snow and Ice Control Plan* (2013) Appendix B: Town of Colchester *Snow and Ice Removal Plan* (2013)

Appendix C: VTrans MS4 Permit (General Permit 3-9014) -Not included in this plan; located on ANR Website: <u>http://www.vtwaterquality.org/stormwater/docs/ms4/sw_VTrans_MS4_SWMP.pdf</u>



# VERMONT AGENCY OF TRANSPORTATION



### FOR STATE AND ICE CONTROL PLAN FOR STATE AND INTERSTATE HIGHWAYS

#### A. PURPOSE AND NEED

The purpose of this plan is to define the operational procedures and best management practices (BMPs) for storing and utilizing snow and ice control materials, and for performing winter maintenance activities. It defines the levels of service that the Vermont Agency of Transportation (VTrans) will strive to provide at our facilities and on our highways. This plan allows for and encourages improvement in operational efficiency in providing the desired levels of service. It also provides guidance to help minimize leaching of salt-laden and other winter maintenance material runoff from state-owned paved surfaces and storage facilities into the ground or into surface waters.

Since storms vary dramatically across the state and occur over a variety of paved surfaces and traffic conditions, this Snow and Ice Control Plan (SIC Plan) is intended to be flexible. It is a guide structured to fit average conditions, but able to accommodate the wide variety of conditions that will be encountered by maintenance crews who are working to maintain safe roads at safe speeds.

### B. LEVEL OF SERVICE - GENERAL INFORMATION

VTrans Maintenance District snow and ice control operations are limited by the resources (budget, personnel, equipment and materials) available for winter maintenance. Consequently, VTrans' SIC Plan calls for "safe roads as safe speeds", and not "bare roads". This means that roads during a storm are maintained to allow safe travel at safe speeds, but that drivers should expect to see snow on the roadway during a storm. Most travel takes place during the day, so the majority of VTrans resources are used between 4 a.m. and 10 p.m. During those hours, the average plow routes will be between 2 to 2 ½ hours. However, motorists should anticipate reduced coverage and varying road conditions at night, and should drive accordingly.

#### C. <u>CORRIDOR PRIORITIES</u>

Four color-coded levels of service have been established and are shown on the attached "Corridor Priority Map". Priorities were established based on winter traffic volumes, roadway classification, and expected truck traffic. Note that critical areas such as intersections, areas of extreme curvature

and problem grades may have to be treated differently to retain proper mobility and safety regardless of the corridor designation assigned to the balance of the route.

# 1. CORRIDOR PRIORITY 1 – INTERSTATE AND LIMITED ACCESS HIGHWAYS (ORANGE ROADS)

Snow will be removed between 3 am and 10 pm. Equipment such as tow plows and graders will be utilized to facilitate snow removal activities. During off hours, resources will be shifted to prioritize coverage on these routes. Materials noted under Section E will be applied as needed to keep the roads open for traffic and provide a safe surface on which to operate, though road surface may be snow covered at times during the storm. After the storm has subsided, bare travel lanes shall be provided as soon as practical and on these roads before all others. In most cases, this will occur within 4 daylight hours. A bare pavement shoulder to shoulder will be provided as soon as practical. The suggested maximum travel speed during the storm for "Orange Roads" is 50 mph, or 10 mph below the posted speed limit, whichever is less.

### 2. CORRIDOR PRIORITY 2 - HIGH TRAFFIC HIGHWAYS & TRUCK ROUTES (BLUE ROADS)

Snow will be removed between 4 am and 10 pm. During off hours a skeleton crew will be used as needed. Materials noted under Section E will be applied as needed to keep the roads open for traffic and provide a safe surface on which to operate, though road surface may be snow covered at times during the storm. After the storm has subsided, a bare pavement shoulder to shoulder will be provided as soon as practical. The suggested maximum travel speed for "Blue Roads" is 45 mph, or 10 mph below the posted speed limit, whichever is less.

### 3. CORRIDOR PRIORITY 3 - MEDIUM TRAFFIC HIGHWAYS (GREEN ROADS)

Snow will be removed between 4 am and 10 pm. During off hours a skeleton crew will be used as needed. Materials noted under Section E will be applied as needed to keep the roads open for traffic and provide a safe surface on which to operate, though road surface may be snow covered at times during the storm. During the next regular working day after the storm has subsided, a bare pavement shoulder to shoulder will be provided as soon as practical. The suggested maximum travel speed for "Green Roads" is 40 mph, or 10 mph below the posted speed limit, whichever is less.

### 4. CORRIDOR PRIORITY 4 – LOW TRAFFIC HIGHWAYS (YELLOW ROADS)

Snow will be removed between 4 am and 10 pm. During off hours a skeleton crew will be used as needed. Materials noted under Section E will be applied as needed to keep the roads open to traffic and provide a safe surface on which to operate. Road surface may be snow covered during and immediately following the storm. During the next regular working day after the storm has subsided, one third bare pavement, in the middle of the road, will be provided as soon as practical. As soon thereafter as practical, a bare pavement shoulder to shoulder will be provided. The suggested maximum travel speed for "Yellow Roads" is 35 mph, or 10 mph below the posted speed limit, whichever is less.

### D. PERFORMANCE MEASUREMENT & PROGRAM EFFECTIVENESS ASSESSMENT

Performance during and immediately following individual storm events will be periodically monitored by the District General Manager and the Area Maintenance Supervisors to ensure VTrans is providing safe roads at safe speeds and performing snow and ice removal in accordance with established Corridor Priorities noted under Section C.

In addition, to monitor performance, the following information will be reviewed by the Director of Operations, the Maintenance Transportation Administrator (MTA) and the District Transportation Administrators ("DTAs") annually to gage program effectiveness:

- Material application rates
- Vehicle speeds during and after storm events
- Condition of travel lanes and shoulders during and after storm events
- Storm data (precipitation, air temperature, road surface temperature, wind speed, etc)
- Plowing frequency

Overall performance during and following the winter season will be measured by monitoring material usage, labor costs, and equipment costs with respect to the number of lane miles maintained and the number of storm events addressed. Assessments will be made based upon consideration of the resources used versus the winter severity encountered, as well as through comparisons between adjacent and nearby geographical areas that have encountered similar winter conditions.

VTrans Operations Division will publish an annual report each spring which summarizes the previous winter, and VTrans' performance according to the above mentioned metrics.

### E. MATERIALS AND APPLICATION PROCEDURES

The materials in this section are those that are primarily used by VTrans for snow and ice control on highways throughout Vermont. This section describes the general purpose of each material, the typical use that is expected under normal conditions, and the application procedure. Choice of materials will depend on experienced consideration of the following variables: pavement temperature, nature of the particular snow and ice event, forecast storm conditions, air temperature and wind velocity, traffic volume, time of day/year, and the availability of resources.

Procedures for determining application rates and methods will be the responsibility of District Personnel based on this SIC Plan, available material application technology, and other factors that vary across the state from region to region.

#### 1. Salt (NaCl)

Unless otherwise designated for specific routes, salt is the primary material used on the majority of roads maintained by VTrans. Salt is used to prevent the bonding of snow and ice onto the pavement surface, and to melt snow and ice that cannot be removed by plowing. Unless salt is pre-wetted with a liquid having a lower working temperature than sodium chloride, the lowest effective working temperature is approximately 15 degrees F.

Application Rates shall normally be selected from the attached "Salt Application Quick Reference Guideline" (Appendix A) and shall be based upon the pavement temperature; snow-ice conditions encountered, and anticipated trends. Initial applications should normally be 25% higher than the average rate indicated by the chart. Generally, salt will be used when the pavement temperatures are 15 degrees F or higher. When pavement temperatures are less than 15 degrees F and not rising, winter sand may be used when necessary for temporary traction. During cold storms, when the pavements are dry and the snow is blowing off the travel lanes, the application of salt or winter sand is to be avoided for as long as possible since it will hasten the formation of ice on the pavement. When ice does begin to form under these conditions, considerable judgment will be required on whether to use salt that is pre-wetted with liquid or spot applications of winter sand.

Appendix B (Application Rates vs. Miles You Can Treat) is provided as a quick reference guide for maintenance workers and supervisors.

#### 2. Winter Sand

Winter sand shall consist of coarse, clean, sharp sand or other granular material. Sand is generally used to provide traction at intersections and corners during icy conditions. When conditions warrant, salt may be mixed with sand to break the bond between the ice pack and road surface.

Sand should generally be used in the following situations:

- On hills, curves and intersections where the supervisor determines that temporary traction is needed
- In situations where salt can not work fast enough (i.e. accident scenes involving excessive ice)
- o When pavement temperatures are too low for salt to work properly
- When wet pavements exist on lower-volume corridors and falling nighttime temperatures may cause glazing

#### 3. Liquids

A variety of liquids are used to either "pre-wet" solid materials that are applied from the plow trucks or to "anti-ice" the highways in advance of a storm event. Following are descriptions of the types of liquids used by VTrans, and descriptions of the "anti-icing" and "pre-wetting" process.

- a) Salt Brine Salt brine is a 23% solution of salt in water. It can be used to either "prewet" solid materials that are applied from the plow trucks or to "pre-treat" the highways in advance of a storm event. However, unless salt brine is mixed with additives, the effective working temperature is the same as salt in its solid form – approximately 15 degrees F or greater.
- **b)** Chemical Additives Chemical additives are used to pre-wet the solid materials that are applied by the plow trucks to lower the effective working temperature of salt and to help keep the solid materials on the road during the application process. Examples of such chemicals may include magnesium chloride (MgCl₂), calcium chloride (CaCl) and a number of proprietary products.

VTRANS SNOW AND ICE CONTROL PLAN 4

- c) Liquid Chloride Blends Liquid Chloride blends are used to stretch the working range of salt brine without incurring the full cost of a chemical product.
- **d)** Anti-icing For anti-icing with salt brine, the application rates per lane mile may vary when pavement temperatures *during the storm* are anticipated to be 15 degrees F or greater. Application will generally occur on designated routes 6 to 8 hours prior to the projected start of the storm, however, up to 12 hours may be permissible based on timing of the storm. Anti-icing may also be used to spot treat bridge decks and other problem areas located on any priority corridor whenever weather forecasts indicate the possibility of glazing. When anti-icing the roads with a blend, application rates may be cut back.
- e) **Pre-wetting** Pre-wetting is the application of liquids onto solid materials. In general, salt brine shall normally be used when the pavement temperatures are above approximately 15 degrees F and chemical additive or blend shall be used when below.

### F. <u>EQUIPMENT</u>

#### 1. Washing Equipment

Snow and ice control equipment are to be thoroughly washed during regular working hours as soon after use as practicable. Particular attention is to be paid to the areas of equipment in contact with sand, salt and liquid chlorides. With heated power washers, truck washing will normally be accomplished outdoors in designated areas.

#### 2. Overnight Loads

In general, trucks should not be left loaded overnight since it subjects the equipment to unnecessary wear. However, in the event that a winter storm is forecast at some point during the approaching night, a crew may load trucks to enable a quicker response to the storm. Such loading shall be in compliance with the following:

- a) Load size shall not exceed a level-load.
- b) If the storm does not occur, the truck(s) loaded in advance shall be unloaded and washed out the following working day.

#### 3. Spreaders

Each spreading unit shall be calibrated annually, and after any spreader or hydraulic maintenance, to insure that selected rates of application are attained.

#### G. <u>OPERATIONS</u>

### 1. Mailboxes And Other Structures Within The Highway Right-Of-Way

Occasionally mailboxes or other devices are damaged by snow plowing operations due to poor visibility, the mailbox being buried in a snow bank or the weight/volume of the snow being plowed. This damage is not deliberate and in most cases is unavoidable. VTrans is not

responsible for damage and does not repair, replace or re-erect boxes that are located within the highway right-of-way unless physically struck by a VTrans plow truck. In these cases, VTrans will replace the mailbox at no cost to the property owner with a generic United States Post Office approved box.

### 2. Widening or Pushing Back Snow Banks

Following storms with heavy snowfall or when several storms result in substantial snow bankings, VTrans will undertake a roadway widening procedure, which will push back the snow banks. This is generally done during normal working hours, and is a necessary operation because it accomplishes the following:

- a) Provides room for future snow storage.
- b) Reduces or prevents melted snow from running out onto the roadway pavement and creating icing conditions.
- c) Increases safe sight distance at intersections and driveways.
- d) Maintains a uniform line by eliminating protrusions at driveways and intersections.

Unfortunately there is no way to prevent depositing snow in previously cleaned driveways or walkways except to leave a hazardous projecting mound of snow. With thousands of driveways of all sizes and descriptions along our highway system it is impossible to clear these individual drives as the cost would be prohibitive.

#### 3. Sidewalks

The maintenance of the sidewalks, including snow removal, is the responsibility of the local community. This is firm and longstanding statewide. In addition, in those communities where on-street parking is permitted, snow removal from the parking areas, including plowing and or hauling away, is a local responsibility.

#### 4. Tow Plows

Tow plows will be used primarily on limited access facilities and interchanges to clear multiple lanes at the same time. An effort will be made to avoid impacts to traffic during morning and evening commute times.

### H. STATE AND FEDERAL REGULATORY OVERSIGHT

### 1. Winter Maintenance Practices located within designated National Pollutant Discharge Elimination System (NPDES) Municipal Separate Storm Sewer System (MS4) areas, including Watersheds of Sediment Impaired Waterways, and in the Lake Champlain Watershed Basin:

Winter maintenance activities in these areas have and will continue to be regulated and addressed under the VTrans MS4 Stormwater Management Plan. Please refer to the VTrans Operations Environmental Program web site for more information regarding the above referenced designations as they may change from time to time and for information regarding the VTrans MS4 Stormwater Management Plan. Link to this site at: <a href="http://www.aot.state.vt.us/ops/TechnicalServices/stormwater/MS4GP3-9014.htm">http://www.aot.state.vt.us/ops/TechnicalServices/stormwater/MS4GP3-9014.htm</a>

VTRANS SNOW AND ICE CONTROL PLAN 6

### 2. Winter Maintenance Practices - Statewide Implementation and Jurisdiction:

VTrans SIC Plan has and will continue to be implemented across the state and will not be subject to ANR jurisdiction outside the designated MS4 & Lake Champlain Basin areas. The Operations Environmental Program will forward to the State Agency of Natural Resources (ANR) the SIC Plan as often as updates are made.

### I. BEST MANAGEMENT PRACTICES, TRACKING AND REPORTING

Best management practices associated with winter maintenance activities in conformance with the provisions of the VTrans SIC Plan include, but are not limited to:

- **1.** Normal winter maintenance will conform to the provisions of the current VTrans winter maintenance standards included in this SIC Plan.
- 2. VTrans shall disseminate the SIC Plan statewide to employees involved in the application and storage of winter snow and ice control materials and train such employees in the proper performance of these standards. The Operations Environmental Program Manager will ensure that this information is posted on the VTrans Web Site, kept current, and made available to ANR.
- 3. Low salt and no salt roads (zones) will be signed in the field accordingly.
- 4. Weekly internal reporting of salt/sand usage will be completed by Operations Division staff commencing on the first week of November and terminating 26 weeks later, typically with the last week of April. VTrans shall make note of any single de-icing salt application in excess of 800 pounds per two-lane mile and report such incidents as part of the weekly reporting. The Director of Operations will make this information available to ANR upon request.
- 5. VTrans shall fully cover with impervious material all bulk salt storage areas under their control to reduce the amount and concentration of salt to the runoff of stormwater from these storage areas. All bulk salt storage shall be situated on an impervious material so as to minimize leaching of salt-laden runoff into the ground.
- 6. VTrans shall locate sand piles at District Maintenance Facilities in areas that will not result in sediment-laden runoff into surface waters. If sand piles are located in close proximity to surface waters then VTrans shall install adequate erosion prevention and sediment control practices to ensure sediment-laden runoff will not impact surface waters.
- 7. When it is desirable to charge sand piles with salt to prevent freezing (resulting in mixes or blends), the percentage of salt in the pile shall not exceed 5%.
- 8. VTrans will implement these activities on a statewide basis in accordance with the protocols and best management practices established within the MS4 and Lake Champlain Basin areas for seamless operational efficiencies across the state and to support the stated purpose of this SIC Plan. The Operations Environmental Program will report on these tasks as a part of each annual MS4 report to ANR.

- **9.** VTrans will plan, organize and conduct an annual PR campaign associated with safe winter driving, as funding allows.
- **10.** Nothing in this SIC Plan shall preclude the Agency from utilizing experimental and new technologies to achieve higher efficiency in a cost effective and environmentally sensitive manner. VTrans actively supports innovation and promotes the idea of finding new and better ways to reach our goals.

By:

Brian Searles, Secretary of Transportation

Attachments:

- APPENDIX A Salt Application Quick Reference Guideline
- APPENDIX B Application Rates vs. Miles You Can Treat
- Corridor Priority Map

# Town of Colchester SNOW AND ICE REMOVAL PLAN



Developed by the Colchester Public Works Department For the Town of Colchester Updated and Adopted on July 9, 2013 By the:

> COLCHESTER SELECT BOARD Nadine Scibek, Chair Marc Landry, Vice Chair Herb Downing Kathrine Niquette Tom Mulcahy

> > TOWN MANAGER Dawn Francis

DIRECTOR OF PUBLIC WORKS Bryan K.Osborne

OPERATIONS MANAGER Floyd Sheesley

# "Please Drive Safely"

www.colchestervt.gov

### **SECTION 1.0 - GENERAL**

### 1.1 Purpose and Need

Snow and ice covered roads are more than an inconvenience. Vehicle mobility is reduced, and the potential for accidents increases. Besides substantial economic losses, accidents produce the likelihood of injuries and fatalities. Clearing snow and ice from roads through an effective winter maintenance operation may help reduce storm related accidents.

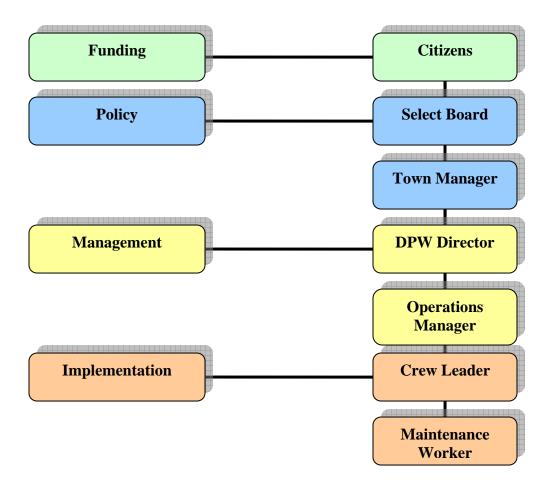
Mobility is imperative to our community. People need to travel to work, to shop, or go to church. Children must ride buses to attend school, sporting events, or other activities. Businesses must deliver goods and services. Controlling hazardous conditions created by winter storms as quickly as possible and keeping roads open is essential to maintaining public mobility.

Mobility for emergency vehicles is a priority too. During winter snow storms people still have heart attacks, law enforcement is needed, and homes catch on fire. Response time for paramedics, police, and fire fighters is measured in minutes and seconds when lives and property hang in the balance. Road crews need to strive toward keeping roadways as clear as possible to minimize any delays for emergency vehicles.

Snow and ice covered roads produce some hidden costs in terms of the environment and the economy. Clogged roads cause disruptions in the flow of traffic and reduced travel speeds, thereby increasing fuel consumption. There are other economic factors to be considered as well. People may be late for work; absenteeism may increase; goods and services may not be delivered and production may decrease. To minimize the negative effects inherent to winter storms, an effective snow and ice removal plan is necessary.

### **1.2 Goals and Objectives**

The primary goal and objective of the Town's Snow and Ice Removal Plan is to maintain safety and mobility on the Town's transportation system for motor vehicles and their operators that are properly equipped for travel in inclement weather conditions. The Town's transportation system consists of 88.61 miles of public roadways, 20.13 miles of private roadways and 37.92 miles of sidewalks and bikepaths. Additional goals and objectives include the following:


- 1. *Maintain mobility on the Town's transportation system within the fiscal constraints of the approved operating budget.* It is recognized that there are limitations to the Town's resources, and that these resource limitations may at times limit the Town's ability to meet this objective.
- 2. *Maintain mobility on the Town's transportation system while preserving and protecting the Town's natural resources.* It is recognized that some commonly accepted materials and practices associated with snow and ice removal operations are potentially harmful to natural resources, and that the use of these materials and practices may at times limit the Town's ability to meet this objective.

- 3. *Provide a higher level of service during peak demand traffic periods.* It is recognized that traffic volumes vary significantly over the course of any twenty-four hour period. The Town will attempt to manage its available resources to provide a higher level of service between the hours of 6:00am and 7:00pm when traffic volumes are typically at their highest.
- 4. *Implementation of snow removal operations consistent with established priorities.* Due to their function, higher traffic speeds, and higher volumes, primary arterial and collector roadways shall be given priority over local residential streets for all snow and ice removal operations.
- 5. *Strive toward established performance measures.* The following data indicates the general performance goals that the Department of Public Works strives for to complete each task. These estimated hours may vary significantly depending on storm conditions, traffic volumes, and the availability of resources.

1 hour
2 hours
4 hours
7 hours
2 hours
2 hours
48 hours

### **1.3 Organizational Structure**

Recognizing the far reaching circumstances associated with the Town's snow and ice removal operations, the organizational structure as described in this section is based upon a holistic approach. The Town Manager, reporting to the Select Board, works collaboratively to develop both policy and funding plans based upon specific recommendations from the Director of Public Works. The Select Board ultimately adopts the program policy and then forwards supporting funding recommendations to the voting public. With funding authorization, the Director of Public Works assumes primary management responsibility for the Town's snow and ice removal operations and works within the established funding and policy guidelines. The responsibility for daily operations is assigned by the Director to the department's Operations Manager, who in turn, works with crew leaders and maintenance staff to implement the plan. A flow chart illustrating this organizational structure is illustrated below:



### **1.4 Management Philosophy**

The management philosophy of our snow and ice removal plan is based upon a balance of the basic principles of public safety, cost containment, and environmental sensitivity. We recognize that the public safety of our residents, guests, and travelers is paramount. At the same time however, we acknowledge that the community has financial limitations which ultimately shape the level of service that is provided. Finally, we understand the environmental impacts from both excessive vehicle emissions and the use of de-icers and abrasives in a lakeshore community, and strive to limit these factors through our snow and ice removal program. Although we have no control over the weather, we can control the management of our program which involves the assessment of each action to be taken before, during and after a storm, and evaluate them against our basic management principles to ensure their consistency with our philosophy.

### **1.5 Management Approach**

This Snow and Ice Removal Plan identifies resources and procedural guidelines associated with the management of winter storms. These resources and guidelines serve as tools that are applied to complex and unpredictable weather conditions consisting of rapidly changing variables. Although preparation and planning are key elements of the plan, these steps alone can not ensure that a pre-determined plan will fully address the circumstances a winter storm may create. Consequently, working within the frame work of the plan, the Town will rely upon an adaptive management approach whereby management decisions may be made that involve revising the plan to produce the desired outcome. This adaptive management approach may result in variations of the basic operational phases of this plan in an attempt to maximize the efficiency and effectiveness of the Town's resources, and achieve to the greatest extent practical, the overall goals and objectives of this plan.

### **1.6 Personnel Policy**

This Snow and Ice Removal Plan incorporates by reference the Town of Colchester's Comprehensive Personnel Policy Manual as most recently adopted or amended by the Colchester Select Board. In the event of conflicting provisions between these two documents, the stricter shall prevail.

### 1.7 Disclaimer

The Town of Colchester is dedicated to maintaining both mobility and safety on its transportation system. However, the Town of Colchester has a finite level of available resources to perform the tasks associated with its Snow and Ice Removal Program, and it is recognized that winter storms create rapidly changing weather conditions that are inherently dangerous, unpredictable, and uncontrollable, requiring independent judgment and decisions from Town employees. Consequently, the Town of Colchester makes no representation, or offers no guarantees, and assumes no liability that through the implementation of this Snow and Ice Removal Plan, the Town's transportation system will always be safe for public travel, and that there will not be incidents of property damage, injury or death related to road conditions. All individuals operating motor vehicles on Colchester Town roadways are encouraged to be mentally prepared for operating a motor vehicle in inclement weather conditions and do so at their own risk, and as well, ensure that their motor vehicle is mechanically and adequately equipped to operate in inclement weather conditions.

### SECTION 2.0 – REGULATIONS AND POLICIES

### 2.1 Ordinances

### Chapter 12 - Traffic - Article III, Parking, Standing and Stopping

Sec. 12-32. Parking without authorization on public grounds.

(a) *Designation of areas.* No automobile shall be parked without authorization on publicly owned land within the Town and including, by way of illustration and not limitation, public and municipal parking lots, drives and ways, including the highways of the said Town, between the hours of 10:00 p.m. and 6:00 a.m. from the 15th day of November in each year until the following 15th day of March.

(b) *Penalty*. Any motor vehicle parked in violation of subsection (a) shall be ticketed, which ticket shall constitute a penalty of five dollars (\$5.00) for the first violation. The penalty shall increase to fifteen dollars (\$15.00) for the second or subsequent violation within thirty (30) days of previous violation; said ticket is payable within three (3) days of the offense as provided for in Title 23, Section 1746, V.S.A. Any police officer of the Town and the Town Manager are hereby authorized to cause vehicles parked in violation of this section to be removed and the owner of any vehicle so removed shall be required to pay a reasonable towing charge not to exceed forty-five dollars (\$45.00) for such removal as well as storage charges not to exceed five dollars (\$5.00) a day and there is hereby imposed a lien against such vehicle so removed for the payment of the said towing and storage charges.

### Chapter 13 - Streets and Sidewalks - Article III, Snow and Ice Removal

Sec. 13-29. Dumping ice and snow in public areas.

(a) Placing prohibited without permission. No person, by their own act, or through their agents or employees, shall throw, put, push, or otherwise deposit snow, or ice, in the following public areas without written permission from the Director of Public Works or his/her designated representative.

- (1) On the paved or traveled portion of any public street;
- (2) On any Town sidewalk.

(b) Restrictions may accompany permission. In granting written permission under the previous section, the Director or his/her representatives may impose such restrictions as are necessary to protect the safety and welfare of the public, and such permission may be revoked at any time.

### Chapter 1 - General Provisions

Sec. 1-9. General penalty; violations.

Civil Ordinance Violations Jurisdiction.

Enforcement of Civil Ordinance Violations

(1) A civil penalty (a fine not more than that allowed by law) may be imposed for a violation of a civil ordinance. Each day the violation continues shall constitute a separate violation. On all first offenses, the municipal officer shall issue a warning notice. After the first offense, if the violation continues, the municipal officer will issue a "municipal complaint". The following penalties will be assessed for all municipal complaints:

First offense	Warning notice
Second offense	\$50.00
Third and subsequent offenses	\$100.00
Waiver fee (second offense)	\$25.00
	•
Waiver fee (third and subsequent offenses)	\$50.00

Sec. 13-30. Mailboxes.

No person shall construct and/or place a mail receptacle within the public right-of-way which does not meet all requirements including proper dimensions, heights, and distance from the road, as described by the United States Postal Service.

### **2.2 Policies**

<u>Emergencies</u> - In the event of an unforeseen combination of circumstances, or an urgent need for assistance that calls for immediate action to protect the health or property of a citizen, the Town shall attempt to plow any road in order to protect and serve a citizen of Colchester.

<u>Material Usage</u> - At the discretion of the Town, de-icers may be used to control ice and snow accumulations on the roads when temperatures exceed 20 degrees Fahrenheit, and de-icers, abrasives or a combination of these materials when temperatures are below 20 degrees Fahrenheit.

<u>Road Conditions</u> - Although the Town shall strive to maintain safe driving conditions on the roadways to the greatest extent possible within the limitations of its resources, the Town can not keep roadways continuously free of ice and snow, and offers no guarantee and/or assumes any liability that roads will always be free of ice and snow, and present no hazard to the traveling public.

<u>Sidewalk Conditions</u> - Although the Town shall strive to maintain safe walking conditions on the sidewalks to the greatest extent possible within the limitations of its resources, the Town can not keep sidewalks continuously free of ice and snow, and offers no guarantee and/or assumes any liability that sidewalks will always be free of ice and snow, and present no hazard to the traveling public.

<u>Hours of Work</u> - The Town will strive to provide the highest possible level of service practical during peak traffic hours, while protecting all Town employees involved within the Town's snow and ice removal program. To ensure this condition, the Town may manage it's human resources by discontinuing snow and ice removal activities during the hours of 10:00 p.m. and 4:00 a.m. Snow and ice removal activities will only take place during these hours, which may include single operator patrol, when in the opinion of the Director of Public Works, or his designee, the work can be performed without exhausting the Town's available resources or placing the public and/or the Town's employees in danger, or if the work is considered necessary to avoid a condition where roadways are impassable to emergency services.

<u>Complaints</u> - The Town shall investigate any and all complaints received regarding the Town's snow and ice removal operations. If the situation can be corrected or improved it will be addressed at the first opportunity. If the complainant leaves a name and/or telephone number and request that they are contacted, they will be contacted by a public works representative within 24 hours from the time received.

<u>Mail Boxes</u> – The Town will investigate any reported damage to mail boxes caused by the Town's snow removal operations. If the investigation concludes that the damage was caused by the Town's snow removal operations, and that the mail box was properly positioned in accordance with U.S. Postal Standards, the Town will replace it in kind.

### **SECTION 3.0 - RESOURCES**

### 3.1 Town Equipment

The following equipment is available for snow and ice removal operations. All equipment is located at the Public Works Garage on Blakely Road.

Plow Trucks:	6 (35,000 GVW trucks equipped with front plow, wing plow and computerized material spreader.)
One Ton Trucks:	2 (Equipped with front reversible plow and material spreader.)
Grader:	1 (Equipped with underbody plow and wing plow.)
Loader:	1 (Equipped with front bucket.)
Sidewalk Tractors:	2 (Equipped with front V-plow and blower)

### **3.2 Contract Equipment**

The Town of Colchester does not have a contract with any local contractors for snow removal equipment, nor is any contractual equipment reserved or committed to the Town of Colchester. The following lists of contactors do have various pieces of snow removal equipment that have been made available to the Town in the past, and may be available on an as needed basis.

All Seasons Excavating	(802) 655-3976
A. Marcelino & Company	(802) 862-6383
Engineers Construction	(802) 863-6389
Ormond Bushey & Sons	(802) 872-8110

### **3.3 Communications**

All equipment listed in section 3.1 is equipped with two-way radio systems. All systems are accessible to the Colchester Police Department and Public Works base stations. A base station is located in the Public Works office at 781 Blakely Road. There is also a base station located at the Public Works Maintenance Facility at 711 Blakely Road.

The Director of Public Works and the Department's Operations Manager also have two-way radios in their vehicles. These vehicles are designated as command vehicles within the Town's Emergency Operations Plan, and are equipped with multi-agency capability. The Director of Public Works, Operations Manager and the Highway Crew Leader also carry cellular phones.

### **3.4 Personnel**

(8) Truck Drivers(2) Heavy Equipment Operators(1) Sidewalk Plow Operator(2) Mechanics

### **3.5 Materials**

Road Salt: 1,750 tons (200 ton storage capacity.)

Road Sand: 3,500 tons

All materials are located at the Public Works Maintenance Facility.

### **3.6 Weather Services**

The primary advanced notification source for approaching winter storms is the internet, accessed from the Operations Managers Office and the Public Works Maintenance Facility. Selected sites are monitored on a regular basis where detailed forecasts and computer modeling are evaluated. These sites are as follows:

www.intellicast.com www.weather.com www.erh.noaa.gov/btv/index.php

As the storm enters the region, monitoring of these sites continues utilizing Doppler radar tools. Additionally, the National Weather Service at the Burlington International Airport is contacted where public works managers can speak to staff Meteorologist to discuss and interpret real time weather data specific to the Town of Colchester.

### 3.7 Fuel

The Town's fuel depot is located at the Public Works Maintenance Facility. All snow removal equipment is fueled at this facility. The facility has two separate permitted underground storage tanks which hold 10,000 gallons of unleaded fuel, and 10,000 gallons of diesel fuel. The fueling system can only be accessed through the use of a coded access card assigned to each piece of equipment. Access to the fueling system also requires the operator to enter basic usage information related to the equipment. The system then electronically transfers this information to the Department's Computerized Preventative Maintenance Program in support of overall equipment maintenance programs.

### **3.8 Equipment Maintenance**

The Department has two full time mechanics who work out of the Public Works Maintenance Facility. This is a full service maintenance facility with two double stack service bays. The mechanics are fully trained to perform all routine maintenance and repair of both diesel and gas powered equipment. Capabilities include computer diagnostics, electrical and hydraulic systems, welding and equipment fabrication. The Department also maintains a service vehicle which allows most of these services to be preformed in the field if necessary. During off hour storm events, mechanics will be called in on an as needed basis by either the Highway Crew Leader or the Operations Manager. During severe storms, the Operation Manager may elect to call in mechanics on a standby basis. For efficiency, normal routine work is performed by the mechanics while operating under standby conditions.

### SECTION 4.0 – INTER-AGENCY COORDINATION

### **4.1 Colchester Police Department**

During regular working hours, or other times when snow removal operations have been implemented, the Police Department advises the Public Works Department of hazardous road conditions. It is the responsibility of the Public Works Department to have management control over all snow removal operations at all times. In response to communications from the Police Department advising of hazardous road conditions, the Highway Crew Leader in charge shall evaluate the situation, may consult with the Operations Manager, and then determine the appropriate response.

During non-working hours, the Highway Crew Leader shall rely on notification from the Police Department that precipitation has begun, or that in their opinion, driving conditions are becoming hazardous. Notification will be made by the Police dispatch utilizing either a direct dial to the Crew Leader's residence or their cellular phone. Updated contact numbers and schedules are provided to the Police Department on November 1 of each year. After notification is received, the Crew Leader shall evaluate each situation, may consult with the Operations Manager, and then determine the appropriate response.

In each case, the evaluation may include, but may not be limited to, time of day, day of week, special events, temperature, snow intensity and characteristics, weather forecasts, availability of resources, and whether the situation can be improved consistent with the Department's basic management principles. In the event the Police Department is not satisfied with the decision, the Police may contact the Director of Public Works who will assess the situation, may consult with the Town Manager, and then make a final decision.

The Department of Public Works shall keep the Police Department fully advised on the status of the snow and ice removal operations, as well as any plans that will be implemented in response to the storm that may have an impact on road conditions.

### **4.2 Colchester Fire Departments**

Fire fighting during freezing weather often results in ice accumulations along portions of the transportation system. The Department of Public Works closely monitors fire scenes to ensure that these sections of roadways are properly treated with de-icers during and following a fire event. In the event that the response by the Fire Department to a scene is prevented or significantly hindered by poor road conditions, the Public Works Department will divert the necessary equipment from its normal routing to facilitate the response by fire equipment.

### **4.3 Colchester Rescue Department**

In the event that the response by the Rescue Department to a scene is prevented or significantly hindered by poor road conditions, the Public Works Department will divert the necessary equipment from its normal routing to facilitate the response by rescue equipment.

### 4.4 Colchester School District

The School District relies primarily on bussing to accommodate their student transportation needs. The current arrangement is with a private contractor. Road conditions are an important consideration when the School District decides to close schools due to unfavorable weather conditions. Upon request, the Public Works Department shall provide to the School District, or their transportation contractor, any available information that will assist them in their decision process. Information may include, but may not be limited to road conditions, weather forecasts, and any plans that will be implemented in response to the storm that will have an impact on road conditions. The Department of Public Works shall not provide recommendations on school closures. This responsibility lies solely with the School District.

### **4.5 Colchester Water Departments**

Water line breaks during freezing weather often result in ice accumulations along portions of the transportation system. The Department of Public Works closely monitors these scenes to ensure that these sections of roadways are properly treated with de-icers during and following a water break.

### 4.6 Vermont Agency of Transportation

The Vermont Agency of Transportation, through the District #5 Maintenance Facility located at Exit 17 in Colchester, is responsible for all state and federal highways within the Town of Colchester. These include Rt. 2, Rt. 2a, Rt. 7, Rt. 15 and I-89. Although both the state and the Town have their respective snow and ice removal responsibilities, both agencies are willing to assist the other in an emergency situation if possible. Because these state highways are an important component of the Town's overall transportation system, the state is advised of any dangerous road conditions that are encountered on these roadways by the Town.

### **SECTION 5.0 – ADMINISTRATIVE PROCEDURES**

### **5.1 Storm Preparation**

Upon arrival of a winter storm, driving conditions deteriorate rapidly, requiring a rapid response from the Town's snow and ice removal program. To improve the readiness and reliability of the Town's resources, careful preparations are made for each storm. Although there are many preparatory steps to be considered, certainly the development of a management plan is one of the most critical.

A management briefing between the Operations Manager and the Highway Crew Leader will take place to evaluate weather data and other storm variables, as well as the availability of resources when winter storm events are predicted. In the event of major winter storms, the Director of Public Works may also participate in this planning process. In any case, the Highway Crew Leader's goal is to implement a specific management strategy developed for each storm that is matched to the variables expected from the event. Contingency plans may also be developed to accommodate various outcomes that are not consistent with the expected event.

The 10 year mean snowfall average in Colchester, Vermont is approximately 80 inches. Snowfall accumulation alone however, cannot be the only judge of costs, public perceptions, hardships, and other problems associated with winter weather. The following information outlines some of the more significant winter weather variables that are considered during the planning process for each storm.

- Moisture Content: Depending on climatic conditions, the moisture content of snow may vary significantly. From the standpoint of snow and ice removal operations, the less moisture there is in the snow, the better. As the moisture content increases, several negative effects begin to develop.
  - (a) A high moisture content indicates that there is a significant amount of water in the snow. The water accelerates the dilution of the deicers applied to the roadway, and thereby, reduces the effectiveness of the de-icers. Subsequently, increased de-icing becomes necessary which increases the cost of the storm.
  - (b) Water can be thought of as a lubricant. Subsequently, the higher the moisture content in the snow, the more slippery the roads will become.
  - (c) High moisture contents add mass or weight to the snow. As the moisture content increases, the snow becomes increasingly more difficult to push with the plows. This results in slower plow speeds, increased fuel consumption, and increased wear on the equipment.

- (d) High moisture contents allow the snow to bond more easily to both the roadway and to itself. Under traffic, the snow is packed down on the roadway, and becomes difficult and expensive to remove.
- (e) Winter storms that produce snow with high moisture contents are typically referred to as "wet storms". These types of storms are often followed by cold fronts resulting in rapidly falling temperatures. Under these conditions, it becomes imperative that accumulated snow be removed as soon as possible to avoid freezing.
- Timing: The period of time in which snow fall occurs is critical. With storms that occur during the off peak traffic hours, such as 7:00 p.m. to 4:00 a.m.; major arterial roads can usually be sufficiently cleared before peak traffic times. However, when storms develop during peak traffic hours, significantly more cars will be impacted by poor road conditions. The morning and evening commuting hours are the worst time for storms to develop.
- Duration: The storm duration refers to the length of time snowfall continues. Generally, the faster a storm comes in and leaves the better. Three inches of snow that falls in 24 hours may cost twice as much as twelve inches of snow that falls in 8 hours. Storms of long duration increase salt use, equipment, and labor hours. Storms of extended duration severely tax available resources to maintain the roads over a prolonged period of time.
- Freezing Rain: Freezing rain occurs when warm upper level air masses ride over colder air near the surface. As precipitation begins within the warm air in the form of rain, it eventually falls through the colder air near the surface, causing it to freeze. This weather condition presents the most hazardous driving conditions encountered during winter storms. This type of weather condition requires significant amounts of de-icers and abrasives to keep the roads passable.
- Blowing Snow: Blowing snow occurs when high winds are present in open areas. Winds blow snow onto the roads creating isolated areas of poor road conditions. These conditions can exist for extended durations long after precipitation has ended.
- Intensity: The intensity is a measure of how fast the snow is falling or accumulating. With storms of high intensity, the rate of accumulation may exceed the rate in which the equipment can remove the accumulated snow from the roadway within established performance parameters. Under this condition, snow removal efforts may fall behind, and roadways may become obstructed with snow.

In addition to assessing the various weather variables, ensuring that the necessary resources are available and in place is critical to the successful implementation of the management plan. All equipment should be fully prepared to execute the management plan. This should include such things as mechanical readiness, fueling, the attachment of plow equipment, pre-loading with sand or de-icers, and storage of equipment inside to ensure quick starts in inclement weather conditions. Sufficient materials should be on hand such as salt, sand, fuel, tire chains, wiper blades, and repair parts. All operational staff should be made to avoid any impediments to the operation. This may include such things as adequate snow storage areas, the removal of any barriers or obstructions, or the clearing of key drainage structures when heavy rains are expected.

### 5.2 Activation of Plan

Activation of the Town's Snow and Ice Removal Plan is defined by the deployment of resources that directly mitigate poor road conditions. As outlined later in the Operations Section of this plan, this point is referred to as Phase 3. The plan is activated when in the opinion of the Department of Public Works; road conditions have become, or are expected to become hazardous, and can reasonably be improved through the activation of the plan.

The authority to activate the plan shall vary depending upon the level of deployment. The Operations Manager and Highway Crew Leader are authorized to activate Phases 3 - 6 of the Snow and Ice Removal Plan. Phases 7 and 8 must be authorized by the Director of Public Works.

### **5.3 Monitoring and Management Decisions**

Ongoing monitoring of storms in progress, and subsequent management decisions are critical activities of the overall plan. The characteristics of the storm and the condition and availability of resources are monitored throughout the storm event, and measured against the management plan that was developed for the storm. Because of the inherent unpredictability of weather events, and numerous other circumstances beyond the departments control, management decisions are often required that involve revising the plan to produce the desired outcome. This adaptive management approach may result in variations of the basic operational phases of this plan in an attempt to maximize the efficiency of the Town's resources. This process is the responsibility of the supervisor in charge of the storm, who may consult with their supervisor before making a decision. Although the Highway Crew Leader is considered the first line of supervision, both the Operations Manger and Director of Public Works may assume responsibility at any time. The level of supervision is determined by factors such as, but not limited to, the severity of the storm, availability of resources, overall roadway conditions, the level of resource deployment, or the general overall complexity of the operations.

### 5.4 News Releases

All news releases to newspapers, radio, and television will be provided by the Director of Public Works, or his designated representative. It will be the responsibility of the Operations Manager and Highway Crew Leaders to supply accurate information so that reports can be made to the public. The department shall be responsive to inquires from the media, and shall endeavor to

keep the media informed if there is information that will benefit the residents and traveling public within the Town of Colchester.

### 5.5 Records

The Operations Manager shall be responsible for maintaining all records related to the Town's snow and ice removal operations. These records shall include all weather forecast information, labor, materials and equipment used during the storm and a log of events that document the times that various actions were taken by the Town. This information will be entered into a Storm Activity Log Sheet and be retained within the Public Works Departments files for a period of 5 years. (A sample of the Storm Activity Log Sheet is located in Section 7.0 -Appendix.)

### **5.6 Accident Procedures**

When an employee or other person has been injured or there has been damage to Town or private property while on the job, a properly completed accident report must be submitted within twenty-four (24) hours of the accident. The employee's supervisor and Department Head shall be responsible for signing and forwarding the properly completed report to Human Resources. Human Resources will report the incident to the Town Manager. If an employee is injured in a work related accident, he or she should follow the procedures for worker's compensation as outlined in the Town's Comprehensive Personnel Policy Manual. Any accident or incident which involves any piece of Town equipment and a private motor vehicle or individual, shall be reported to the Police Department immediately, regardless of the amount of damage.

### 5.7 Damage Claims

In the event that any departmental employee is contacted by an individual making a claim against the Town of Colchester associated with private property damage or personnel injury, or any individual associated with, or inquiring about a claim against the Town of Colchester, the employee shall make no representation or express any opinion relative to the claim, and immediately forward the claim to Human Resources.

### **SECTION 6.0 – OPERATIONS**

### **6.1 Equipment Procedures**

<u>Equipment Fueling</u>: Operators shall utilize the card system at the Public Works Maintenance Facility for fueling. All cards shall be coded to record fuel consumption, as well as odometer or hour meter readings for preventative maintenance purposes. For equipment that is equipped with hour meters, operators shall enter the hour meter readings into the fueling system each time fueling occurs. For all other equipment, operators shall enter odometer readings at the time of fueling. For equipment that is powered by diesel engines, only diesel fuel shall be used for fueling. All gasoline powered equipment shall use only gasoline. All equipment being fueled shall have all motors and electrical systems turned off. No burning cigarettes or other sources of ignition shall be allowed within a 50 ft. radius of the fueling facility. Any problems encountered during fueling operations, including accidental spills of fuel, shall be reported to the Operations Manager immediately.

<u>Equipment Inspection</u>: Inspection of equipment by the operator shall be done daily. Inspection shall include all applicable items on the Operator Daily Equipment and Safety and Security Checklist. Any and all damage and/or service requirements shall be reported to the Garage Foreman or his/her appointed designee on a service request form as soon as possible.

<u>Equipment Greasing</u>: All equipment requires greasing at regular intervals. These include daily, intermediate, and full service greasing. Greasing procedures are outlined in the equipment greasing file located in the Garage Foreman's office within the Public Works Garage.

<u>Equipment Cleaning</u>: The operator of the equipment shall be responsible for keeping the equipment cleaned inside and out. Special attention should be given to properly removing all deicing agents from the equipment after use.

<u>Energy Conservation</u>: To minimize fuel consumption and harmful environmental impacts, any unnecessary idling of equipment shall be avoided. When operating equipment, the quickest and most direct route should be used whenever possible. All operators shall drive within the legal speed limits and shall avoid any unnecessary excessive acceleration.

Equipment Operations: All equipment operators shall be knowledgeable of all operating and safety requirements and must have valid appropriate licensing before operating any Town equipment. Equipment shall not be unnecessarily abused at any time and shall be operated within design performance ranges at all times. Equipment should not be used for purposes that it was not designed for. Wearing of all safety belts and harnesses provided is required at all times. Whenever equipment is backed into or out of the garage, a second employee should guide the operator from a safe vantage point. If a second employee is not available, the operator shall walk to the rear of the vehicle and visually inspect the area before attempting to back the equipment up.

<u>Tarps:</u> All trucks that are equipped with tarps are required to cover all loads before traveling over the roadway. After trucks have been loaded with material, operators shall take reasonable

measures to ensure that no loose material exists on the vehicle that could potentially become dislodged while traveling over the roadway.

### **6.2 Salting Procedures**

Required Resources:	(6) 35,000gvw plow trucks with operators.
	De-icers as required.

Salting operations should begin very early on in a storm with the most effective and efficient times being just moments before the roads become slippery. The optimal temperature range for use is above 20 degrees Fahrenheit. The effectiveness of salt begins to decline rapidly below these temperatures. Operators are responsible for assigned routes, which are salted in a priority sequence. Although the sequencing may change from one storm to another depending on storm variables, the priority is generally dictated by factors such as steep grades, curves, intersections, and traffic volumes. Salt rates, as well as methods of application, will be determined by the Operations Manager and Highway Crew Leader depending on the severity and conditions of the storm. Once determined and programmed salt application rates are continually monitored and controlled by on-board computer systems within each truck. Typical salting situations are as follows:

MAJOR ARTERIALS:	Suggested Salt Application Rates (Rates may vary with conditions.)
Normal Storms:	500 lbs. per 2 lane mile (Beginning of storm)
Freezing Rain:	300 lbs. per 2 lane mile (During storm, windrowed)
Post Storm:	300 lbs. per 2 lane mile (After storm)
Heavy Wet Snow:	800 lbs. per 2 lane mile (Beginning of storm)
Compacted Wet Snow: (Temperature dropping)	800 lbs. per 2 lane mile (After storm)
SECONDARY ROADS:	
Freezing Rain:	300 lbs. per 2 lane mile (During storm, windrowed)
Post Storm:	300 lbs. per 2 lane mile (After storm, Temp. above 32 F.)
Compacted Wet Snow: (Temperature dropping)	800 lbs. per 2 lane mile (After storm, Temp. above 32F.)
Special Note:	Post storm and compacted wet snow salting should be done in conjunction with plowing if necessary to remove any residual snow and ice.

### **6.3 Sanding Procedures**

Required Resources:	(6) 35,000gvw plow trucks with operators.
	(2) One ton trucks with operators.
	Abrasives as required.

Sand is used as an abrasive and is considered an alternative to de-icers when storms, weather conditions, or road conditions do not favor the use of road salt. Typical situations where sand would be used are as follows:

- Gravel Roads: Sand is the only material that is used on gravel roads. De-icers thaw the frozen gravel, which causes the road bed to become unstable. Because sand does not act as a de-icing agent, it is not applied at the beginning of a storm. Sand is typically applied to gravel roads after they have been plowed, or when ever they become slippery on a post storm basis. During periods of freezing rain, the rain easily washes the sand off the roadway, which requires frequent re-applications of sand.
  - *Special Note:* Under storm conditions where a transition from snow to rain occurs, and accumulated snows do not prevent roads from being traveled, the Operations Manager or Crew Leader may avoid removing the snow until the rain has stopped. The snow has some absorption qualities which absorb the rain. If gravel roads are plowed off, the rain quickly turns the surface to ice.
- Major Arterials: Sand may be used during and after storms to improve poor driving conditions when temperatures are below 20 degrees Fahrenheit. Sanding during storms should only occur after plowing.

Secondary Roads: Sand may be used after storms to improve poor driving conditions when temperatures are below 20 degrees Fahrenheit.

### **6.4 Plowing Procedures**

Required Resources:	(6) 35,000gvw plow trucks with operators.
	(2) One ton trucks with operators.
	(1) Motor Grader with operator.
	(2) Sidewalk plows with operators.

Plowing operations may be used to remove accumulating snow from the roadways following the applications of de-icers. Plowing is the most cost effective way of removing accumulated snow from the roadway, and is also the most favorable environmental approach. It provides a smooth driving surface for motorists.

Typical situations where plowing would be used are as follows:

- Major Arterials: Plowing will usually begin on the major arterials when accumulations reach approximately 2". While snow is continuing to accumulate, plowing of major arterials should continue during normal snow removal hours.
- Secondary Roads: The plowing of secondary roads usually will begin after accumulations have stopped, and/or all of the major arterials have been cleared. If accumulations of snow on secondary streets begin to exceed 6" then secondary streets may be plowed in conjunction with major arterial plowing. Under these conditions, secondary streets will be plowed as they are reached during the major arterial plowing process, and may not receive multiple passes to clear snow from curb to curb. In the interest of time and maintaining adequate clearing of major arterials, only a sufficient width to allow vehicles to pass will be cleared on secondary streets.
- Gravel Roads: Gravel roads shall be treated generally as major arterials during a plowing operation.

*Special Note:* Special care must be taken in plowing gravel roads when they are soft. This typically occurs in the early and late portion of the winter when the road bed is not frozen. This can also occur during midwinter thaws. To avoid damage to the roadway, the equipment, and the operators, gravel roads should be plowed with one ton dump trucks or the grader under these conditions.

Sidewalks: Although sidewalks are considered an important component to the overall transportation system, there are distinctly different risks associated with the use of snow covered sidewalks versus snow covered roadways. Accordingly, the following guidelines have been developed for the winter maintenance of the Town's sidewalk system. Depending upon conditions, it may become necessary to deviate from these guidelines as conditions require.

### General Goals

The department shall strive to achieve the following goals within the fiscal constraints of the approved operating budget:

- Maintain mobility on the Town's pedestrian system.
- Provide increased priority to high pedestrian traffic areas such as around schools while school is in session, or other highly used pedestrian areas such as, but not limited to, the Route 15 sidewalks.
- Provide highest level of service during periods of highest use.
- Provide service as efficiently as possible.

**Regular Time Operating Guidelines** 

• Sidewalks shall be plowed whenever conditions can be improved

by plowing (generally greater than 1").

• Plowing shall not commence when temperatures are expected to rise, resulting in the melting of any accumulated snow within 24 hours.

**Overtime Operating Guidelines** 

- Sidewalks shall be plowed when total accumulations have reached 3 or more inches, with plowing beginning at 4:00 AM.
- Plowing shall not commence when temperatures are expected to rise, resulting in the melting of any accumulated snow within 24 hours.

Additional Operating Guidelines

- Whenever practical, sidewalk plowing will commence as close as possible to the end of a storm to avoid the need for repeated plowing.
- When any amount of wet snow has accumulated on the sidewalks and temperatures are expected to fall sharply, resulting in the freezing of wet snow, plowing shall proceed at any time to avoid this condition.
- Storms with significant snow accumulations or high moisture content may result in the need to deviate from these guidelines.

### 6.5 Operational Phases

The department's Snow and Ice Removal Plan is organized into a total of eight operational phases. Each step involves a different level of activity or deployment of resources, depending upon the advancement of the storm and its relative severity. Generally, more significant storms will require a higher operational phase.

<u>Phase 1 – Planning</u>: Phase 1 involves pre-storm planning intended to develop a specific strategy for managing the expected storm event. This phase also involves the assessment and preparation of various resources that will be required to implement the management strategy. Phase 1 operations are outlined in more detail in Section *5.1 Storm Preparation*.

<u>Phase 2 – Pre-Storm Monitoring</u>: Phase 2 involves the deployment of one supervisor to monitor the early developmental stages of a storm, and the resulting road conditions. The objective of this phase is to anticipate deteriorating road conditions and facilitate a rapid response to the event, or, alternatively, to identify a deviation from a predicted event, and thereby avoid an unnecessary deployment of resources. Storm monitoring in general is discussed in more detail within Section *5.3 Monitoring and Management Decisions*.

<u>Phase 3 – Advanced De-icing</u>: Phase 3 involves the application of de-icers at the very onset of precipitation. The objective of this phase to create a salt brine on the road surface to prevent the snow from bonding to the pavement, and to reduce the number of accidents which are most common during the first hour of precipitation while motorists are attempting to adjust to rapidly

changing driving conditions. Phase 3 is typically the first operational step for most storm events. Phase 3 utilizes the procedures outlined in Section *6.2 Salting Procedures*.

<u>Phase 4 – Arterial Plowing</u>: Phase 4 involves the scraping and plowing of accumulating snow along arterial and collector roadways within the Town's overall transportation system. The objective of this phase is to maintain safety and mobility along the portions of the transportation system carrying the majority of all traffic volumes, by removing accumulating snow and ice from the roadways, subsequent to advanced de-icing. Depending upon storm conditions and road surface types, de-icers and/or abrasives may be applied concurrently with this phase. Phase 4 utilizes the procedures outlined in Section 6.4 Plowing Procedures for Major Arterials with an equipment deployment consistent with Section 6.2 Salting Procedures.

<u>Phase 5 – Full Scale Plowing:</u> Phase 5 involves plowing of accumulating snow along all roadways under the Town's responsibility. The objective of this phase is to maintain safety and mobility along the portions of the transportation system carrying the majority of all traffic volumes, and as well to provide access to all lower functional local roadways along the transportation system and the Town's pedestrian network. To ensure that plowing operations keep pace with snow accumulations, roadways are cleared only to the necessary width to allow vehicles to safely pass. Depending upon storm conditions and road surface types, de-icers and/or abrasives may be applied concurrently with this phase. Phase 5 utilizes all of the procedures and resources outlined in Section *6.4 Plowing Procedures*.

<u>Phase 6 - Post Storm Clean Up</u>: Phase 6 involves both plowing and material application activities following the end of precipitation. The objective of this phase is to restore the roadways travel width and surface condition to the extent practical. Phase 6 utilizes all of the procedures and resources outlined in *Sections* 6.2 - 6.4.

<u>Phase 7 – Contractual Assistance:</u> Phase 7 involves the use of contractual snow removal equipment to assist in clearing snow accumulations from the Town's transportation system. This phase can only be implemented with authorization by the Director of Public Works. The Director may authorize this phase when in his opinion, the Town's resources are incapable of maintaining the Town's transportation system to an acceptable level of functionability. For purposes of this phase, functional is defined by an overall roadway condition that does not unreasonably impede the Town's ability to deliver emergency services, or threaten the overall public health and safety of the community. Resources associated with this phase are located in Section *3.2* of the plan.

<u>Phase 8 – Disaster Declaration:</u> Phase 8 involves a wide spread weather related disaster that has resulted in a State emergency declaration by the Governor, and then subsequently, a Federal Disaster Declaration by the President. Operating under this phase, and/or with the expectation of proceeding to this phase, special administrative protocols and procedures will be implemented in support of state and federal assistance. These protocols and procedures relate primarily to increased efforts associated with record keeping, to include detailed tracking of all disaster related costs, photo documentation, and attendance to any and all applicant briefings scheduled by state or federal officials. While under this phase, it is recognized that there may likely be resources that would otherwise be unavailable to the Town. These include, but may not be limited to, the Vermont Army National Guard, or the full or partial reimbursement for

contractual assistance. Close contact must be maintained through the Vermont Agency of Transportation and the Vermont State Emergency Management Office while operating under this phase. Additionally, while under Phase 8, the Director of Public Works may elect to recommend activation of the Town's Emergency Operations Plan and open the Town's Emergency Operations Center.